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Abstract 

Geographically Weighted Regression (GWR) is a local technique that models spatially varying relationships, where Euclidean 
distance is traditionally used as default in its calibration. However, empirical work has shown that the use of non-Euclidean 
distance metrics in GWR can improve model performance, at least in terms of predictive fit. Furthermore, the relationships 
between the dependent and each independent variable may have their own distinctive response to the weighting computation, 
which is reflected by the choice of distance metric. Thus, we propose a back-fitting approach to calibrate a GWR model with 
parameter-specific distance metrics. To objectively evaluate this new approach, a simple simulation experiment is carried out that
not only enables an assessment of prediction accuracy, but also parameter accuracy. The results show that the approach can 
provide both more accurate predictions and parameter estimates, than that found with standard GWR. Accurate localised 
parameter estimation is crucial to GWR’s main use as a method to detect and assess relationship non-stationarity. 
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1. Introduction 

A number of localized regression techniques have been proposed to account for spatial non-stationarity or spatial 
heterogeneity in data relationships, one of which is geographically weighted regression (GWR) [1]. Key to GWR is a 
‘bump of influence’ around each local regression point: where nearer observations have more influence in estimating 
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the local set of parameters than do observations farther away [2]. This is described by a kernel weighting function 
based on distances between model calibration points and observation points. Euclidean distance (ED) is traditionally 
used as default in calibrating a GWR model. However, empirical work has shown that the use of non-Euclidean 
distance metrics (like network distance and travel time metrics) in GWR can improve model fit [3, 4]. Furthermore, 
the relationship between the dependent and each independent variable may have its own distinctive response to the 
weighting computation. 

Some related and important studies have been done in this respect, where the bandwidth of the kernel function is 
allowed to vary across relationships. Brunsdon et al. [5] introduced mixed GWR, which considers some data 
relationships as global (or fixed), and the rest as local (but each at the same spatial scale). Yang [6] generalizes the 
mixed GWR model by allowing each data relationship to operate at its own (and commonly different) spatial scale. 
In this study, we enhance both studies, where the choice of distance metric is also allowed to vary over different 
parameter estimates in the same model. We hypothesize that each independent/dependent variable pair in the GWR 
model may correspond to different “optimal” distance metrics, and then calibrate GWR with parameter-specific 
distance metrics (PSDM-GWR). A back-fitting approach inherited from mixed GWR is adjusted for the PSDM-
GWR model calibration. PDSM-GWR is evaluated via a simple simulation experiment. All of the modelling 
functions used in this article can be found in the GWmodel package [7, 8] in R [9], which is an integrated 
framework for handling spatially-varying structures, via a wide range of geographically weighted models. 

2. Methodology 

GWR estimates a localized set of regression parameters in order to assess the possibility of spatially-varying 
relationships. The basic formula of a GWR model can be written as: 
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where is the dependent variable at location i, ikx  is the value of the kth explanatory variable at location i, 0i is
the intercept parameter at location i, ik is the local regression parameter (or coefficient) for the kth explanatory 
variable at location i, and i  is the random error at location i. At each location, the model is calibrated by a weighted 
least squares approach, of which the matrix expression is: 
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where iW  is the diagonal matrix denoting the geographical weightings for each observation data (sub-)set for 
regression point i. In a standard GWR calibration, iW  is calculated via a kernel function whose bandwidth, is 
customarily selected via a leave-one-out cross-validation (CV) approach [10] or an Akaike Information Criterion 
(AIC) approach [11]. 

For this study, the GWR technique is extended to PSDM-GWR, where the back-fitting algorithm used in mixed 
GWR [5] and (similarly) in flexible bandwidth GWR [6] is adjusted for PSDM-GWR calibration. If we assume that 
the specific distance metrics are respectively  for estimating their corresponding parameters, 
and the hat matrix for each parameter estimates is defined as , then eq.(1) can be re-written as: 
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Then the back-fitting procedure to calibrate PSDM-GWR can be carried out in the following steps: 
Step 1. Initialize values of , with ;
Step 2. Set i=1;
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Step 3. Calculate , where the  function is defined in 
eq.(4), and  is calculated using  and a given bandwidth ;
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Step 4. Repeat Step 3 from 0 to m;
Step 5. Calculate the residual sum of squares iRSS  between y and iy , and set i=i+1;
Step 6. Return to Step 3 unless iRSS  converges to 1iRSS .
In this procedure, the choice of initial guesses is open. Here we use the results form a standard GWR calibration 

(eq.(2)) as starting values in Step 1. The sensitivity of the back-fitting algorithm to different initial guesses is 
currently under consideration, but poor initial guesses will undoubtedly affect the speed of convergence. 

3. Case study with simulated data 

As an introductory assessment of the PSDM-GWR model, we use simulated data. For this basic simulation 
experiment, a point data set of size 25*25 is generated on a square grid, of which the coordinates in two dimensions 
range from 10 to 100. For each cell, two predictor variables  and  are independently drawn from a uniform 
distribution as a random numeric vector ranging from 1 to 100, as shown in Fig. 1. 

Fig. 1 (a) Surface for the random predictor ; (b) Surface for the random predictor .

The process to generate each realisation of this simulation experiment is defined as follows: 

1 1 2 2y x x                      (5)

1 22, log u v                      (6) 

where the dependent variable y is naturally generated from eq. (5), which itself consists of a stationary (single) 
parameter  and a non-stationary parameter  , as found from the equations in (6). It is a fairly simple case study, 
but represents clearly different varying relationships between y and . Observe that we do 
not simulate an intercept parameter, . The corresponding surfaces of  and y are visualized in Fig. 2. 
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Fig. 2. (a) Surface for the coefficient ; (b) Surface for the dependent variable y. 

Using one realisation of the simulation, we calibrate the model shown in eq. (5) via both standard GWR and 
PSDM-GWR. For standard GWR, ED is used to estimate both  and ; which is the standard approach.  However 
for PSDM-GWR, we use a zero distance matrix (i.e. assuming the distance between any pair of points is zero, i.e. a 
simple non-ED metric) to estimate  and a ED matrix to estimate . Thus it represents a simple form of PSDM-
GWR and is chosen to demonstrate its potential. For an objective comparison, we use the same fixed bandwidth for 
both GWR calibrations, which is selected by an AIC approach using the standard GWR model. 

The results are presented in Table 1, where a reduction in RSS indicates that PSDM-GWR provides more 
accurate predictions than standard GWR. Fig. 3 plots the estimated parameters  and  from both calibrations. As 
would be expected, PSDM-GWR provides a highly accurate estimate of the stationary (constant) parameter , with 

; whilst similarly as expected, standard GWR provides a non-constant estimation of  and as such, is 
relatively inaccurate. In terms of , both models provide similar estimates, but the estimates from PSDM-GWR 
appear slightly closer to the real values than that found with standard GWR. Tentatively, this simple experiment 
suggests that PSDM-GWR can also provide more accurate parameter estimates than that found with standard GWR. 

     Table 1. Model calibrations via standard GWR and PSDM-GWR 

 Distance metric(s) Kernel function Bandwidth RSS 

Standard GWR ED for estimating both and Gaussian function with a fixed 
bandwidth selected by AICc 
approach in a standard way 

3.54 
446.11 

PSDM-GWR Zero distance matrix for estimating 
ED matrix for estimating 418.20 
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Fig. 3. (a) Real values of and estimations from standard GWR and PSDM-GWR; (b) Real values of  and estimations from standard GWR 
and PSDM-GWR. 

4. Concluding remarks 

In this study, we proposed a back-fitting algorithm for PSDM-GWR. Via a simulation study, we have shown that 
PSDM-GWR can provide more accurate predictions and parameter estimates than standard GWR.  However, this 
can only be considered as preliminary findings, as: 

The form of the PSDM-GWR model used in this study is just a specific case of a mixed GWR model. In this 
respect, a more involved simulation study is required using (novel) PSDM-GWR specifications that do not 
mimic existing GWR constructions. 
The way to define or select a distance metric for an independent variable within a given PSDM-GWR model 
is key and requires refinement. 
PSDM-GWR also needs to demonstrate its practical worth within an empirical case study. 
The approach could be meshed with that of Yang [6], where bandwidths vary across relationships. 
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