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loss and simplification of crop rotations, has resulted in 
environmental degradation and a loss of biodiversity from 
arable landscapes (Bianchi et al. 2006; Robinson and Suther-
land 2002; Stoate et al. 2001). This has led to a reduction 
in ecosystem services vital for sustainable food production, 
including pollination and natural pest control (Bianchi et al. 
2006; Vanbergen 2013). Another major problem associated 
with agricultural intensification over recent decades has been 
the development of pesticide resistance in pathogen, pest and 
weed populations, in response to selection pressures aris-
ing from sustained pesticide use (Heckel 2012; Busi et al. 
2013; Hahn 2014). This, coupled with declining availability 
of new pesticide active ingredients (due to both decreasing 
discovery rates and tighter legislation surrounding product 
approval) (Jensen 2015), represents a real threat to the effi-
cacy of pesticide use, and consequently, to the productivity 
of pesticide-reliant agricultural systems. Hence, in response 
to these issues, there is an urgent need to develop more sus-
tainable Integrated Pest Management (IPM) strategies for 
crop protection.

While the concept of IPM was initially developed by 
entomologists in response to specific pest-related issues, 
IPM (as defined within the EU under EU Framework 
Directive 2009/128/EC) now applies to all aspects of plant 
protection, and involves eight major principles (Barzman 
et al. 2015). Primarily, the focus of IPM is on the pre-
vention and suppression of harmful organisms by cultural 
or non-pesticide means (1). Monitoring (2) followed by 
threshold-based decision making (3) also play a major 
role. Where control is necessary, non-chemical methods 
are prioritised over chemical pesticides (4), but where pes-
ticides are essential to provide adequate control, the least 
damaging products to the environment, non-target organ-
isms and human health are selected (5). Where pesticides 
are the only option, their use is kept to a minimum (6) and 
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Introduction

The reliance of modern agriculture on intensive use of agro-
chemical inputs to maintain crop yields, along with habitat 
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anti-resistance strategies (e.g. combining use of products 
with differing modes of action) are employed (7). The final 
principle involves evaluation of the control measures taken 
(8) (Barzman et al. 2015).

Although IPM strategies may involve consideration of 
landscape-scale processes (e.g. landscape-scale habitat man-
agement to manipulate pest and natural enemy populations; 
Skellern and Cook in press), appropriate crop management, 
encompassing factors such as crop rotation, cultivar choice, 
tillage and fertiliser regime, underpins the implementation of 
IPM strategies, particularly in terms of the primary principle 
(1) above. For example, crop rotation (i.e. the spatial and 
temporal diversification of cropping sequences) has been 
used for thousands of years as a primary means of suppress-
ing harmful organisms by disrupting life cycle continuity of 
pests and pathogens associated with different crop species 
(Bullock 1992; Barzman et al. 2015). European maize-based 
cropping systems provide an illustration of this; replacement 
of continuous maize cultivation by incorporation of non-
maize crops into the rotation has allowed for the success-
ful management of the Western corn rootworm (Diabrotica 
virgifera subsp. virgifera), a pest which requires two maize 
cultivation cycles to complete egg-to-adult development 
(Vasileiadis et al. 2011).

In Europe, IPM strategies are urgently needed for 
control of the pollen beetle Brassicogethes aeneus F. 
(syn. Meligethes aeneus) (Coleoptera: Nitidulidae), a key 
pest of oilseed rape Brassica napus L. (OSR), a crop widely 
grown for cooking oil and biofuel use (EU production 
19.8 M tonnes in 2016; Eurostat 2017); in this case, beetle 
resistance to pyrethroid insecticides, which are often applied 
prophylactically, has become a major problem (Zimmer et al. 
2014; Thieme et al. 2010). Adult beetles emerge in early 
spring from overwintering habitats in woodlands and grassy 
areas (Rusch et al. 2012; Blazejewska 1958; Müller 1941), 
and feed on the flowers of many different plants before seek-
ing OSR crops and other brassicas at the green bud growth 
stage, for further feeding and oviposition (Free and Williams 
1978; Ouvrard et al. 2016). Feeding damage causes OSR 
flower bud abscission, leading to often extensive yield losses 
(Zlof 2008) that can approach 80% (Hansen 2004). After 
eggs are laid in the buds, the developing larvae feed for c. 
2 weeks before dropping to the soil to pupate. New genera-
tion adults emerge in summer and again feed on pollen from 
plants of several families before overwintering (Williams 
2010; Alford et al. 2003; Ouvrard et al. 2016). The beetles 
are attacked at the larval stage by a range of parasitoid spe-
cies, the most abundant and widespread of which in Europe 
are Tersilochus heterocerus Thomson, Phradis interstitialis 
Thomson and Phradis morionellus Holmgren (Ulber et al. 
2010b); surface-active and plant-climbing natural enemies 
include ground beetles and spiders (Williams et al. 2010; 
Frank et al. 2010).

Natural enemy regulation of pollen beetles can be sub-
stantial (Buchi 2002; Hokkanen 2008), and the possibility 
to manipulate both pest and natural enemy populations for 
beetle control, through local and landscape-scale habitat 
management, has received significant research interest (e.g. 
Cook et al. 2007; Schneider et al. 2015; Beduschi et al. 2015; 
Skellern and Cook in press). At the within-field scale, how-
ever, appropriate crop management also provides opportuni-
ties to improve beetle control, as crop management factors 
may affect plant growth and phenology (Valantin-Morison 
et al. 2007), which in turn influence resource quality. As 
specific plant quality characteristics, for example relating 
to bud size or glucosinolate content, are known to play a 
role in pollen beetle host plant selection (Nilsson 1994; 
Cook et al. 2006; Valantin-Morison et al. 2007; Hervé et al. 
2014a), resource quality-mediated crop management effects 
are likely to influence pollen beetle abundance and damage 
in the field. Besides these effects, crop management is also 
likely to influence insect populations through microclimatic 
effects, and through variations in plant architecture, which 
may alter oviposition behaviour and food-seeking efficiency 
(Valantin-Morison et al. 2007).

Crop management interventions to facilitate improved 
pollen beetle control are possible at several points within 
the growing cycle of OSR (summarised in Fig. 1). The 
crop is usually grown in rotation with cereals, at the crop 
planning stages, the frequency of its appearance within the 
rotation and cultivar choice, are important considerations. 
Winter OSR crops are generally sown between mid-August 
and mid-September (or early September in more northerly 
latitudes), with the exact timing of drilling often influenced 
by the harvesting date of the preceding (usually cereal) crop, 
while spring crops are drilled in March or April, usually 
as soon as soil conditions allow (HGCA 2014). Standard 
plough-based systems (e.g. ploughing followed by a power 
harrow-drill combination) are frequently used for OSR 
establishment, but reduced cultivation techniques (tine, 
disc or subsoiler based), and direct drilling or broadcasting 
into the stubble of the preceding crop are also common, as 
farmers look to reduce establishment costs and manage soils 
more sustainably (Ingram 2010; Jacobsen and Ørum 2009; 
Townsend et al. 2016). Target plant densities are usually in 
the range 25–35 plants/m2 for winter crops (HGCA 2014).

Weed control in winter OSR is achieved through pre- and/
or post-emergence herbicides in the autumn, and usually 
further herbicide applications are necessary in the spring 
(HGCA 2014). In early summer, just prior to harvest, an 
herbicide (usually glyphosate) is frequently applied as a des-
iccant to aid ripening, ease harvesting and control perennial 
weeds for the following crop. Generally, where plough-based 
establishment has been used, fewer herbicides are needed 
(Nilsson et al. 2015). Similarly, a combination of seed treat-
ment, and autumn and spring fungicide applications are 



The potential of crop management practices to reduce pollen beetle damage in oilseed rape  

1 3

normally required against diseases such as phoma stem can-
ker (blackleg; Leptosphaeria maculans), sclerotinia stem rot 
(S. sclerotiorum), light leaf spot (Pyrenopeziza brassicae) 
and verticillium wilt (V. longisporum) (HGCA 2014). Plant 
growth regulators (some of which, including metconazole 
and tebuconazole, also have fungicidal action) may also be 
used in the spring to manipulate canopy development and 
reduce lodging (HGCA 2014).

In addition to base fertiliser applications made to main-
tain longer term soil phosphate, potassium and magnesium 
levels, OSR crops typically receive 150–230 kg nitrogen, 
and 30–60 kg sulphur  ha−1 (Christen et al. 1999) in order 
to optimise crop growth and maximise yields. Fertilisers 
are usually applied in granular or liquid form using either a 
spinning disc applicator for granules or a crop sprayer fitted 
with dribble bar-type nozzles for liquids. Applications are 
usually split between one in the autumn and 2–3 applications 
in spring, ideally made between the early green and yellow 
bud growth stages (HGCA 2014). Typical insecticide appli-
cations to OSR crops include sprays in the autumn against 
cabbage stem flea beetles (Psylliodes chrysocephala) and 
the peach-potato aphid (Myzus persicae). Further insecti-
cides are used at the green–yellow bud stages against pollen 
beetles, and during flowering, against seed weevils (Ceuto-
rhynchus obstrictus) and pod midge (Dasineura brassicae).

While the influence of local and landscape-scale habitat 
management on pollen beetle abundance, damage and bio-
control are reviewed in another publication (Skellern and 
Cook in press), in this paper, we review crop management 

influences on the pest and its natural enemies, and consider 
how crop management may be optimised in IPM strategies 
for sustainable pollen beetle control.

Crop rotation

A trend towards the simplification of crop rotations over the 
past half-century, to include just a few crop species grown 
in short succession, is generally considered to have led to 
increases in pest proliferation and a reduction in the biodi-
versity of beneficial insects (Rusch et al. 2010). However, 
for some beneficial insects, particularly carabid beetles, lit-
tle influence of rotational crop diversity changes has been 
seen (Holland et al. 1996; Kromp 1999). The cumulative 
effects of rotation-related decisions made by individual 
farmers are likely to exert the greatest influence on pollen 
beetle (and natural enemy) abundance through landscape-
scale processes, as differences in the frequency of a particu-
lar crop within a rotation lead to corresponding changes in 
landscape areal crop proportions (Thies et al. 2008; Vinatier 
et al. 2012, 2013). While over a period of > 3–4 years, the 
introduction of oilseed rape into landscapes where the crop 
has not previously been grown has led to proliferation of 
pollen beetles as a pest (Hokkanen 2000), over the shorter 
term, temporally (inter-annual) and spatially increasing OSR 
proportions within the landscape can to lead to dilution 
effects on pollen beetle abundance (Zaller et al. 2008a, b; 
Moser et al. 2009; Schneider et al. 2015). This observation 

Fig. 1  Oilseed rape crop management practices in relation to crop growth stage and timing and interventions to facilitate improved pollen beetle 
control
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has inspired proposals for crop rotation management at 
the landscape scale (Beduschi et al. 2015; Schneider et al. 
2015) where areas of OSR within an entire region would be 
progressively increased over a number of years to maintain 
these dilution effects, before a ‘reset’ year when little or no 
OSR would be grown. However, this would require a con-
siderable amount of grower cooperation as the intervention 
occurs at a scale greater than the farm unit.

Cultivar

There are no commercially available cultivars of oilseed 
rape currently available that are marketed as resistant or 
tolerant to any insect pest of the crop. Although breeding 
for OSR resistance to pollen beetle damage has thus far 
received little attention, different cultivars vary in their suit-
ability as host plants, and in their tolerance of attack. Hence, 
potential clearly exists to develop more resistant varieties 
(for a review, see Hervé and Cortesero 2016). Plant char-
acteristics such as growth stage profile (Kruger and Ulber 
2010), glucosinolate content (Cook et al. 2006; Rusch and 
Valantin-Morison 2013), petal colour and UV reflectance 
(Cook et al. 2013b), and plant size can all influence infesta-
tion and damage, and vary according to cultivar. The opti-
mum pod number for maximum OSR yield is in the region 
of 6000–8000 pods/m2(Berry and Spink 2006). However, 
significantly more flowers than necessary for optimum pod 
number are usually produced, and the presence of these 
‘excess flowers’ enables the crop to tolerate some pollen 
beetle-related flower loss before yields are reduced (Ellis 
and Berry 2012); excess flower numbers have been shown to 
vary according to cultivar (Ellis and Berry 2012; Carruthers 
et al. 2017) and thus are likely to be important determinant 
of a particular cultivar’s tolerance to pollen beetle attack. A 
recent study showed that, in general, cultivars bred using the 
cytoplasmic male-sterility (CMS) technique generally had 
more flowers than hybrids produced by genetic male-sterility 
(GMS) techniques and open-pollinated varieties (Carruthers 
et al. 2017). This suggests that CMS cultivars may be more 
tolerant to pollen beetle, although this has not been tested. 
Hervé et al. (2014a) identified compounds from the bud peri-
anth, including sucrose, proline and serine that appear to act 
as key feeding stimulants for pollen beetles; perianth content 
of these compounds varied among genotypes leading to the 
suggestion that OSR cultivars with reduced perianth content 
of these compounds, in particular sucrose, could be selected 
to reduce damage by the pest. Furthermore, the amount of 
food eaten by female pollen beetles was positively related to 
egg numbers and size (Hervé et al. 2014b), suggesting that 
fewer and/or smaller eggs would also be laid on these culti-
vars. In another study, fewer eggs were laid on a male-sterile 
OSR cultivar compared with a male-fertile companion in the 

varietal association Synergy; larval survival was reduced 
and developmental time longer on the male-sterile plants 
(Cook et al. 2004). Manipulation of plant quality to increase 
larval development time has been suggested as a method to 
enhance biological control (Hervé et al. 2016); slower larval 
development on such cultivars would lengthen their window 
of vulnerability to parasitoid attack.

At present, no comprehensive scheme for rating oilseed 
rape varieties in terms of their pollen beetle resistance exists, 
and the current UK spray thresholds err on the side of cau-
tion and are based on the least tolerant varieties, i.e. those 
with few excess flowers (Ellis and Berry 2012). Potential 
thus clearly exists to provide farmers with information on 
the pollen beetle resistance characteristics of available varie-
ties, and also reduce pest thresholds further for those with 
higher resistance. Cultivar choice could be an important 
factor to maximize the success of trap cropping strategies. 
Trap crops are plant stands that are grown to attract insects 
in order to protect target crops from attack (e.g. Hokkanen 
1991).  Trap cropping strategies targeted against pollen bee-
tles in OSR has been reviewed by Mauchline et al. (2017b) 
and Skellern & Cook (in press).  Late-flowering OSR cul-
tivars could be used to extend the necessary growth stage 
differential between the main crop and an early-flowering 
trap crop. There is also potential for development of an OSR 
cultivar highly attractive to pollen beetles  to function as a 
trap crop.  Currently the best performing trap crop is turnip 
rape (Brassica rapa), however if  early-flowering cultivars of 
OSR could be developed possessing the attractive properties 
of turnip rape, the strategy is more likely to be accepted by 
farmers.   

Sowing date and growth stage profile

Variation in sowing date will influence some pests through 
alteration of the synchrony between lifecycles and suscep-
tible crop growth stages. For OSR, the difference between 
winter and spring sowing has the greatest effect, and because 
the damage-susceptible stages of the crop occur at peak pest 
abundance, spring sown crops in particular are more suscep-
tible to flea beetle (Phyllotreta spp.) and pollen beetle dam-
age (Alford et al. 2003; Dodsall and Stephenson 2005). For 
the latter, however, as excess flower numbers do not differ 
between winter and spring crops (Ellis and Berry 2012), it 
is likely that pollen beetle spillover from large areas of win-
ter crops onto smaller areas of spring crops leads to locally 
increased pest pressure through beetle concentration effects 
(except for in more northerly regions where spring crops pre-
dominate). For winter crops, an early study found that later 
sowing dates limited pollen beetle damage (Vasak 1983), 
and it is possible that this was related to reduced fecundity 
of older beetles on the less advanced crops. Results from 
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another study have shown that the fecundity of beetle popu-
lations maintained on Raphanus sativus late into the season 
was indeed low (Skellern et al. in prep). By contrast, Rusch 
et al. (2013b) found that sowing date was not an impor-
tant predictor of pollen beetle abundance or plant damage, 
and while earlier sowing can increase root fly damage but 
decrease cabbage stem flea beetle attack, Valantin-Morison 
et al. (2007) also found little effect of sowing date on pollen 
beetle damage.

Pollen beetles often feed on early spring-flowering plants 
before they move onto oilseed rape (Free and Williams 1978; 
Ouvrard et al. 2016), and have been observed on the crop at 
pre-green bud growth stages (Veromann et al. 2012); during 
most seasons, it seems that the beetles arrive sufficiently 
early to colonise even the most advanced crops before the 
susceptible green bud stages are over (Cook et al. 2006; 
Mauchline et al. 2017a). Relative differences in growth 
stage, for example between a crop and trap crop or variation 
within a field, however, are very important in determining 
infestation levels, because of the beetle’s preference for the 
flowering growth stages (Cook et al. 2007; Mauchline et al. 
2017a), which may provide a reliable cue for the availabil-
ity of buds of the preferred size for oviposition (2–3 mm; 
Ekbom and Borg 1996), together with food resources (Frear-
son et al. 2005).

The coincidence between pollen beetle parasitoid emer-
gence and crop development is not precise (Nilsson 1985) 
and there is some evidence that the parasitoids may be more 
sensitive to asynchrony therein than their hosts. Larvae pre-
sent on early flowering winter-sown turnip rape varieties in 
some seasons may escape parasitisation, probably because 
the parasitoids do not arrive until after the bud stages are 
complete (Skellern et al. in prep). It is thus possible that in 
some seasons, larvae on very early flowering oilseed rape 
crops may similarly escape parasitisation.

Plant density

Oilseed rape plants have potential to compensate for pollen 
beetle-related floral bud losses by producing new flower buds 
carried by either existing or new branches (Tatchell 1983; 
Nilsson 1994; Williams and Free 1979). Plant density, which 
can be strongly influenced by crop management through 
seed rates and sowing date, however, impacts the ability of 
the crop to compensate for bud losses, with higher planting 
densities generally leading to more restricted branching as 
there is less space for compensatory growth (Leach et al. 
1999; Momoh and Zhou 2001). Despite this, some studies 
have shown little or no influence of plant density on pollen 
beetle abundance or damage (Rusch et al. 2013b; Ferguson 
et al. 2003), while others have shown negative relationships 

(Hurej and Twardowski 2006; Valantin-Morison et al. 2007). 
It is likely that lower beetle abundance and damage at higher 
plant densities could occur through dilution effects. Excess 
flower numbers (defined as the difference between flower 
and final pod numbers) produced per plant are strongly nega-
tively affected by increasing plant density, meaning that on 
a per plant basis, beetle susceptibility increases (hence, eco-
nomic damage thresholds decrease; Ellis and Berry 2012). 
Although Leach et al. (1999) found fewer branches per 
plant at high densities, denser crops had more branches per 
square metre so on a per unit area basis, total excess flower 
numbers may increase with plant density, explaining why 
more densely planted crops may suffer less damage. Addi-
tionally, Valantin-Morison et al. (2007) observed that root 
fly (Delia radicum), cabbage stem flea beetle (Psylliodes 
chrysocephala) and rape stem weevil (Ceutorhynchus napi) 
damage all decreased with increasing plant density; this too 
may have been due to dilution effects, but increased compe-
tition between plants at higher densities may have reduced 
resource quality for these insects.

Pollen beetle parasitism rates have been shown to have a 
positive relationship with plant density (Zaller et al. 2009a), 
and it is probable that parasitoid searching efficiency is 
improved where racemes (and hence host larvae) are more 
closely spaced. Interestingly, Zaller et  al. (2009a) also 
showed that oilseed rape 1000 kernel mass was positively 
related to pollen beetle parasitism rates, suggesting that the 
parasitoids may have influenced beetle capacity to cause 
damage to the growing crop, perhaps through disturbance 
or interference effects.

Weed management

There has been little, if any, research on the direct effects of 
weeds on pollen beetle infestation of OSR crops. Similarly, 
the direct effects of weed management on pollen beetle regu-
lation by natural enemies has been little studied, however, 
generalist predators such as carabids and spiders may benefit 
from increased weed cover through provision of shelter and 
alternative sources of food/prey (Speight and Lawton 1976; 
Holland et al. 1999; Schmidt et al. 2005; Sunderland and 
Samu 2000). In particular, omnivorous carabid species that 
consume weed seeds as well as prey have been shown to be 
associated with increased weed cover (Kulkarni et al. 2017; 
Diehl et al. 2012). Potentially, therefore, less intensive weed 
management regimes may enhance pollen beetle regulation 
by these natural enemies. However, more work is needed in 
this area as positive relationships between weed density and 
generalist predators may not necessarily lead to better pest 
suppression; alternative weed-associated resources may dis-
tract generalist enemies from target pests (Diehl et al. 2012).
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To our knowledge, no study has investigated the effect 
of weed management on pollen beetle specialist parasi-
toids. However, it is possible that access to weed-derived 
pollen and nectar could enhance the efficacy of these natu-
ral enemies, and that they may benefit from reduced weed 
management intensity. Floral resource utilisation has been 
shown to increase parasitoid longevity (Lee et al. 2004; Rob-
inson et al. 2008) and fecundity (Hogg et al. 2011; Baggen 
and Gurr 1998; Winkler et al. 2006), and the pollen beetle 
parasitoid T. heterocerus is known to acquire nectar while 
foraging in the field (Rusch et al. 2013a). However, the mas-
sive floral resources supplied by the OSR crop itself may 
mean that the benefits of weed-derived nectar and pollen 
are marginal, or depend on the phenology of different para-
sitoid species in relation to that of the crop. For example, 
P. interstitialis, which is active at the OSR bud stages (i.e. 
before the flowers are open) may benefit more from weed-
borne floral resources than P. morionellus or T. heterocerus 
which tend to colonise the crop only at the beginning of 
flowering (Ulber and Nitzsche 2006; Williams 2006). The 
benefits delivered by weeds to natural enemies of pollen 
beetles could also be realised through managed companion 
cropping within-crop (e.g. Howard 2016) or via sown field 
margins at the field boundry (Baverstock et al. 2014; Skel-
lern & Cook in press), which avoid the negative impact of 
weeds.  However both tactics require further research and 
development.   

Growth regulators

Several compounds, including metconazole and tebucona-
zole, both of which also have fungicidal action, are used 
as growth regulators on OSR to manipulate canopy devel-
opment, root growth and stem extension (HGCA 2014). It 
seems, however, that no research has been carried out on the 
influence of these compounds on pest abundance or damage. 
As plant height can positively influence both pollen beetle 
and stem weevil Ceutorhynchus pallidactylus infestation 
(Schlinkert et al. 2015, 2016; Ferguson et al. 2003), it is 
possible that these compounds could be used to manipulate 
populations of these pests. Additionally, research is needed 
on the use of these or similar compounds to influence the 
timing of bud and flowering growth stages, as potential 
may exist to use growth regulators as an alternative to, or to 
enhance trap cropping strategies.

Crop nutritional status

Several studies have revealed relationships between 
crop nutritional status and pollen beetle abundance on 
OSR. Zaller et  al. (2008b) demonstrated a curvilinear 

relationship between pollen beetle infestation and soil 
index (a measure used in Austria of the natural yield 
capacity of soils, on a scale of 0–100, with soils of the 
highest yield capacity in the country scoring 100, and 
taking into account soil type, humus content, soil depth, 
texture, density, structure, lime content, gleying and soil 
congregation; ÖBG 2001); beetle abundance increased 
with soil index to average index levels, but then declined 
at higher values. The authors suggested that at low soil 
index values, plant quality may have been unsuitable for 
the pest, but at higher values, the crop may be better able 
to protect itself from herbivore attack. Indeed, plant glu-
cosinolate content, the breakdown products of which are 
important for pollen beetle host plant location (Blight 
and Smart 1999; Cook et al. 2006), has been shown to 
increase with nutrient supply (Markus et al. 1996), but 
on higher quality soils, the production of other second-
ary compounds may enhance plant defences against the 
pest (Cipollini and Bergelson 2002). Despite these soil 
quality effects, Zaller et al. (2008b) observed no direct 
influence of variation in nitrogen fertiliser rates (range 
45–143 kg ha−1), perhaps because applications may not 
have accurately reflected soil nitrogen availability. By 
contrast, Culjak et al. (2011) found greater pollen beetle 
abundance on plants treated with lower and higher N rates 
(of 69 and 115 kg ha−1 respectively) than on those treated 
at medium rates (92 kg ha−1), and Veromann et al. (2013) 
were also able to demonstrate an influence of nitrogen fer-
tiliser, with increased beetle infestations occurring on both 
low (60 and 80 kg ha−1 N) and high (160 kg ha−1) rate 
nitrogen-treated plots, compared with zero and medium 
(100, 120 and 140 kg ha−1) rate treatments. In this case, 
there was some evidence that differences in infestation 
rates were mediated through quantitative changes in plant 
volatile profiles which differed according to nitrogen appli-
cation rates. In particular, emissions of acetic acid, methyl 
salicylate and several lipoxygenase pathway volatiles were 
greater from plants treated at the higher N rates.

It is possible that plant nutrition-mediated differences in 
visual cues may influence infestation and damage by pollen 
beetles. Higher nitrogen rates can increase OSR floral spec-
tral reflectance in the UV wavelengths, and in those above 
530 nm (Blake et al. 2014); visual stimuli at these wave-
lengths are known to elicit positive behavioural responses 
in pollen beetles (Döring et al. 2012; Cook et al. 2013b). 
Indeed, for the seed weevil, plant nitrogen and sulphur nutri-
tion has been shown to influence attraction to OSR through 
differences in leaf reflectance characteristics (Blake et al. 
2014). As well as altering spectral reflectance characteris-
tics, higher nitrogen rates can lead to increased plant size 
and height (Grant and Bailey 1993), which can also influ-
ence pollen beetle and stem weevil abundance and damage 
(as discussed above).
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In a study investigating both crop management and land-
scape influences on OSR pest populations and crop damage, 
Rusch et al. (2013b) reported that crop nitrogen status (as 
determined by calculation of the nitrogen nutrition index; 
Lemaire and Meynard 1997) was of little importance in 
determining pollen beetle infestation, but represented a very 
important predictor of crop damage; high nitrogen status 
plants exhibited low proportions of damaged buds. Another 
study (Valantin-Morison et al. 2007) also showed a simi-
lar effect, with reduced proportions of flowers destroyed by 
pollen beetles on higher nitrogen status soils. In both cases, 
it is likely that the negative relationship between nitrogen 
nutrition and pollen beetle damage is related to the greater 
capacity of higher nutrient status plants to produce defensive 
secondary compounds (Cipollini and Bergelson 2002) and 
to compensate for damage, particularly via the production 
of new racemes (Podlaska et al. 1996).

There is little evidence in the literature of direct crop 
nutritional status effects on pollen beetle natural enemies; 
rather, pollen beetle parasitism rates appear to be influenced 
indirectly through host density-dependence effects (Zaller 
et al. 2009b; Veromann et al. 2013). Similarly, the activity-
density of Amara similata (Carabidae) females was found 
to be negatively correlated with soil index (Haschek et al. 
2012), and this is most likely related to prey and/or weed 
seed abundance; on more productive soils, readily available 
food resources lead to satiated beetles that are relatively 
inactive and less likely to be trapped (Lenski 1984).

In general, it seems that the increased capability of high 
nutrient status crops (particularly with regard to nitrogen) 
to compensate for pest damage can often offset the effect of 
greater pollen beetle abundance on these crops, and timing 
of fertiliser applications to ensure sufficient nutrient avail-
ability at the susceptible green to yellow bud growth stages 
may serve to curb yield losses. Indeed, in dry seasons when 
nitrogen uptake is limited, it is possible that crops would 
benefit from foliar nitrogen applications during the damage-
susceptible stages.

Insecticide regimes

The insecticides that are routinely used to target pollen bee-
tles and other OSR pests have detrimental effects on natural 
enemy populations and parasitism rates (Hanson et al. 2015; 
Nilsson et al. 2015; Jansen and San Martin 2014), mean-
ing that integration of chemical and conservation biological 
control into IPM strategies is a major challenge (Williams 
2004, 2006). These undesirable side effects, however, may 
be ameliorated in a several ways. Choice of lower toxic-
ity products such as tau-fluvalinate over other pyrethroids 
(Klukowski 2006) may enhance parasitoid survival. Jansen 
and San Martin (2014) found that pymetrozine had limited 

effects on parasitoid mortality compared with thiacloprid, 
phosmet, chlorpyriphos-ethyl and tau-fluvalinate. Pymetro-
zine, tau-fluvalinate and phosmet did not affect the ratio of 
parasitoids: pollen beetles at the end of the season while 
thiacloprid and chlorpyriphos-ethyl were found to alter this 
ratio in the pollen beetles’ favour. Reduction of insecticide 
applications is possible through the use of decision support 
systems and better use of pest thresholds (Johnen et al. 2010; 
Ferguson et al. 2016; Junk et al. 2016; Ferguson and Cook 
2014). Indeed, in the future, potential for the development 
of combined thresholds based on multiple pest species, 
rather than on each pest individually may serve to further 
reduce insecticide use, as a recent study has shown, coun-
terintuitively, that the interactive effects of high levels of 
plant damage by seed and stem weevils can lead to increased 
OSR seed yield, presumably due to plant overcompensation 
effects (Gagic et al. 2016). Recent research into using more 
benign natural products, particularly stone meal, Silico-
sec (inert silica diatomaceous earth) and liquid manure as 
alternatives to insecticides have shown promising results in 
terms of pollen beetle control (Dorn et al. 2014), but further 
research is needed into effects on non-target insects, timing 
and frequency of applications and the persistence of formu-
lations. Better targeting of insecticide applications relative 
to pest incidence and parasitoid phenology also has potential 
to lower parasitoid mortality. The main activity period of 
pollen beetle parasitoids extends from the late bud stages to 
beyond the end of flowering, and consequently, insecticides 
applied during flowering (typically targeting seed weevils 
and pod midge) have particularly deleterious effects (Ulber 
et al. 2010a). Thus, avoidance of insecticide applications 
during the flowering period and restriction of those targeting 
pollen beetles to the earlier green bud stages could reduce 
negative effects on natural pest control. The time of day at 
which insecticides are applied could also influence the sur-
vival of beneficial insects. Ferguson et al. (2013) found that 
during flowering, the peak flight activity of both pollen bee-
tles and the parasitoid Phradis interstitialis was around mid-
day, and few insects were caught before 10:00 am. Further 
research, however, is needed to determine whether insec-
ticide applications early or late in the day could maintain 
pollen beetle control yet reduce parasitoid mortality.

Spatial targeting of insecticides only to areas of high 
pest density is another means by which parasitoid mortality 
could be reduced. Ferguson et al. (2003) noted that while 
P. interstitialis had a close spatial association with its host, 
another parasitoid, Tersilochus heterocerus was more evenly 
distributed across the field than the pollen beetle larvae, thus 
insecticide targeting to only the beetle-dense areas could 
help to conserve T. heterocerus at least. Where a trap crop 
is used, the application of insecticide to the trap crop before 
the beetles move on to the main crop also has the potential 
to improve spatial targeting (Cook et al. 2013a; Čuljak et al. 
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2016). It is important to note, however, that where insecti-
cides are used, even if direct effects on beneficial insects are 
reduced by these strategies, their populations or activity are 
still likely to be reduced, possibly by sub-lethal effects, or 
simply through the reduction of available hosts. Unsprayed 
field margin areas where brassicas are present are therefore 
likely to be of great importance in maintaining populations 
of brassica-specialist pollen beetle parasitoids (Skellern 
et al. in prep).

Tillage

The varying degree of disturbance caused by different pre- 
and post-OSR soil tillage regimes can differentially impact 
abundance and survival of pollen beetle parasitoids and gen-
eralist predators. In particular, because pollen beetle para-
sitoids overwinter in the soil of former oilseed rape fields 
(Nitzsche and Ulber 1998), leaving fallow ground or using 
reduced-disturbance forms of tillage such as direct drilling 
in the establishment of the crops following oilseed rape can 
greatly enhance parasitoid survival compared with plough-
based systems. Experiments in Sweden and Finland showed 
that overwintering survival of parasitoids was around four 
times higher from fallow or direct drilling treatments, com-
pared with ploughing or disc-based non-inversion techniques 
(Nilsson 1985; Hokkanen et al. 1988). Ferguson et al. (2007) 
gave similar results with fallow treatments showing the high-
est survival rates, followed by non-inversion, and plough-
based treatments the lowest. Other studies from Germany 
have also confirmed the detrimental effects of ploughing 
on parasitoid survival (Nitzsche and Ulber 1998; Wahm-
hoff et al. 1999). Hanson et al. (2015), however, detected no 
difference in parasitoid emergence following ploughing vs 
disc- or tine-based tillage, but made no comparisons with 
post-OSR fallow or direct drilling techniques.

There is some evidence that generalist predators, particu-
larly spiders, are influenced by tillage regime with plough-
ing showing more disruptive effects than lower disturbance 
methods (House and Stinner 1983; Haskins and Shaddy 
1986). However, other studies have shown a beneficial effect 
of pre-OSR ploughing on Erigone and Oedothorax (Lin-
yphiidae) populations, but no influence of post-OSR till-
age regime (Williams and Ferguson 2008). The same study 
showed no impact of pre- or post-OSR tillage on carabid 
numbers or species richness. Many carabid species over-
winter in field boundary habitats and migrate into crops 
in spring and summer and thus may avoid autumn tillage-
related injury, but if ploughing is used in the establishment 
of spring crops, more detrimental effects are seen (Büchs 
2003).

Although pollen beetles and their parasitism rates 
can be indirectly influenced (via growth stage and 

density-dependence effects) by the tillage treatments used 
in OSR crop establishment (Williams & Ferguson, 2008), 
the tillage methods used post-OSR have little effect on the 
pest, as unlike their parasitoids, the adults overwinter else-
where and not within-field (Rusch et al. 2012). This implies 
that the encouragement of low-disturbance tillage methods 
for the establishment of crops following OSR, in particular 
direct drilling, presents an opportunity to enhance parasitoid 
populations without having detrimental effects on generalist 
predators, and without having positive effects on the pest.

Comparisons of crop management strategies 
for OSR

An integrated crop management strategy (ICM) for OSR, 
based on reduced tillage (to enhance parasitoid survival, 
and to reduce crop establishment-related energy use) 
and spraying to pest thresholds has been compared with 
‘standard’ agronomic procedures (plough-based tillage 
and spraying to schedule) as part of an EU project (Nils-
son et al. 2015). Standard and ICM procedures were com-
pared at sites in Germany, Poland, Sweden and the UK, in 
terms of their effects on pests, yields, energy use and crop 
production costs. Insecticide applications were more than 
halved where control thresholds were used, and parasitism 
rates in aggregate across three major pests of OSR (seed 
and stem weevils, and pollen beetles) were significantly 
higher in untreated than sprayed plots. While the ICM sys-
tem generally needed an extra herbicide treatment, because 
of the need to curb weeds otherwise controlled through 
ploughing, and yields were slightly lower, total production 
costs and energy use were also lower for the ICM system, 
meaning that growing the OSR under ICM would often be 
economically favourable for farmers, and more environ-
mentally sustainable. These results are encouraging, but 
potential clearly exists to improve upon the ICM system 
studied, by integrating more of the crop management prac-
tices/aspects discussed above, favouring better control of 
pollen beetles and other OSR pests.

Conclusions

Crop management has important influences on pollen bee-
tle abundance, the damage caused and on natural enemy 
populations and activity. It seems that more dense, high 
nutrient status crops (particularly with regard to nitrogen 
availability at damage-susceptible growth stages) are the 
most tolerant of attack and these conditions also facilitate 
parasitoid activity through density-dependence effects 
and improved host-seeking efficiency. Choice of cultivar 
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is also important, but in the absence of a standard pollen 
beetle resistance rating scheme, farmers have little basis on 
which to make this decision. Scope exists to adapt the spa-
tial and temporal targeting of insecticides, or to use more 
benign products to reduce detrimental effects on non-target 
beneficial insects. The potential to use growth regulators to 
manipulate pest populations warrants further investigation, 
and reduced tillage establishment techniques following the 
OSR crop should be encouraged to enhance parasitoid sur-
vival between seasons. Crop rotation can have important 
effects on pest abundance, but these are mediated mostly 
at the landscape scale. Indeed, the implications of crop 
management tactics for pollen beetles and their natural 
enemies need to be considered alongside landscape-scale 
processes, as both influence insect abundance and dam-
age. On balance, it seems that landscape-scale processes 
may be the more important determinant of pollen beetle 
abundance (Rusch et al. 2013b), while damage is a product 
of both landscape-scale processes and, through manage-
ment, the crop’s injury-compensation capability (Rusch 
et al. 2013b; Valantin-Morison et al. 2007).
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