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Abstract
Rainfall and land-use interactions drive temporal shifts in suspended sediment sources, yet the magnitude of such changes 
remains poorly understood due to the lack of land-use specific source tracers. We investigated α,ω-dicarboxylic fatty acid root-
specific biomarkers, as diagnostic tracers for apportioning sources of time-integrated suspended sediment samples collected 
from a grassland dominated agricultural catchment in the southwest of England during the wet winter period. Applying fatty 
acids-specific stable carbon isotope analysis and a Bayesian isotope mixing model, we show that stream banks contributed 
most of the sediment in the early winter, i.e. October–December, while winter cereal-dominated arable land contributed more 
than half of the sediment during the late winter, i.e. January–March. The dominant sediment source shifted in conjunction 
with a period of prolonged consecutive rainfall days in the later period suggesting that intervention required to mitigate 
soil erosion and sediment delivery should adapt to changing rainfall patterns. Our novel findings demonstrate that isotopic 
signatures of α,ω-dicarboxylic fatty acids are promising tracers for understanding the resistance of agricultural soils to water 
erosion and quantifying the interactive effects of extreme rainfall and land use on catchment sediment source dynamics.

Keywords Sediment fingerprinting · Land use · Suberin · Bayesian unmixing model

Introduction

Human activities in tandem with extreme rainfall have 
accelerated erosion-generating excess sediment inputs into 
aquatic ecosystems (Foucher et al. 2021). Assembling reli-
able information on the relative contributions of various 
sources to sediment is complicated due to spatio-temporal 
variability in erosion processes and the need to identify land 
use-specific source tracers. Biotracer-based especially fatty 
acids and alkanes sediment source fingerprinting has shown 
promising results due to the strong linkage between bio-
marker isotopic signatures and land use (Upadhayay et al. 
2022). However, these biotracers achieved limited success 
in discriminating functionally similar land use-based sources 
(Vale et al. 2022; Upadhayay et al. 2020), especially when 
attempting to document temporal variability in source con-
tributions (Hirave et al. 2021). Best management for sed-
iment-related problems can only be targeted successfully 

when the spatio-temporal dynamics of sediment source con-
tributions are documented accurately.

Studying root-derived biomarkers in soil and sedi-
ment can help us to better understand land use (Jansen 
and Wiesenberg 2017) and responses to extreme rainfall. 
Suberin is one of the important biopolymers in roots con-
sisting of alternating layers of aliphatic (fatty acids, alco-
hols, ω-hydroxy acids, α,ω-diacids) and aromatic com-
pounds (Harman-Ware et al. 2021). The aliphatic portion 
comprises light lamellae structured by glycerol-α,ω-diacid-
glycerol but also containing α,ω-hydroxyacid-glycerol unit 
with a characteristic chain length of 22 or 24 carbon atoms 
(Serra and Geldner 2022). Although long-chain  (C20–C32) 
α,ω-dicarboxylic fatty acids (diFAs) comprise about 0.3% 
of total soil lipids (Holtvoeth et al. 2016), they are a major 
component of suberin (Serra and Geldner 2022). Given 
their chain length-dependent hydrophobicity, the degrada-
tion of diFAs in soil decreases with increasing chain length 
(Kashi et al. 2023). Therefore, these diFAs are considered 
very robust indicators of root inputs to soils (Mendez-Millan 
et al. 2011).

Dicarboxylic fatty acids and their associated isotopes can 
be utilised as source tracers to investigate transfers of land 
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use-based sediment to aquatic systems due to their stability 
during transport in river systems (Feng and Simpson 2008). 
Recently, Pondell and Canuel (2020) reported that diFAs in 
sediment can differ in response to floods or dam construc-
tion. Despite their ubiquitous presence in soil and sediment, 
diFAs remain poorly investigated biomarkers in terms of 
their distribution in sediment sources spanning the land-use 
spectrum. The suitability of diFA-associated isotope values 
as fingerprints for quantifying sediment source contribu-
tions to rivers has not been tested at catchment scale. It is 
thus very timely to explore diFA properties and establish 
whether these biomarkers are robust tracers for sediment 
source contributions in agricultural landscapes prone to 
sediment-related problems.

The aim of this research was to explore how diFAs 
might be used to provide information on temporal patterns 
in catchment sediment source contributions. We sampled 
winter 2019–2020 sediment from a grassland-dominated 
agricultural catchment in the UK. The winter of 2019–2020 
was the 5th wettest on record in the UK meaning that it was 
a suitable study period for sediment source dynamics. The 
specific objectives were to: (1) assess diFA content and asso-
ciated 13C signatures in soils from arable land, pastureland, 
woodland and stream banks for potential sediment source 
discrimination, and (2) estimate the relative contributions 
of the sediment sources to sediment sampled during win-
ter 2019–2020. This study complements earlier work using 
more conventional biomarkers (Upadhayay et al. 2022).

Materials and methods

Study catchment

The study was undertaken within a grassland-dominated 
lowland agricultural catchment (4.5   km2) in southwest 
England (Fig. S1a). See Upadhayay et al. (2022) for details. 
Briefly, the catchment is dominated by pasture (62%), fol-
lowed by arable land (23%) and woodland (15%). High-
risk crops for erosion and sediment generation are grown 
on the arable land, including winter wheat and barley, field 
beans and maize. A ryegrass-clover mix dominates the pas-
ture. Woodland is mostly concentrated in the riparian zone 
(Fig. S1a). Long-term mean winter, i.e. October–March rain-
fall is approximately 661 mm (1981–2010).

Surface soil and sediment sampling

Composite soil samples were collected to characterise each 
land use; arable (n = 17), pasture (n = 19) and woodland 
(n = 6). For each sampling point, approximately 10 topsoil, 
i.e. 2 cm sub-samples were collected randomly using a 5 cm 
diameter corer and composited. Samples were also taken 

from eroding stream bank profiles (n = 11). Soil samples 
were freeze dried and sieved through a 63 µm sieve based 
on the sediment particle size distribution (Upadhayay et al. 
2022).

Time-integrated suspended sediment samples were col-
lected from the catchment outlet (Fig. S1a) from October 
2019 to April 2020, i.e. the winter of 2019–2020 which 
received about 800 mm of rainfall (Fig. S1b). Sediment 
samples were retrieved at the end of December 2019 (here-
after referred to as early winter; EW) and early April 2020 
(hereafter referred to as late winter; LW). Sediment samples 
were freeze dried.

Extraction of dicarboxylic acids and determination 
of 13C signatures

Ester-bound dicarboxylic fatty acids were extracted from 
dried samples by sequential chemical extraction, i.e. sol-
vent extraction followed by alkaline hydrolysis (Upadhayay 
et al. 2022). The individual dicarboxylic acids were quanti-
fied and their 13C signatures determined using GC-MS and 
GC-c-IRMS, respectively. The carbon isotopic results of 
diFA were expressed as natural abundance (δ) in parts per 
mil (‰) compared to international standards, i.e. Vienna 
Peedee Belemnite (VPDB). For details see Text S1.

Statistical analysis and source apportionment 
modelling

The homologous series of saturated dicarboxylic fatty acids 
with carbon numbers ranging from  C16 to  C28 were consid-
ered for statistical analysis. The δ13C values of long-chain 
diFAs  (C18–C26) were used as sediment tracers in a con-
centration-dependent Bayesian mixing model (MixSIAR). 
Median and 90% Bayesian confidence intervals of the pos-
terior source contributions were generated. For details see 
Text S2.

Results and discussion

Variation in dicarboxylic fatty acid content 
and associated 13C signatures across sediment 
sources

The total diFA  (C16–C28) content was highest in the wood-
land soil (105.9 ± 37.3 µg/g soil) followed by the pasture 
(56.9 ± 19.7 µg/g soil), arable (20.8 ± 6.9 µg/g soil) and 
stream bank (15.14 ± 10.4 µg/g soil) soils. The relative abun-
dance of two dominant diFAs, i.e.  C22 and  C24 were similar 
in arable and pasture soils and contributed around 60% of the 
total diFA content (Fig. 1a). The content of  C22 and  C24 in 
pasture surface soil was about three times higher compared 
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to arable surface soil, suggesting pronounced diFAs deg-
radation with intensive arable land use and/or higher root 
carbon inputs in pastureland (McNally et al. 2015) The 
similar diFA contents and compositions in the arable and 
stream bank soils (Fig. 1b) also reflected lower root inputs 
and degradation of diFAs in arable soils facilitated by tillage 
and agricultural inputs (e.g. fertilizer and lime). Continu-
ous tillage can result in aggregate breakdown and enhance-
ment of suberin component availability for degradation. The 
diFA contents observed in this study were comparable to 
those reported by previous studies (Pisani et al. 2016). In the 
woodland soils,  C16 and  C18 diFAs contributed about 50% 
of the total diFAs (Fig. 1a), which can be explained by their 

higher contents in tree roots and accumulation over time 
(Spielvogel et al. 2014).

The carbon isotopic signature of soil diFAs ranged 
from − 41.1 to − 29.5‰ in arable, from − 39.5 to − 32.4‰ 
in pasture, from − 35.9 to − 30.9‰ in woodland and 
from − 40.1 to − 29.3‰ in stream banks. The measured 13C 
signatures of diFAs are in agreement with C3 biosynthetic 
pathways and similar to those diFAs observed in wheat roots 
(Mendez-Millan et al. 2011), grass (Dactylis glomerata, Fes-
tuca arundinacea and Lolium perenne) roots and associated 
soils (Armas-Herrera et al. 2016). The similar δ13C values of 
diFAs for arable and stream bank samples (Fig. 2, Table S1) 
suggested that these biomarkers are preserved in soil without 

Fig. 1  a Variation of α,ω-
dicarboxylic acid (diFA) 
content across the sediment 
sources (A = arable, P = pasture, 
W = woodland, SB = stream 
banks); b and results of princi-
pal component analysis using 
diFA contents. Different lower-
case letters indicate significant 
differences between diFA 
contents. Red dots represent 
outliers. The ellipses represent 
95% confidence intervals for the 
corresponding means
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significant alteration of 13C signatures. The δ13C values of 
 C28 further indicate that long-chain diFAs are very stable 
in the soil due to the high energy requirement for uptake by 
microorganisms (Kashi et al. 2023).

Temporal variations in sediment dicarboxylic 
fatty acid signatures linked to sediment source 
contributions

The diFA content and corresponding 13C signatures var-
ied significantly between EW and LW sediment (Fig. 3). 
The observed temporal shift in the diFA content and the 
associated 13C signal in sediment can reflect changes in the 
sediment sources and transport pathways over time. The 
estimated source contributions suggested that, during EW, 
stream banks were the dominant source with a median con-
tribution of 66% (90% credible interval ranging from 44 to 
79%), followed by arable land (median 30%; CI 14–46%) 
(Fig. 4a). In contrast, the arable land was dominant during 
LW, with a median contribution of 65% (90% CI 35–85%) 
(Fig. 4b). The significant temporal shift in source contri-
butions suggested that diFA tracers can reveal significant 
responses to the impact of extended rainfall (Fig. S3) on 
high-risk arable land, confirming that these biotracers are 
robust indicators of soil organic matter sources in sediment 
(Pondell and Canuel 2020).

The proportion of sediment contributed from stream 
banks in this study is within the range, i.e. 4–84% reported 
for UK streams and rivers (Abbas et al. 2023). High stream 
bank contributions during EW may be explained by live-
stock access to the channel. Livestock can degrade stream 
banks through dislodging trampled soil, which loses cohe-
sive strength following saturation (Terry et al. 2014). The 
higher arable land contribution during LW was expected 
due to its spatial distribution on steep slopes (Fig. S1), 
exposure of arable bare soils during the winter and high 

antecedent soil moisture (Fig. S1b) combined with pro-
longed rainfall (Fig. S3). Aggregate stability decreases 
when soil is completely saturated (Moragoda et al. 2022) 
reducing resistance to erosion. Consequently, saturation-
excess overland flow and rill erosion can enhance runoff 

Fig. 2  Principal component analysis of δ13C values (‰) of α,ω-
dicarboxylic fatty acids in the sediment sources (A = arable, P = pas-
ture, W = woodland, SB = stream banks) indicates A and SB are simi-
lar. Ellipses represents 95% confidence intervals of the corresponding 
means

Fig. 3  Statistical differences (*** < 0.001, ** < 0.01, * < 0.05, 
ns = not significant) of α,ω-dicarboxylic fatty acids; a content; b cor-
responding δ13C values between early winter (EW) and late winter 
(LW) sediment. CT indicates the content weighted δ13C values of 
long-chain diFAs  (C20–C28)

Fig. 4  Estimated sediment source contributions; a early winter (EW); 
b late winter (LW) using MixSIAR with prior information. Results 
show switches in source contributions



Environmental Chemistry Letters 

and sediment delivery. In a recent field scale study, the 
authors reported around a 77% higher sediment flux from 
arable land during LW compared to EW in the study catch-
ment (Upadhayay et al. 2022).

The diFAs used in this study are very robust indica-
tors of root inputs in the soil, which are protected in soil 
microaggregates (Genest et al. 2014) and can travel long 
distances. Source contribution insensitivity to prior infor-
mation (Fig. S3) demonstrated that diFAs are very robust 
tracers for apportioning catchment sediment sources. This 
assertion is further supported by the reported absence of 
diFAs in aquatic plants (Pondell and Canuel 2022) and the 
presence of very low contents in the above ground tissues 
of terrestrial vegetation (Otto and Simpson 2006). There-
fore, any potential uncertainties in the estimated source 
contributions introduced by corrupted tracer values due to 
riparian vegetation and algae accrual in the stream sedi-
ment are negated by using diFAs as tracers. The robust evi-
dence for switches in sediment sources during prolonged 
wet periods provided this study should encourage farmers 
to implement sediment mitigation to adapt to changing 
rainfall patterns both now and in the future.

Conclusion

Long-chain dicarboxylic fatty acid content and corre-
sponding 13C signatures varied in time-integrated sus-
pended sediment samples. Variation was associated with 
a significant shift in the contribution of arable land to LW 
sediment. Prolonged heavy rainfall reduced the resistance 
of arable land to erosion and accelerated sediment delivery 
during the LW period. The novel results demonstrated that 
dicarboxylic fatty acids are responsive to changes in source 
contributions and thereby offer substantial promise for use 
as biotracers. Temporal sediment source apportionment 
can inform soil conservation and sediment management.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s10311- 023- 01684-1.
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