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Understanding the drivers of speciation is critical to interpreting patterns of biodiversity. The identification of the genetic changes

underlying adaptation and reproductive isolation is necessary to link barriers to gene flow to the causal origins of divergence.

Here, we present a novel approach to the genetics of speciation, which should complement the commonly used approaches of

quantitative trait locus mapping and genome-wide scans for selection. We present a large-scale candidate gene approach by

means of sequence capture, applied to identifying the genetic changes underlying reproductive isolation in the pea aphid, a

model system for the study of ecological speciation. Targeted resequencing enabled us to scale up the candidate gene approach,

specifically testing for the role of chemosensory gene families in host plant specialization. Screening for the signature of divergence

under selection at 172 candidate and noncandidate loci, we revealed a handful of loci that show high levels of differentiation

among host races, which almost all correspond to odorant and gustatory receptor genes. This study offers the first indication that

some chemoreceptor genes, often tightly linked together in the genome, could play a key role in local adaptation and reproductive

isolation in the pea aphid and potentially other phytophagous insects. Our approach opens a new route toward the functional

genomics of ecological speciation.

KEY WORDS: Gene flow, genome scan, genomic islands, natural selection, odorant receptor, targeted resequencing.

2 7 2 3
C© 2012 The Author(s). Evolution C© 2012 The Society for the Study of Evolution.
Evolution 66-9: 2723–2738



CAROLE M. SMADJA ET AL.

Understanding the drivers of speciation is critical to inter-

preting patterns of biological diversity (Butlin et al. 2009). It

now seems likely that natural selection plays a key role in the

speciation process in many, perhaps most cases (Kirkpatrick and

Ravigné 2002) and that selection is capable of promoting the evo-

lution of reproductive isolation in the face of gene flow (Servedio

and Noor 2003; Gavrilets 2004; Bolnick and Fitzpatrick 2007;

Smadja and Butlin 2011). The emphasis of speciation research

has thus shifted away from debates about geographic modes

(sympatric/parapatric/allopatric speciation) (Butlin et al. 2008)

and toward the dissection of the ecological and genetic mech-

anisms of speciation (e.g., Elias et al. 2008; Lowry and Willis

2010).

Since the influential paper by Wu (2001), there has been a

realization that, when reproductive isolation is not complete, pat-

terns of differentiation are likely to be uneven across the genome

(Nosil et al. 2009). In the case of ecologically driven speciation

with gene flow, reproductive isolation is likely to start with di-

vergent selection on loci that contribute to local adaptation. Once

divergence has begun, the completion of speciation requires the

initial isolation to be augmented by further adaptation, habitat

choice or assortative mating, the evolution of premating isola-

tion being most likely where there is either pleiotropy or close

physical linkage between the locally adapted alleles and alle-

les that increase nonrandom mating (Felsenstein 1981; Servedio

2009; Smadja and Butlin 2011). Therefore, we expect isolation

to spread, genomically, from its initial foci to larger genomic re-

gions and up to the whole genome, as the degree of reproductive

isolation increases. Yet, the details of the genetic architecture and

dynamics of reproductive isolation remain poorly understood and

documented (Nosil and Schluter 2011).

So far, two main approaches have been developed to address

the genetics of speciation. On the one hand, population genomic

approaches, which use allele frequency comparisons among taxa

to detect “outlier” loci showing some sign of divergence under se-

lection, have typically provided evidence for a few percent of the

genomic regions covered by markers to be maintained at higher

levels of differentiation than the background balance between

gene flow and genetic drift (reviewed by Butlin et al. 2008; Nosil

et al. 2009 among others). On the other hand, quantitative trait

locus (QTL) analysis, which uses phenotypic and genotypic data

to identify loci explaining variation in traits, has been widely

used to address the genetic basis of reproductive isolation (e.g.,

Baxter et al. 2009; Shaw and Lesnick 2009). This strategy can

be particularly powerful for identifying regions of the genome

involved in reproductive isolation when combined with the pop-

ulation genomics approach (Stinchcombe and Hoekstra 2008),

a combination that has been applied to whitefish (Rogers and

Bernatchez 2007) and pea aphids (Via and West 2008). How-

ever, although population genomics and QTL approaches help in

gaining insights into the number, size, and distribution of differen-

tiated genomic regions between partially isolated populations, the

rather large and/or anonymous regions they point at often make

more precise identification of the key loci and genetic changes

involved in reproductive isolation impractical solely by further

application of these methods.

A CANDIDATE GENE APPROACH USING

CHEMOSENSORY GENES AS A MODEL

In this article, we present a candidate gene approach, applied here

to the pea aphid system, as an alternative route to the genetics

of speciation, and which should complement the QTL and popu-

lation genomic methods. The candidate gene approach has been

used with great success in other contexts (e.g., in disease genet-

ics, pharmacogenomics, animal, and plant breeding—reviewed in

Zhu and Zhao 2007) but has rarely been applied in speciation

research. When it has been applied, it has typically been in re-

spect of a small number of genes for specific phenotypic traits

(Lexer et al. 2004; Kronforst et al. 2006; Haas et al. 2009). In

contrast, we here propose a large-scale candidate gene approach

that focuses on gene families, allowing many loci, whose func-

tion can be inferred at least in general terms, to be compared with

background differentiation in a set of randomly selected loci.

Here, we focus on gene families with great potential for influenc-

ing speciation in many systems: the chemosensory genes (Dulac

and Torello 2003; Hallem et al. 2006; Nei et al. 2008; Touhara

and Vosshall 2009; Croset et al. 2010). The chemical senses are

frequently involved in at least some aspects of premating isola-

tion, especially host/habitat and mate choice (Smadja and Butlin

2009). This implies that chemosensory genes, and in particular

gene products involved in peripheral processes of semiochemi-

cal recognition, are good candidates for contributing to premating

isolation in many systems. Moreover, the genomic organization of

these genes in very large multigene families (Kent and Robertson

2009; Niimura 2009; Sanchez-Gracia et al. 2009; Robertson et al.

2010), their mode of evolution under a birth-and-death model and

evidence for positive selection in some branches of these multi-

gene families, have led us and others to hypothesize a role for

these chemosensory genes in host adaptation and specialization

in insects (Matsuo et al. 2007; McBride 2007; McBride et al.

2007; Gardiner et al. 2008; Matsuo 2008; Dworkin and Jones

2009; Smadja et al. 2009; Schymura et al. 2010). Chemosensory

genes could play a major role in aspects of both local adapta-

tion and premating isolation. If some of these candidate genes are

effectively involved in reproductive isolation, they should show

high levels of differentiation among partially isolated taxa. This

provides a clear and testable prediction that we here use to address

the genetic basis of reproductive isolation and local adaptation in

the pea aphid.
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THE PEA APHID

The pea aphid, Acyrthosiphon pisum, is a well-established model

system for ecological specialization and speciation (Via 2009;

Peccoud and Simon 2010). Indeed, the pea aphid has been shown

to form host-associated populations on different legume species

(Via 1991; Ferrari et al. 2006; Ferrari et al. 2008; Peccoud et al.

2009), which have higher performance on and preference for the

plant species that they have been found on in the wild compared

to alternative host plants (Via 1991, 1999; Ferrari et al. 2006;

Ferrari et al. 2008). Host-associated populations are genetically

differentiated (Via 1999; Frantz et al. 2006; Peccoud et al. 2009)

and host plant specialization is the key component of reduced gene

flow in this system as it induces selection against immigrants and

against hybrids (Via et al. 2000), as well as assortative mating,

because pea aphids have no host alternation and reproduce on

their preferred plant (Via 1999).

A QTL mapping analysis of host acceptance and perfor-

mance in North American populations (Hawthorne and Via 2001)

suggests a polygenic basis for those traits and a recent scan for se-

lection based on amplified fragment length polymorphism mark-

ers showed that these QTL for major traits underlying repro-

ductive isolation correspond to differentiated outliers (Via and

West 2008). Hawthorne and Via’s (2001) QTL analysis also sug-

gested close physical linkage between loci controlling the two

traits and/or pleiotropy. This suggests that host acceptance evolves

under direct selection in pea aphids, a very favorable scenario for

speciation with gene flow (Smadja and Butlin 2011). Moreover,

host detection and feeding behaviors of pea aphids are closely

coupled, as they do not identify their home plant from a distance.

Indeed, host acceptance (or rejection) is essentially a question

of taste and smell in aphids, the key step being the probing of

epidermal plant tissues (Caillaud and Via 2000).

This information on the physiological basis of host accep-

tance in aphids led us to choose genes involved in chemoreception

as primary candidates for host plant specialization and speciation

in this system. Critically, the annotation work we completed on

odorant (OR) and gustatory receptors (GR) (Smadja et al. 2009)

and odorant binding and related proteins (OBP and CSP) (Zhou

et al. 2010) in the recently sequenced pea aphid genome (Con-

sortium, T. I. A. G 2010) provided an exceptional opportunity

to investigate the genetic basis of host race formation using a

candidate gene approach.

The specific objective of this study was to test for a role

of chemosensory genes in the formation of three host races of

pea aphids, which are closely related but highly specialized on

different host plants from Lotus pedunculatus, Medicago sativa,

and Trifolium pratense (Ferrari et al. 2008; Peccoud et al. 2009;

Ferrari et al. 2011). Our hypothesis was that divergent selection

must have operated on a small subset of chemosensory genes

during the formation of these host races. We predicted that this

selection would have generated patterns of sequence divergence at

those loci that are atypical with respect to background divergence

in the majority of chemosensory loci and in randomly selected

loci with no known chemoreception function.

To solve the challenge of assessing sequence variation at

numerous candidate loci (∼200) and in several populations, we

used sequence capture technology coupled with next-generation

sequencing (NGS) to analyze targeted sequence information and

to scale up the candidate gene analysis. To our knowledge, this

approach has not previously been used in the context of speciation

research but has enormous potential.

Our approach involved the following steps:

(1) Sample three different host races from a small geographical

area.

(2) Capture chemosensory genes and nonchemosensory genes

(randomly chosen genes) from genomic DNA using Nim-

bleGen capture arrays and sequence using the GS-FLX Ti-

tanium platform.

(3) Analyze these sequences for patterns of diversity, diver-

gence, and signatures of selection.

The data obtained allow an unprecedentedly detailed picture

of the genomic divergence between host plant races based on se-

quence data for a sample of ∼200 target loci (Table S1). Narrow-

ing down the number of genes suspected to underlie adaptation

and reproductive isolation in the pea aphid to a handful of loci

of known functional class, this large-scale candidate gene anal-

ysis provides key information on the identity of loci and genetic

changes involved.

Material and Methods
SAMPLES

Aphid sampling and rearing
We sampled pea aphids from three different host plants: greater

birdsfoot trefoil L. pedunculatus, alfalfa M. sativa, and red clover

T. pratense. These samples represent three different host races

(Ferrari et al. 2008; Peccoud et al. 2009; Ferrari et al. 2011).

Homogeneity in host plant acceptance and performance across

large geographical areas within each host race and low spatial ge-

netic structure suggest that samples restricted to a particular area

are representative of the races across a larger geographic scale

(Ferrari et al. 2011). Insects were collected from an area of 25-km

radius centered at Silwood Park, Berkshire, UK (51◦9¢302N;

0◦38¢152W), and brought back to the laboratory. Each genotype

was used previously and tested for performance on eight different

plant genera to verify its specialization on the plant it was col-

lected from (Ferrari et al. 2008). Clonal cultures were established

from single individuals collected in the field and maintained under

summer conditions in which only asexual offspring are produced
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(maintenance on Vicia faba (“The Sutton” cultivar) at 15◦C, 70%

r.h., and a 16:8 h light:dark cycle within the same controlled envi-

ronment room, Ferrari et al. 2006; Ferrari et al. 2008). Individual

adult aphids from each genotype were regularly collected and

stored in alcohol for future DNA extraction.

DNA sample preparation
In each population we extracted genomic DNA from eight aphid

genotypes (i.e., we sampled 16 chromosome sets from each pop-

ulation) using DNeasy tissue kit (Qiagen, Crawley, West Sussex,

UK) according to the manufacturer’s protocol. As aphids produce

apomictic clones, we used two individual aphids per clonal geno-

type to get enough DNA material. Extractions from each geno-

type were quantified fluorometrically using SYBR green on 1%

agarose gels and then combined in equimolar mixture to constitute

three population samples (pools). For each population sample, a

minimum of 21 μg of unamplified high-quality genomic DNA

was obtained.

SEQUENCE CAPTURE, SEQUENCING, AND SEQUENCE

ANALYSIS

Exon array design
We used NimbleGen capture array technology (Roche) to per-

form targeted exon enrichment (Hodges et al. 2007). Primary se-

quence data for all target genes were extracted from Assembly 1.0

of the pea aphid genome using Apollo-AphidBase (Consortium

2010) and from detailed annotation information on the pea aphid

chemosensory genes chosen here as candidate genes (Smadja et al.

2009; Zhou et al. 2010). We selected all of the chemosensory

genes (odorant receptors [Or], gustatory receptors [Gr], odorant

binding proteins [Obp], and ChemoSensory proteins [Csp]) that

had been partially or fully annotated in Assembly 1.0 of the pea

aphid genome (Smadja et al. 2009; Zhou et al. 2010). We also

included noncandidate genes as targets, randomly chosen in the

genome and a priori not involved in chemosensory processes.

The capture target represented 1021 exons from 203 genes, in-

cluding both candidate and noncandidate loci (see Tables S1 and

S2A). NimbleGen bioinformatics service then completed the ar-

ray design using default settings (Hodges et al. 2007) except for

uniqueness, which was relaxed so that closely related paralogs

could be captured. Overlapping microarray probes were designed

to span each target region. We checked the array design using

SignalMap version 1.9 ( C© 2006 NimbleGen System, Inc.).

Capture and sequencing
All of the capture and sequencing steps were performed by

Lisa Olohan at NBAF-Liverpool (Natural Environment Research

Council [NERC] Biomolecular Analysis Facility), United King-

dom. Quality control was applied to all three DNA samples, here-

after named Lotus, Medicago, and Trifolium in reference to the

aphid host plants. For each sample, library preparation, capture

on arrays and amplification was performed following the manu-

facturer’s protocol. The success of enrichment was measured by

qPCR at control loci. Captured fragments from each population

were then sequenced using a Genome Sequencer FLX Titanium

Instrument from Roche Applied Science (454 sequencing) ac-

cording to the manufacturer’s instructions. We used 1/8 of a 454

plate for each population, with repeats as necessary to give at

least 75,000 reads per sample. All sequences were submitted to

the short read archive [SRA048197.1].

Methods used for raw sequence analysis (read mapping,

alignment quality control, single nucleotide polymorphism (SNP)

calling, and filtering) are described in the Supporting Information.

Population Genetics Analyses and Scans for

Selection

Allele frequency, diversity, and differentiation
estimation
To avoid biases in allele frequency and population genetics esti-

mates introduced by NGS (Harismendy et al. 2009; Obbard et al.

2009; Gompert et al. 2010) and a pooling strategy, we imple-

mented maximum-likelihood (ML) estimates of allele frequency

(see Supporting Information for methodological details) from read

counts, which are shown in Table S4B.

From these imputed allele frequencies, we computed esti-

mates of gene diversity and differentiation over all populations,

and also separately for each pair of populations (Lotus-Medicago

[LM]; Lotus-Trifolium [LT]; Medicago-Trifolium [MT]). Genetic

differentiation among aphid host races was examined using FST

estimates (Wright 1951) calculated according to Weir and Cocker-

ham (1984). We chose the overall heterozygosity across samples

as the expected heterozygosity He in multiple population estima-

tions. Difference in locus-specific FST among gene classes (Or,

Gr, Obp, Csp, nonchemosensory genes) was tested using the non-

parametric Kruskal–Wallis rank sum test (Sokal and Rohlf 1981).

FST -based scans for selection
We initially explored the data for potential outlier SNPs by iden-

tifying loci above the 95th and 99th percentiles of the empirical

FST distribution. FST values were plotted against SNP genomic

scaffold positions using release 2.0 of the pea aphid genome

(http://www.ncbi.nlm.nih.gov/nuccore/298479576). Conformity

to expectation under neutral evolution was statistically tested

for all SNPs through a model-based test directed toward

the detection of outlier loci. To identify SNP loci showing

unusually high FST values, we approximated the expected

distribution of FST conditional upon heterozygosity for all

SNP loci using a modified version of the software package

Dfdist (http://sapc34.rdg.ac.uk/∼mab/software.html) (Beaumont

and Nichols 1996). Since the software package Dfdist was specifi-

cally designed for the analysis of biallelic dominant markers (e.g.,
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Bonin et al. 2006), we modified it to simulate codominant, bial-

lelic data (code available upon request) (Segurel et al. 2010; Ayala

et al. 2011).

We performed 500,000 coalescent simulations of biallelic

markers in three samples of eight diploid individuals to charac-

terize the joint distribution of FST and heterozygosity, using a

10-demes finite-island model and θ = 2nNμ = 0.1 (where n = 10

is the number of demes of size N, and μ is the mutation rate). This

particular value of the parameter θ was chosen to match the ob-

served overall gene diversity of the pooled sample, using θ = He /

(1 – He). We fixed a maximum frequency of the most common

allele at 0.999. We used the overall heterozygosity of the pooled

sample, which makes the conditional density behave better, par-

ticularly for biallelic loci. Outliers were determined by comparing

observed distributions with the neutral expectations at the 99%

confidence level. Differences in outlier distribution among gene

types were tested using log-likelihood ratio tests.

Genes were ranked according to the Poisson probability of

the observed or a greater number of SNP outliers, given the num-

ber of SNPs in the gene and the overall proportion of outliers

(for both the global and the pairwise comparisons), and we then

applied a cutoff of P < 0.05 and at least three outlier SNPs to

categorize genes as outliers.

To test for a potential correlation of FST level among linked

loci, we correlated FST between pairs of SNPs in distance cat-

egories up to 600 kb (500 bp intervals to 10 kb, 1 kb intervals

10–50 kb, 10 kb intervals thereafter, to even out the numbers of

SNP pairs per interval) and tested how quickly the correlation falls

off with genomic distance in base pairs, assuming an exponential

decline and weighting points by the square root of the number of

SNP pairs contributing to each correlation (FITCURVE procedure

in GenStat).

Synonymous and nonsynonymous diversity
We used the ratio of nonsynonymous to synonymous diversities

(πa/πs) within and between samples as a proxy for adaptive diver-

gence. The πa/πs ratio depends on the constraint on the protein,

that is, what proportion of amino acid substitutions is deleterious.

Within populations, a locus under less than average constraint

would have higher πa/πs ratio, because the less intense purifying

selection results in greater polymorphism for mildly deleterious

nonsynonymous substitutions. We expect the within-race ratio

to be similar to the between-race ratio under neutrality, or to

be greater in the presence of mildly deleterious alleles because

they are unlikely to persist long enough to be shared between

races. Positive selection causing divergence between races will

elevate the between-race ratio relative to the within-race ratio.

πa/πs ratios within and between host races were calculated as

follows: heterozygosities within (π within) and between (π between)

host races were obtained from allele frequency ML estimates at

each nonsynonymous and synonymous SNP; gene wise πa(within),

πa(between), πs(within), and πs(between) were calculated by averaging

over multiple SNPs per gene and neutrality index (NI) was de-

fined as the ratio of πa/πs (between) over πa/πs (within). We used

permutation methods to test whether NI was significantly greater

or less than 1, NI > 1 being suggestive of positive selection on

nonsynonymous substitutions (1000 permutations of SNPs within

each locus between the synonymous and nonsynonymous classes,

recording the number of times that permuted NI was less than or

greater than the observed NI, excluding loci with < 4 synonymous

or < 2 nonsynonymous SNPs). We then tested the effect of gene

type on NI. We also compared NI between outlier and nonoutlier

genes to test whether outlier genes have different NI values and a

different NI distribution. As the distribution of NI departed from

normality, we used nonparametric tests (see section Results).

All of the statistical analyses were conducted using the

R software environment for statistical computing version 2.13.0

(R Foundation for Statistical Computing, 2011) or GenStat Re-

lease 14.1 (VSN International Ltd., 2011).

Results
SEQUENCING AND CAPTURE METRICS

As expected with the capture technology used here (NimbleGen

capture arrays), around 54% of all captured and sequenced DNA

fragments uniquely mapped to targets (capture specificity, Fig. S1

and Table S3), with a mean read coverage per sample of 58×
(Table S3). Importantly, capture specificity was similar across all

samples (Fig. S1). Moreover, around 98% of all target loci and

exons could be captured (capture uniformity, Fig. S2): among the

203 targeted genes (Table S1), 198 were successfully captured and

resequenced, among which 197 were polymorphic (Table S2).

Three Gr genes could not be detected in the captured pool of

sequences (Gr70, Gr72, Gr74) and no variation (SNP called from

raw alignments) was detected in Gr64.

Pairwise population comparisons (Lotus-Medicago: LM;

Lotus-Trifolium: LT; Medicago-Trifolium: MT) showed that gene

content varies among samples: in particular, we found an absence

of some Or genes or parts of Or genes in the Lotus sample (Or12,

parts of Or57, Or61, Or74, Or75), which may indicate either a

capture deficiency due to high divergence between sample and

reference sequences (Medicago origin) or copy-number variation

(CNV) among populations in this Or multigene family.

After SNP filtering (see Supporting Information), mean depth

of coverage per sample was 120-fold, and there remained a total of

9889 biallelic SNPs identified across all three populations (2950

synonymous and 6939 nonsynonymous SNPs), representing 172

target genes and including all gene types (Tables S2 and S4).

Diversity and differentiation analyses were performed on this

good-quality SNP dataset.

EVOLUTION SEPTEMBER 2012 2 7 2 7



CAROLE M. SMADJA ET AL.

DIVERSITY AND DIFFERENTIATION

The average expected heterozygosity (He) at ∼10,000 SNP loci

across the three host races was 0.126, with some differences

among host races (Lotus: He = 0.108 ± 0.001; Medicago: He =
0.120 ± 0.002; Trifolium: He = 0.118 ± 0.002; Kruskal–Wallis

chi-squared = 98.28, df = 2, P < 0.0001). Gene classes vary

little in He or in overall proportion of nonsynonymous SNPs

(Table S4A).

There was considerable heterogeneity in the single-locus-

specific FST values, ranging from -0.066 to 1 (Table S4B). The

multilocus FST estimate (FST = 0.062) indicates moderate levels

of overall genetic differentiation. Pairwise population analysis

showed lower differentiation between the Medicago and Trifolium

populations compared with the other population pairs (multilocus

FST [LM] = 0.084; FST [LT] = 0.083; FST [MT] = 0.019), as

expected from previous work (Ferrari et al. 2008; Peccoud et al.

2009; Ferrari et al. 2011).

FST distributions differed among gene types (Or, Gr,

Obp, Csp, nonchemosensory genes) (Fig. S3) and the mean

locus-specific FST estimate significantly differed among gene

types (FST [nonchemosensory genes] = −0.018 ± 0.013; FST

[Or] = 0.002 ± 0.013; FST [Gr] = 0.011 ± 0.013; FST [Obp] =
−0.012 ± 0.017; FST [Csp] = 0.017 ± 0.013; Kruskal–Wallis chi-

squared = 142.713, df = 4, P < 0.0001).

DETECTION OF LOCI UNDER DIVERGENT SELECTION

A first indication of SNP loci exhibiting the strongest differen-

tiation is given by the overall FST distribution, which highlights

SNPs above the 95th and 99th percentiles (Fig. S4). Due to the

preliminary stage of the pea aphid genome assembly, most tar-

get genes occur on different scaffolds, but some genes can be

positioned on the same genomic scaffold (Fig. S4). In particular,

we observed several clusters of physically linked genes showing

high levels of differentiation (Fig. S4; e.g., Or73-Or62, Gr8-Gr9-

Gr10, Gr22-Gr31-Gr20, Or51-Or7-Or15).

We used the multilocus FST estimate obtained from all target

SNP loci (FST = 0.062, see above) to perform coalescent simu-

lations. When plotted against their respective He value (Fig. 1),

FST estimates obtained from most SNPs mapped within the 99%

confidence envelope of FST estimates expected under neutral-

ity. However, some SNPs revealed highly significant departure

from neutral expectations, with FST estimates lying outside the

99% confidence envelope (Fig. 1 and Table S5A). Under global

outlier tests using all three populations, signatures of divergent

selection were detected at 128 SNP loci (1.3%) while 49 (0.5%),

71 (0.7%), and 35 (0.35%) outlier SNPs were identified for the

LM, LT, and MT pairwise population comparisons, respectively

(Fig. 1).

The 128 outlier SNPs detected across all three populations

were classified according to the type of gene they belong to:

83 outlier SNPs were in Or genes (65% of all outlier SNPs), 38

in Gr genes (30%), seven in nonchemosensory genes (5%). No

outlier loci could be identified in Obp and Csp genes (Table S5A).

There was a significant difference in the incidence of outlier SNPs

among genes classified according to their function: the proportion

of outlier SNPs in nonchemosensory genes (0.45%) was signifi-

cantly lower than the proportion of outlier SNPs in Or (1.59%) and

Gr (1.29%) genes (G-test: log-likelihood ratio G = 14.61, df =
2, P = 0.0007), and this pattern was also present in the pairwise

comparisons (LM: G = 6.371, df = 2, P = 0.0414 [proportion

significantly higher in Or as compared to Gr and nonchemosen-

sory genes]; LT: G = 30.476, df = 2, P < 0.0001 [proportion

significantly lower in nonchemosensory genes as compared to Gr

and Or]; MT: G = 6.852, df = 2, P = 0.0325 [proportion sig-

nificantly lower in nonchemosensory genes as compared to Gr

and Or]).

Each population pair showed signatures of divergent selec-

tion at several SNP loci (Tables S5B–D). However, the Medicago–

Trifolium pair showed the lowest number of outliers (Table S5D).

This is the least-differentiated population pair overall, which could

indicate that the separation between these two host plant races was

the most recent event of ecological adaptation among those three

host races or that the hosts present the most similar environments

and so the weakest divergent selection. The low number of out-

liers is more consistent with the latter interpretation. Results from

16 sampled haplotypes per population suggest that most divergent

SNPs segregate within each population, but a few SNPs seem to

be alternatively fixed in diverging populations (SNPs in Gr33,

Gr59, Or21, Or6 genes) (Table S5).

How many of these outlier SNPs impact on the protein se-

quence of the corresponding genes can be determined from syn-

onymous and nonsynonymous SNP assignment. Results indicate

that 74 outlier SNPs in the global analysis are nonsynonymous

substitutions (Table S5) while 89.8 ([6939 × 128] / 9889) would

be expected on the basis of the proportions among all SNPs. These

nonsynonymous outlier substitutions might be key changes that

may affect the function and/or structure of the corresponding

chemoreceptors.

Although an individual nucleotide change can potentially

affect host acceptance phenotype, genes showing signs of differ-

entiation at multiple positions may reflect the strongest signature

of divergent selection, and thus be considered as the most promis-

ing candidate genes for host plant adaptation and speciation in

aphids. Figures 2 and 3 highlight those genes that have been cat-

egorized as outlier genes on the basis of the low probability of

their showing the observed high proportion of outlier SNPs, given

their total number of SNPs, and of the presence of three or more

outlier SNPs in their sequence (see section Material and methods

and Table S6). These results point again at the class of Or genes

as the most prone to diverge among host races, although a subset
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Figure 1. Results of FST-based scans for selection. Results of Dfdist analyses—each plot illustrates the joint distribution of FST versus

He estimates, based on maximum-likelihood imputation of allele counts at 9889 SNP loci (black dots) for (A) the global comparison

among Lotus-Medicago-Trifolium host races (LMT), (B) the Lotus-Medicago host race comparison (LM), (C) the Lotus-Trifolium host race

comparison (LT), (D) the Medicago-Trifolium host race comparison (MT). The zone between the upper and lower black lines represents the

neutral expectation at the 99% confidence level. The middle line represents the median of this distribution. The set of outliers revealed

by our analyses (see the main text) is indicated in black stars.

of Gr genes also seems to contribute to host race divergence. One

nonchemosensory gene, Rad51C, appeared as an outlier gene,

with a very low overall level of polymorphism (Fig. 2). Although

most outlier genes were detected in the global analysis, the pair-

wise population comparisons pointed at outlier genes specific to

some pairs of host races and to some additional loci not detected in

the global analysis (Or13, Gr59, Or56) (Fig. 3). Some of the most

divergent genes were among those clustered on the same genome

scaffolds (Or15-Or51; Or62-Or73; Gr8-Gr9-Gr10; Gr20-Gr22-

Gr31, Fig. 2).

The correlation between FST values of pairs of SNPs in dif-

ferent distance classes declined with distance between the SNPs

within scaffolds. An exponential decline explained 25.1% of the

variance among correlation coefficients (Fig. S5). The correlation

was close to zero for separations greater than 50 kb. Hitchhiking

effects around selected loci predict that the correlation would
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Figure 2. Distribution of FST along each outlier gene. Each plot represents SNP-based FST estimates along the sequence (position on

scaffolds) of each outlier gene (global analysis). The dot color code indicates the outlier status of each SNP after Dfdist analysis (see

legend). Only genes with a significantly greater observed number of SNP outliers than expected given their total number of SNPs and

having at least three Dfdist outlier SNPs in their sequence are plotted. Horizontal lines indicate the 99th percentile (red dashed line) and

95th percentile (blue dashed line) of the overall empirical FST distribution. Above each gene-specific plot are specified the number of

segregating sites (S), the length of the gene (L), the multilocus FST, and the mean expected heterozygosity (He). Green rectangles enclose

outlier genes that are clustered on the same genomic scaffold.

decline more slowly on scaffolds containing outlier loci than on

other scaffolds. We observed a tendency in this direction but the

rates of decline did not differ significantly (fitting separate expo-

nential declines: F2,112 = 1.04). This suggests that, if hitchhiking

does occur around selected genes, its effect is small and it only

extends over short distances.

SYNONYMOUS AND NONSYNONYMOUS DIVERSITY

Figure S6 presents the ratios of nonsynonymous to synonymous

diversities within (πa/πs within) and between (πa/πs between) host

races, for each target gene. The neutrality index NI (defined as

[πa/πs between] / [πa/πs within]) was on average significantly lower

than 1 (one-sample Wilcoxon rank sum test: mean NI = 0.984 ±
0.013; V = 2979; P < 0.0001; Fig. S7), suggesting overall evi-

dence for purifying selection. Although some genes showed rela-

tively high NI values (Fig. S7), we did not reveal any genes with

NI significantly greater than 1 (tested by permutation). Gene type

did not have any significant effect on median NI (Kruskal–Wallis

test with Csp and Obp classes excluded because there were in-

sufficient loci with NI estimates, H = 2.489; df = 2; P = 0.29;

Fig. S7). Moreover, FST outlier genes (see section above) did not

have significantly different NI on average than nonoutlier genes

(two-sample Wilcoxon rank sum test: noutlier = 18; NIoutlier =
0.989 ± 0.059; nnonoutlier = 133; NInonoutlier = 0.983 ± 0.013;
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Figure 3. Diagram summarizing common and unique sets of outlier loci among the different pairwise population comparisons and the

global comparison. The three pairwise population comparisons (Lotus-Medicago, Lotus-Trifolium, Medicago-Trifolium) are represented

by the curved areas (defined by the dotted black line; dashed dark gray line; solid light gray line). The gray circle represents the global

analysis (Lotus-Medicago-Trifolium). The figure highlights the sets of outlier loci identified in each analysis, their specificities, and their

overlaps. Genes outside the gray circle are outliers only detected by one or two pairwise comparisons but not in the global comparison.

Genes in the center of the gray circle are outliers only detected in the global comparison and not in any pairwise analysis. Finally, genes

detected in both pairwise and global analyses are represented in the overlapping zones between the gray circle and the curved areas.

W = 1236.5; P = 0.82; Fig. S7). The same result was found when

comparing genes that contain outlier SNPs and genes that do not

contain outlier SNPs (global FST-based scan for selection) (two-

sample Wilcoxon rank sum test: noutlier = 47; NIoutlier = 1.004 ±
0.041; nnonoutlier = 104; NInonoutlier = 0.975 ± 0.005; W = 2642;

P = 0.4274; Fig. S7). This suggests no strong evidence for positive

selection on nonsynonymous substitutions in outlier genes. How-

ever, Figure S7 also suggested an unexpected trend: a significant

difference in the distribution of NI between outlier and nonout-

lier genes (Kolmogorov–Smirnov test, D = 0.247, P = 0.027),

with outlier genes showing extreme high and low NI values. This

indicates that outlier genes tended to have either synonymous or

nonsynonymous outlier SNPs, rather than a mixture of the two.

Discussion
Scans for selection are being intensively used to identify the

genomic targets of natural selection and loci underlying adap-

tive traits (Nielsen 2005; Storz 2005; Stinchcombe and Hoekstra

2008). Typically, studies have conducted genome scans for se-

lection using a relatively small number of markers, randomly

chosen in the genome, which cannot guarantee that loci involved

in adaptation are included (Excoffier et al. 2009). At present,

whole-genome or whole-transcriptome scans for selection are be-

ing developed to tackle the genetics of adaptation at a larger

scale (domestication in plants or animals: Rubin et al. 2010; e.g.,

adaptation to soil type in Arabidopsis: Turner et al. 2010; Lam

et al. 2011) and they are becoming increasingly popular in re-

search on the genetics of speciation (Anderson et al. 2010; Elmer

et al. 2010; Galindo et al. 2010; Lawniczak et al. 2010; Renaut

et al. 2010). Here, we developed an alternative approach, screen-

ing a large number of candidate genes whose functions suggest

their relevance for ecological specialization and speciation. This

candidate gene approach makes it more straightforward to link

genotype and phenotype and so interpret the selective pressures

acting on these genomic regions (Shikano et al. 2010; Shimada

et al. 2011). For the first time we combined the candidate gene

approach with sequence capture technology (Burbano et al. 2010;

Shen et al. 2011) to address the genetic basis of adaptation and

reproductive isolation allows scaling up the classical candidate

gene approach to numerous functionally relevant genes and in

multigene families.

The main results of our study can be summarized as follows:

(1) We identified a handful of loci of known functional class

showing strong signatures of divergence under selection among

three aphid host races (Fig. 2). The moderate heterozygosity in all

three populations does not suggest any effect of severe bottlenecks

on this pattern of differentiation. Similarly, variation in mutation

rates is unlikely to explain variation among loci in levels of ge-

netic differentiation because it is not predicted to strongly affect
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genetic differentiation for any class of loci when gene flow be-

tween populations occurs (Beaumont and Nichols 1996; Hedrick

2005), which is the case among pea aphid host races (Peccoud

et al. 2009). Thus, the significantly higher differentiation of mul-

tiple SNPs for these loci strongly suggests that gene flow is much

more limited at these loci than at other loci in the genome and that

they are exposed to strong divergent selection. Previous studies

have pointed out that using overall divergence (global FST) as an

expectation may not lead to detection of all highly differentiated

loci (Vitalis et al. 2001), but the additional use in our study of

pairwise population comparisons should ensure the detection of

candidates that are under selection in only a portion of popula-

tions (Fig. 3) and thus a good sensitivity of our analysis (Nosil

et al. 2008). Moreover, the detection of outliers in this study is

quite conservative as far as false positives are concerned: we used

the Dfdist program which has a low false positive rate (Beaumont

and Nichols 1996) and we only used the 99% envelope to further

reduce type I error; in addition, we only retained genes as good

candidates if they had a significantly greater number of SNP out-

liers than expected, given their total number of SNPs and at least

three Dfdist outlier SNPs in their sequence. Together with the

fact that we evidenced a strong nonrandom distribution of outlier

SNPs across gene families (see below), this makes the presence

of false positives unlikely for our final set of outlier genes. Even

though only a small proportion of SNPs were identified as out-

liers (1.3% outlier SNPs), the pattern of multiple outlier SNPs

in a handful of genes represents a strong signature of selection

influencing those genes.

(2) OR and GR are indicated as the key gene families for

host plant specialization in the pea aphid complex, suggesting for

the first time a role of some chemoreceptor genes in local adapta-

tion and ecologically based speciation. Other chemosensory genes

such as binding proteins (OBP, CSP) were not significantly dif-

ferentiated among aphid host races, but we may have lacked some

power to detect outlier SNPs in these very short genes (Table S4).

Nonchemosensory genes were, as expected, less affected by di-

vergent selection than chemosensory genes: Rad51C, the only

nonchemosensory outlier, encodes a strand transfer protein in-

volved in recombinational DNA repair and meiotic recombina-

tion. No straightforward functional link with host plant special-

ization is apparent and so this locus may be influenced by nearby

selected loci.

Although functional analysis of outlier genes is still needed

and the other potential for other outlier loci needs to be explored,

the approach we have adopted here, measuring diversity and dif-

ferentiation at a large set of loci, targeted by function, has revealed

an unprecedentedly detailed picture of the genomic divergence

among pea aphid races specialized on different host plants and

has identified a group of loci potentially critical to the partial

reproductive isolation between these races.

GENETIC ARCHITECTURE OF LOCAL ADAPTATION

AND SPECIATION

One major challenge in the field of research on speciation is to gain

insights into the genetic architecture of adaptive and reproductive

isolating traits and into the dynamics of genomic differentiation

during a speciation event. In the pea aphid, our results suggest

a polygenic basis for host plant specialization and reproductive

isolation, several candidate genes showing some signature of di-

vergent selection. These results echo previous findings obtained

from QTL mapping between two North American host races spe-

cialized on red clover and alfalfa, which suggested the existence

of several complexes of QTLs affecting the key traits for host

plant specialization (Hawthorne and Via 2001).

Although at present we have access only to a preliminary

assembly of the pea aphid genome, we can show that some genes

contain several outlier SNPs (Fig. 2) and that some of the highly

differentiated genes identified by our study are physically linked

on the same genomic scaffold (Figs. 2 and S4). The influence of

selection on these physically linked SNPs and genes might be cru-

cial in the evolution of host plant specialization and reproductive

isolation. A current challenge resides in understanding whether

they represent independent targets of selection or if these patterns

reflect genetic hitchhiking from nearby regions (other genes, reg-

ulatory regions) (Maynard Smith and Haigh 1974), and in esti-

mating the size of these highly differentiated genomic regions

(Rogers and Bernatchez 2007; Smadja et al. 2008; Via and West

2008; Nosil et al. 2009). A recent theoretical study predicts that

adaptation with migration should tend to result in concentrated

genetic architectures with divergence of fewer and more tightly

linked alleles of larger effect (Yeaman and Whitlock 2011). In

aphids, a combined QTL and genome scan approach suggested

individual targets of selection could influence neutral markers

up to 20 cM away, which would constitute a particularly impor-

tant effect of genetic hitchhiking around loci involved in local

adaptation (Via and West 2008). Here, we show that the level of

differentiation is on average correlated among SNPs within 50 kb

of one another. Beyond this, the correlation is close to zero both

in scaffolds that do not contain any outlier genes and in those that

do (Fig. S5). This result suggests the effect of hitchhiking around

selected loci is highly localized, on a scale very much smaller than

previously suggested for the pea aphid (Via and West 2008) and

more in line with that observed recently in Heliconius butterflies

(Nadeau et al. 2012).

However, some relatively distant pairs of genes (e.g., Or51-

Or15 600 kb apart) show high levels of differentiation and we

cannot rule out the possibility that this pattern is due to more

extensive hitchhiking, or divergence hitchhiking (Via and West

2008), of neutral markers in linkage disequilibrium with loci un-

der particularly strong selection. A new linkage and QTL map of

key adaptive traits for host plant specialization in the pea aphid
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is about to be released (Via, pers. comm.), and together with im-

proved versions of the genome assembly, this will allow for a more

complete analysis of genetic linkage among chemosensory genes

and of patterns of differentiation along aphid chromosomes.

WHAT TYPES OF GENETIC CHANGES ARE

RESPONSIBLE FOR ADAPTATION AND

REPRODUCTIVE ISOLATION?

The molecular origin of adaptive changes is a long-term debate: do

adaptation and reproductive isolation originate from regulatory or

protein evolution (Hoekstra and Coyne 2007; Pavey et al. 2010)?

Insights on this question can come from patterns of differentia-

tion at nonsynonymous and synonymous sites along the sequence

of outlier genes. Interestingly, we showed that FST outlier genes

tend to have either synonymous or nonsynonymous outlier SNPs,

rather than a mixture of the two. Outlier genes having highly

differentiated nonsynonymous substitutions might contain func-

tionally significant amino acid changes and thus reveal an impact

of selection on the protein function among diverging populations.

Little is currently known of the protein features of chemoreceptors

in aphids and thus interesting perspectives lie in future proteomics

and functional analysis of those candidate molecules. In contrast,

some outlier genes showed an inflated differentiation restricted to

or largely affecting multiple synonymous SNPs. This observation

suggests that the divergent selection acting on these outlier loci

does not act at the structural level but rather points to expression

differences as the targets of selection. In turn, this would imply

that selection acts on the control regions of those genes, differ-

entiation in the coding region resulting from selective sweeps in

the neighboring sequences (Barton 2000). If this sweep signature

is due to a recent adaptation, it is expected that a cis-regulatory

change outside of the coding region would have caused it (Cai

et al. 2009). This suggests the possibility that expression diver-

gence, in addition to protein change, can drive adaptive changes

at chemosensory genes in the pea aphid, which may or may not

be linked to CNV in these multigene families (e.g., Itsara et al.

2009; Bigham et al. 2010; Scavetta and Tautz 2010). Our cap-

ture experiment suggests some variation in gene content between

Lotus and the two other host races (Or12, parts of Or57, Or61,

Or74, Or75 missing in the Lotus population), which might indi-

cate CNV in this gene family. However, specific analysis of CNV

at chemoreceptor loci will be needed to explore this hypothesis.

OR AND GR GENES AS KEY LOCI FOR HOST PLANT

ADAPTATION AND SPECIATION IN APHIDS

Among the four chemosensory gene families targeted in this study

as potential candidates for host plant adaptation and speciation

in the pea aphid, two gene families were detected to have high

level of differentiation among host races: the OR and the GR

gene families. Our previous work on the molecular evolution

of those chemoreceptor genes in the pea aphid genome had re-

vealed patterns of evolution under positive selection in some of

the most recently duplicated genes in these families (some Gr and

Or clades, see Smadja et al. 2009), a result consistent with the

potentially strong divergent evolutionary pressures experienced

by aphids when entering new niches during host shifts or host

specialization events. Interestingly, FST outlier genes among the

three host races revealed in the present study tend to fall among the

most recently duplicated members of these gene families (Smadja

et al. 2009). Molecular and electrophysiology studies had al-

ready suggested a role for peripheral chemoreception in host plant

use in other phytophagous insects (Rhagoletis pomonella: Olsson

et al. 2006b; McBride 2007; Drosophila sechellia: McBride et al.

2007), but this is the first time, to our knowledge, that population

genomics has been applied to the whole gene superfamily (Gr +
Or) to tackle divergence among host races and test for the role of

chemoreceptor genes in host plant specialization and speciation.

Aphids do not identify their host plant from a distance. In-

deed, winged forms of the pea aphid reject alternate hosts shortly

after a brief first penetration of the plant tissues (Caillaud and Via

2000), following the typical behavior of aphids on nonhost plants

(Powell et al. 2006). In contrast, host acceptance takes longer, the

key step being the probing of epidermal and subepidermal plant

tissues with their antennae and stylet (Caillaud and Via 2000;

Margaritopoulos et al. 2005). Aphids seem to distinguish their

host through cues located on the plant surface or in subcutaneous

tissues perceived prior to the initiation of feeding, but key host

cues are surprisingly not known and we do not know if these

cues act as attractants or repellents as in other phytophagous in-

sects (e.g., habitat avoidance in R. pomonella: Forbes et al. 2005;

plant volatile attraction in Argyresthia conjugella Bengtsson et al.

2006; Feder and Forbes 2007). Nutrition on alternate hosts can be

artificially triggered by epidermal extracts from the home plant

(Del Campo et al. 2003), suggesting that olfactory cues at the

surface of the plant can be sufficient. The FST outlier OR genes

identified in our study may be involved in this early stage of host

acceptance. In addition, superficial penetration of plant tissues

seems to follow exploration of the plant surface and thus intracel-

lular metabolites detected via gustation of ingested epidermal or

subepidermal cell contents may inhibit the take-off reflex, which

otherwise follows probing (Caillaud and Via 2000; Powell et al.

2006). Outlier Gr genes are likely to be involved in this step of

host acceptance, which may be even more crucial in the early

stage of host race formation (see Medicago results). No sugar

receptor (putative sugar receptors based on orthology with other

insect species: Gr1–6, Smadja et al. 2009) was identified among

the outlier Gr genes detected in our study, and this is consistent

with behavioral results, which indicate that aphids do not need to

reach phloem sap to accept a plant as a host (Caillaud and Via

2000).
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Response to chemical cues in insects is usually a complex

mechanism: it commonly requires the combined activation of

several chemoreceptors, chemical signals varying in the number

of receptors they activate (Hallem et al. 2004; Dahanukar et al.

2005; Rutzler and Zwiebel 2005; Hallem and Carlson 2006). In

our system, we do not know if the different OR and GR under

divergent selection act separately or in combination in response to

one major cue or a complex blend of plant cues. However, protein

or expression divergence at those chemoreceptor loci can lead to

changes in receptor specificity and/or receptor neuron sensitivity

(Olsson et al. 2006a,c, 2009), which could underlie preference for

different host plants among the Lotus, Medicago, and Trifolium

host races. This does not rule out possible additional differences

in the central integration of those chemical signals.

PLEIOTROPIC EFFECTS OF CHEMORECEPTORS

IN SPECIATION

The identification of some Or and Gr genes as highly divergent

loci among the three studied host races has some interesting conse-

quences for possible scenarios of speciation in the pea aphid. The

most direct way chemoreceptors can promote speciation is by their

impact on assortative mating, as a by-product of chemical recogni-

tion of plant cues, host plant acceptance (or avoidance) behavior,

and reproduction on hosts (Via 1999). Interestingly, chemorecep-

tor genes can have multiple other effects on reproductive isolation.

Results from a QTL study on North American populations sug-

gested close physical linkage or pleiotropy among genes under-

lying host performance and host acceptance (Hawthorne and Via

2001). Such pleiotropy would suggest that host acceptance and

feeding behaviors of winged pea aphids depend, at least partly,

on the same loci. This hypothesis is consistent with our results

identifying Or and Gr loci as strongly differentiated genes among

aphid host races as these genes could be involved not only in

the chemical recognition of plant cues but also in the recogni-

tion of food stimulants, which are known to influence nutrition

and parturition (Powell et al. 2006), and thus fitness on specific

hosts in aphids. It is thus plausible that the same set of GRs or

closely linked ones is involved in the recognition of both host

acceptance cues and food stimulants. This would be a very favor-

able scenario for speciation, as pleiotropy would automatically

generate a correlation between host acceptance and host perfor-

mance traits, which will not be impeded by gene flow (Smadja and

Butlin 2011). Another possible level of pleiotropy concerns the

link between ecological isolation (driven by host acceptance and

host adaptation) and sexual isolation. Recent studies on other in-

sect species suggest a role of chemoreceptors, and in particular

ORs, in the reception of sex pheromones and thus mate choice

(Ostrinia nubilalis: Lassance et al. 2011; Heliothis: Vasquez et al.

2011). Sexual isolation has not been assessed among pea aphid

host races yet, but it is possible that it contributes to reproduc-

tive isolation. If so, the same loci, some chemoreceptor genes,

could underlie several major components of reproductive isola-

tion involved in local adaptation and sexual isolation and evolve

under both natural and sexual selection, representing key drivers

of speciation in this system and a very favorable scenario for the

evolution of barriers to gene flow.

CONCLUSION AND PERSPECTIVES

This study illustrates how the large-scale candidate gene approach

we developed here is an efficient way to narrow down loci po-

tentially involved in adaptation and speciation. It should com-

plement whole-genome scan and QTL mapping studies, and one

interesting perspective in the aphid system would be to test for the

colocation of outlier chemoreceptor loci with QTL for host accep-

tance and performance that will soon become available. We only

start to envisage how capture technologies might contribute to

scaling up population genetics studies but this experiment clearly

highlights the efficacy of capture technologies to scale up candi-

date gene analysis while generating sequence information. This

route becomes essential when dealing with multigene families.

Our approach, by revealing a detailed picture of the genomic

divergence among pea aphid host races that are partially repro-

ductively isolated, paves the way for a promising alternative route

to the genetics of adaptation and speciation.

In the near future, it will be important to build on these results

by analyzing differentiation in larger samples and by exploring

divergence in more dimensions. We may want to extend our study

of key genetic changes to expression and CNV, to characterize all

of the possible dimensions of divergence at chemosensory loci.

Moreover, the pea aphid system offers an exceptional opportu-

nity to further address differentiation at chemosensory candidate

loci along the continuum of differentiation among different aphid

biotypes and species (Peccoud et al. 2009), which should help

us to gain insights into the dynamics of differentiation during a

speciation process. In parallel, functional analysis of key loci will

provide the means to link molecular and phenotype variation.
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