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Abstract:  1 

1. Urban greenspaces are crucial for public health, climate resilience, and community 2 

well-being, yet there are inequalities in accessibility in cities across the world. The ‘x-3 

minute city’ framework has been proposed as a potential solution, proposing that 4 

essential services and amenities—including greenspace—should be accessible within 5 

a short commute from every residence. However, current approaches to measuring 6 

and implementing this framework often rely on single dimensional metrics that fail to 7 

capture the full complexity of how people actually access and use urban greenspaces.  8 

2. This review synthesises methods from three distinct fields to develop a more 9 

comprehensive understanding of greenspace accessibility: geographic information 10 

science (GIScience), which provides spatial analytical tools; behavioural ecology, 11 

which offers frameworks for understanding movement decisions; and human mobility 12 

analysis, which reveals movement patterns through the urban environment.  13 

3. While GIScience approaches allow for the identification of spatial inequalities in 14 

greenspace distribution, they often overlook the behavioural                                                                                                                                                                                      15 

and social factors that influence actual usage, highlighted in behavioural ecology 16 

approaches. Similarly, human mobility models can track movement patterns but may 17 

miss environmental and cultural factors.  18 

4. To bridge the gap between these methods, we introduce the Multi-context Inclusive 19 

City (MIC) framework, which integrates spatial, behavioural, and mobility perspectives 20 

to analyse greenspace accessibility. This framework moves beyond proximity 21 

measures to incorporate diverse experiences, movement pathways, and the 22 

environmental and social factors that influence greenspace usage.  23 
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5. The MIC framework offers practical guidance for selecting appropriate models and 24 

methods based on specific research questions or planning objectives. By providing a 25 

more nuanced understanding of how people interact with urban greenspaces, this 26 

framework can help planners and policymakers develop more effective strategies for 27 

creating equitable, accessible, and sustainable cities.  28 

Keywords: x-minute city, greenspace, accessibility, human mobility, foraging, movement, 29 
modelling  30 
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 46 
1 Introduction 47 

Since the Industrial Revolution, cities around the world have been developed with an 48 

emphasis on productivity and economic growth rather than liveability. This focus has often 49 

led to sprawling, dense built environments that prioritize industrial and commercial functions 50 

over residential comfort, greenspaces, and community well-being (Childe, 1950; Reps, 2021). 51 

Greenspaces—encompassing parks, urban forests, and green infrastructure—are crucial for 52 

creating healthier, more resilient cities. They provide residents with critical ecosystem 53 

services—the benefits that natural environments provide to human wellbeing and 54 

functioning of cities—such as air purification, heat reduction, stormwater management, and 55 

noise buffering, all of which directly contribute to improved public health (Bolund & 56 
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Hunhammar, 1999; Coutts & Hahn, 2015). Research consistently links greenspaces to positive 57 

health outcomes, including reduced stress, enhanced mental health, and lower rates of 58 

respiratory diseases (Gianfredi et al., 2021). As climate challenges grow, greenspaces also 59 

strengthen urban resilience by mitigating the urban heat island effect, improving biodiversity, 60 

and managing flood risks. For instance, a recent systematic review highlighted that regions 61 

abundant in greenspaces report lower rates of heat-related morbidity and mortality 62 

compared to those with sparse greenspace (Nazish et al., 2024). However, disparities in 63 

greenspace distribution and accessibility exacerbate health inequalities, particularly in 64 

underserved or “left-behind” areas (Houlden et al., 2018). Addressing these disparities is 65 

essential for creating sustainable, inclusive, and productive cities that prioritize well-being 66 

(Kabisch & van den Bosch, 2017). 67 

These disparities in greenspace accessibility are influenced by income inequality, 68 

historical planning practices, and urban development patterns, among other social factors. In 69 

the UK, for example, there is a clear need for more equitable greenspace access, with recent 70 

statistics indicating that approximately 38% of people in the UK do not have greenspace 71 

within a 15-minute walk of their home, reflecting the ongoing accessibility crisis (Department 72 

for Environment, Food and Rural Affairs, 2023). The income gap in greenspace accessibility 73 

can be clearly seen in European cities such as Brussels, Milan, Prague, and Stockholm; higher 74 

income residents typically enjoy greater access to greenspaces. In contrast, Birmingham in 75 

the UK shows a reverse pattern, with more greenspace in lower income areas (Buckland & 76 

Pojani, 2023). Similar inequities are found globally, as in Denver and Los Angeles, where 77 

minority and low-income neighborhoods face limited access to parks (Rigolon et al., 2018; 78 

Rigolon & Flohr, 2014; Wolch et al., 2005). However, addressing these disparities in 79 

greenspace access requires careful planning as sudden enhancements of greenspace can lead 80 
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to "green gentrification," where improvements elevate property values and push out lower-81 

income residents, as observed in various U.S. and European cities (Anguelovski et al., 2022; 82 

Quinton et al., 2022; Wolch et al., 2014).  83 

The “x-minute city” framework has emerged as a potential solution for equitable 84 

urban accessibility, promoting the idea that essential services, including greenspaces, should 85 

be accessible within a short walk or bike ride (typically 15–20 minutes) of every household 86 

(Moreno et al., 2021). Although the x-minute city framework is a recent concept, it builds on 87 

a long tradition of urban planning principles that emphasize density, proximity, and 88 

diversity—ideas rooted in Jane Jacobs’s, The Death and Life of Great American Cities, in the 89 

1960s (Jacobs, 1961)—expanding upon them by including digitalization, the integration of 90 

smart technologies to enhance accessibility (Moreno et al., 2021). For a more comprehensive 91 

history of these planning principles, see Fuller & Moore (2017) for an early review and LeGates 92 

et al. (2020) for a recent synthesis that highlights significant developments in urban planning 93 

frameworks.  94 

Given their role in enhancing public health and serving as “ecological guardians” for 95 

urban areas, greenspaces are a key amenity that should be within the accessible range of the 96 

x-minute city (Wolch et al., 2014). However, greenspace accessibility presents unique 97 

challenges that distinguish it from other forms of accessibility, such as transportation or retail 98 

access. Greenspace use is influenced not only by physical proximity but also by individual 99 

perceptions, environmental quality, landscape patterns, and social factors, which standalone 100 

accessibility metrics generally fail to capture (Ha et al., 2022; Jarvis et al., 2020; Robinson et 101 

al., 2023).  102 
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 To fully understand greenspace accessibility, there is a need to move beyond 103 

traditional location-based metrics such as proximity and density and incorporate additional 104 

individual-based metrics to capture the nuanced, variable factors that influence greenspace 105 

use. This review identifies a critical gap in the literature: while geographic information science 106 

(GIScience hereafter), human mobility analysis, and behavioural ecology each contribute 107 

valuable insights, these fields remain largely siloed, limiting their ability to address greenspace 108 

accessibility comprehensively. Methods from GIScience provide essential spatial analysis 109 

techniques to map and quantify greenspace distribution, highlighting spatial inequalities, but 110 

often neglects the behavioural and contextual elements of accessibility—the perceived 111 

accessibility (e.g., how crime taking place in a greenspace influences the decision to visit it) 112 

(Pot et al., 2021). Human mobility analysis—encompassing fields such as geographic data 113 

science and network science—leveraging big data from sources such as mobile phones and 114 

social media, has made significant strides in tracking real-world movement patterns, yet it 115 

often overlooks the socio-environmental and motivational factors that influence greenspace 116 

use (Toole et al., 2015). Behavioral ecology, through the Movement Ecology Paradigm, 117 

focuses on adaptive behaviours and movement motivations, adding a qualitative aspect of 118 

the perceived accessibility, but this theoretical framework and modelling strategy has been 119 

underutilized in urban planning contexts (Joo et al., 2022). By combining spatial analysis, 120 

empirical movement data, and behavioural frameworks, we can develop more 121 

comprehensive insights into both physical and perceived accessibility to urban greenspace.  122 

While acknowledging the breadth of literature in these fields, this review concentrates 123 

on their primary methodological approaches to establish a 'Multi-Context Inclusive City' (MIC) 124 

framework. This framework provides a structured approach for combining and integrating 125 

methods from GIScience (GIS), human mobility studies (HM), and behavioural ecology (BE). 126 
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The MIC framework offers guidance on how existing approaches can be systematically 127 

combined to provide more comprehensive insights into greenspace accessibility, rather than 128 

presenting entirely new models. The framework identifies four potential integration 129 

pathways: combining two approaches (GIS-BE, HM-BE, or GIS-HM) or all three approaches 130 

(GIS-HM-BE) to address specific research questions and planning needs.  131 

 132 

2 From Minimal to Comprehensive Interactions: Capturing the connections between people 133 

and nature in the x-minute city. 134 

2.1 Spatial place-based approaches: Perspectives from GIScience and Urban Analytics 135 

While spatial accessibility analysis has evolved beyond simple proximity measures, proximity-136 

based approaches remain common for mapping and defining the x-minute city across 137 

disciplines. These approaches apply a variety of spatial analytical techniques derived from 138 

GIScience, ranging from basic distance measures to more sophisticated methods 139 

incorporating multiple transport modes and temporal factors (Geurs & van Wee, 2004). For 140 

example, Natural England defines a ‘15-minute walk zone’ for greenspace accessibility as any 141 

residence that falls within 1km of a natural greenspace, without considering the road network 142 

(Natural England, 2023). Another example of this can be seen in a recent study by Balletto et 143 

al (2021) that described the ‘service area’ as an area of 1,200m around a building, 144 

corresponding to an approximation of a 15-minute walk along the street network. These 145 

proximity-based metrics, in this case buffer analysis, provide a simplistic way of defining 146 

spatial coverage but lack the ability incorporate real-world travel conditions or temporal 147 

variability.  148 
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 Place-based, proximity metrics can be extended by incorporating transportation costs 149 

to calculate travel times or distances, and competition of many people trying to access the 150 

same amenity, forming the basis for catchment area analysis. A common example is the Two-151 

Step Floating Catchment Area (2SFCA) method, which incorporates transportation networks, 152 

supply (e.g., greenspace area), and demand (e.g., population density) to create catchment 153 

areas and identify spatial inequalities (Luo & Qi, 2009; Luo & Wang, 2003). The 2SFCA method 154 

is not solely proximity-based, but flexible enough to account for different transportation 155 

modes, including walking, cycling, or driving (Liu et al., 2022). An important strength of the 156 

2SFCA method is its ability to account for service provision weighted by demand, while also 157 

considering the availability of alternative options for potential users within a given time or 158 

distance catchment. This approach mitigates issues related to cross-boundary flows—159 

situations where service areas are not simply confined to administrative boundaries, instead 160 

incorporating time and distance into the accessibility measure (Higgs, 2004). However, the 161 

2SFCA method has its limitations. It often relies on generalized parameters with single 162 

standardized values, ignoring individual features, and assigns arbitrary values to key 163 

characteristics, such as average walking speed (Liu et al., 2022). It also implements a place-164 

based approach instead of an individual-based one, making it less effective for capturing 165 

person-specific accessibility dynamics.  166 

 Efforts have been made to incorporate qualitative data (such as surveys, walkability 167 

indices, and visual reporting) into the traditional quantitative approaches of proximity-based 168 

metrics for the x-minute city (Campisi et al., 2021; Ignaccolo et al., 2020; Weng et al., 2019). 169 

Studies by Weng et al. (2019), Calafiore et al. (2022), and Liu et al. (2021) demonstrate how 170 

combining spatial analysis with survey data and sociodemographic factors can reveal 171 

accessibility patterns that place-based measures miss. Similarly, approaches like 172 
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geographically weighted regression and equity-specific metrics have revealed how 173 

accessibility varies across sociodemographic and spatial scales, underscoring the persistent 174 

disparities faced by marginalized groups. Yet, these methods often remain static and 175 

aggregate, failing to capture the dynamic, individual-level interactions that shape greenspace 176 

use. 177 

Recent research has further exposed the inadequacy of relying solely on objective 178 

measures of accessibility. For example, analyses of greenspace access have revealed 179 

significant disparities in both inter-group and intra-group equity, such as variations between 180 

racial/ethnic groups and income-based inequities within those groups (D. Liu et al., 2021). 181 

These findings challenge the assumptions underlying aggregate accessibility metrics, 182 

emphasizing the need for tools that address not only physical proximity but also the socio-183 

spatial dynamics of equity and inclusion. Moreover, the disconnect between objective 184 

accessibility and actual greenspace use highlights the critical role of subjective perceptions—185 

such as attractiveness, safety, and inclusivity—in determining how and whether people 186 

engage with greenspaces (D. Liu et al., 2024). These insights suggest that accessibility is as 187 

much about perceived opportunities as it is about physical availability. Person-based 188 

approaches, including human mobility assessment, provide a promising avenue for 189 

addressing this gap (see Section 2.4). 190 

  Place-based, proximity approaches provide a critical starting point for understanding 191 

greenspace accessibility within the x-minute city. These methods offer straightforward, 192 

scalable tools for identifying underserved neighborhoods and spatial disparities. However, 193 

their focus on service areas and place-based aggregate accessibility measure limits their 194 

ability to address the nuance of greenspace accessibility. To move beyond these limitations, 195 
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place-based approaches must be integrated into a broader, multi-dimensional framework 196 

that incorporates mobility patterns, behavioural insights, and subjective experiences. The 197 

Multi-Context Inclusive City (MIC) framework proposed in this review provides a pathway to 198 

advance greenspace accessibility analysis, bridging spatial, mobility, and perceptual 199 

dimensions.  200 

 201 

2.2 Approaches from Behavioral Ecology: Incorporating a movement ecology perspective 202 

Broadly, behavioural ecology allows us to explore the ‘why’ behind human movement. The 203 

movement of animals, especially in how they access resources in the environment, has been 204 

heavily studied for decades with various models that explore how organisms forage in their 205 

environment (Ahearn et al., 2017; Fretwell & Lucas, 1969). These models can be applied to 206 

human behavior to understand how humans move through the environment and examine 207 

their internal motivation for doing so (Miller et al., 2019). These models assess the cost-208 

benefit relationship associated with movement, and incorporate aspects of learned behavior 209 

(assuming that organisms will use their previous knowledge of the environment), past 210 

experiences, and social networks to decide where to move (Dolan et al., 2021; Glover, 2009). 211 

While these models have yet to be applied to human movement in the x-minute city, they 212 

have the potential to assess how people choose their destination based on their individual 213 

circumstances.  214 

 Optimal foraging theory proposes that while foraging, animals act in a way to 215 

maximize their net benefit by obtaining the most resources while minimizing the associated 216 

costs such as time, energy, and risk (Pyke, 1984). This can further be broken down into how 217 

an individual chooses, handles, and consumes a resource in the environment (King & Marshall, 218 
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2022). When applied to humans seeking services (including ecosystem services) and 219 

amenities in the x-minute city, this can be viewed as, for example, the behavior of people 220 

moving through the environment to access the resource of greenspace, considering the travel 221 

time, quality of greenspace, and crowdedness of the space. Extensions of this such as the 222 

marginal value theorem (Charnov, 1976) and ideal free distribution (Flaxman & deRoos, 2007) 223 

attempt to quantify these aspects of movement by describing the weights of the benefits of 224 

staying in one place versus moving to another based on the benefit they gain in a place. For 225 

the marginal value theorem, the ideal time to leave a location is variable depending on the 226 

quality of the current location and the distance to other potential destinations. For example, 227 

people may choose to leave a low-quality, crowded greenspace sooner than a higher-quality 228 

greenspace with more space between individuals. The concept of ideal free distribution 229 

handles the aspects of competition and cooperation between individuals to determine the 230 

optimal ratio of resources and people (e.g., how community members share and coordinate 231 

park usage times to maximize greenspace accessibility for everyone) (Flaxman & deRoos, 232 

2007). In this way, the marginal value theorem and ideal free distribution can consider both 233 

social group dynamics and the quality of a greenspace as components that contribute to an 234 

individual’s motivation to move throughout the city when seeking greenspace, or simply 235 

when trying to find the most optimal route to get to work (Barton et al., 2009; Cantor et al., 236 

2020; Davis et al., 2022; R. A. Fuller et al., 2007).  237 

While not a direct method for modelling the x-minute city, behavioural aspects of 238 

these models could be considered when taking a quantitative approach as they can refine the 239 

movement dynamics of people in the urban environment. For example, urban greenspace 240 

usage would be influenced by factors such as the size of the greenspace, its facilities, the 241 

crime present in the area, and the number of access points. These behavioural ecology models 242 
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could be applied to a wide range of human behaviours, modelling how people interact with 243 

resources such as urban amenities, transportation, and the local economy, providing a 244 

general framework for understanding resource use, decision making, and the process of when 245 

and how to move around the city (Kennedy & Gray, 1993).  246 

 The movement ecology paradigm (MEP), elaborated by Nathan et al. (2008), 247 

incorporates a more complex approach to studying the movement of organisms in relation to 248 

benefits. It proposes that movement trajectories result from four interconnected 249 

components: motion capacity, navigation capacity, the internal state of the individual, and 250 

the external factors of the environment. The motion capacity of an individual incorporates 251 

the factors that enable an individual to move (i.e., transportation accessibility, walking speed, 252 

movement disabilities). Navigation capacity similarly details the factors that contribute to an 253 

individual’s ability to navigate in the environment (i.e., spatial awareness, map reading skills, 254 

sensory perception). The internal state encompasses the psychological reasons for moving, 255 

addressing why the individual is moving, and the external factors detail the environmental 256 

layout of a city, such as the transportation and technological infrastructure. This framework 257 

is able to address multiple mechanisms that drive movement: why move, how to move, when 258 

and in what direction to move, and how external factors influence movement (Nathan et al., 259 

2008).  260 

The MEP's value in x-minute city planning lies not in replacing existing transport 261 

modelling methods, but rather in providing decision-makers with a structured framework to 262 

conceptualize and analyse human movement behavior holistically (Demšar et al., 2021). 263 

Rather than jumping directly to technical metrics like transport availability measures, the MEP 264 

framework encourages first considering the basic drivers of movement behavior. The 265 
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structured consideration of internal motivations (why move?), navigation capabilities (where 266 

to move?), and motion capacities (how to move?) helps identify which aspects of mobility 267 

truly need to be measured and modelled in each context (Demšar et al., 2021; Nathan et al., 268 

2008). When applied to the x-minute city concept, the MEP’s components can be 269 

meaningfully adapted to incorporate the behavioural components of movement. 270 

Behavioral and movement ecology frameworks provide essential insights into how 271 

people navigate and utilize urban greenspaces, moving beyond simple distance-based 272 

accessibility measures to consider the complex motivations and decision-making processes 273 

that influence movement patterns. While traditional accessibility metrics remain valuable, 274 

the MEP framework demonstrates the importance of considering multiple contexts 275 

simultaneously—from internal motivations and individual capabilities to environmental 276 

conditions and social factors. This multi-dimensional perspective reveals why conventional 277 

planning approaches may fall short: they fail to capture the dynamic interplay between spatial 278 

accessibility, behavioural patterns, and contextual factors that shape how people access and 279 

use greenspaces. By highlighting these interconnections, the MEP framework helps justify the 280 

need for more comprehensive, integrated approaches to understanding greenspace 281 

accessibility. Such holistic frameworks must be capable of bridging between technical 282 

measurements and behavioural realities while accounting for the diverse contexts that 283 

influence how different communities experience and access urban greenspaces. 284 

2.3 Understanding Urban Dynamics: Population mobility models. 285 

Both population-level and individual-level mobility models offer critical insights into 286 

understanding the movement of people in the urban environment. Population-level models, 287 

including proximity-based approaches like the 2SFCA method (Luo & Qi, 2009), are grounded 288 
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in the gravity model framework. The gravity model is the foundation of population level 289 

human mobility models and has been used to analyse spatial relationships and movement 290 

dynamics in a variety of areas including economics, international trade, transportation 291 

analysis, and human migration (Lewer & Van den Berg, 2008; Ramos, 2016; Rodrigue et al., 292 

2013; Schläpfer et al., 2021). Fundamentally, the gravity model suggests that two locations 293 

have distinct levels of attraction based on their population and the distance between them 294 

(Zipf, 1946). 295 

 Approaching population-level mobility from a different perspective, Stouffer’s law of 296 

intervening opportunities was proposed in 1940 to address the relationship between 297 

proximity and migration (Stouffer, 1940). It suggests that as an individual moves towards their 298 

destination, they  are likely to choose the closest area with sufficient ‘opportunities’ relative 299 

to where they started, halting their migration once a suitable location is encountered 300 

(Stouffer, 1940). This concept has been incorporated into several human mobility models as 301 

a way of explaining an individual’s decision-making process in choosing a location to stop at 302 

while in route to their destination.  303 

Choosing an appropriate model depends on the context, research goals, and data 304 

availability. Comparative studies have shown mixed performance outcomes for the 305 

intervening opportunities model relative to the gravity model.  For example, Akwawua & 306 

Pooler (2001) found that the intervening opportunities model performs about the same as 307 

the gravity model when modelling US interstate migration patterns; while Wilmot et al. (2006) 308 

reported that it outperforms the gravity model in certain contexts, suggesting that when 309 

intermediate opportunities are accurately represented and data quality is high, the 310 

intervening opportunities model can capture spatial flows more effectively. However, Elffers 311 
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et al. (2008) and Kotsubo & Nakaya (2021) observed that the gravity model sometimes 312 

performs better than the intervening opportunities model, which may occur when travel 313 

patterns are strongly influenced by population size and distance. The varying performance of 314 

these models can be attributed to the context and specific factors of the migration flows being 315 

studied, such as the scale, the characteristics of origin and destination locations, and the 316 

availability of data.  317 

Both the intervening opportunities and gravity models are constrained by their 318 

assumptions. Neither model can perfectly predict flows under all conditions, with the gravity 319 

model relying on aggregate measures of population and distance, and the intervening 320 

opportunities model being influenced if the attractiveness of intermediate destinations is only 321 

moderately influential (Anderson, 2011). In other words, each model encounters an “upper 322 

bound” on predictive power: conditions under which its assumptions no longer provide 323 

reliable predictions. The fluctuations in performance are not solely due to data availability or 324 

scale, but also to the theoretical constraints embedded within each framework. 325 

 The radiation model is a modern application of the intervening opportunities model 326 

that captures more movement characteristics than Stouffer’s model. The model is based on 327 

the idea that when an individual decides on their destination, they go through a dual-step 328 

procedure, accounting for the internal motivation of the individual and the proximity of 329 

opportunities (Nathan et al., 2008; Simini et al., 2012). First, an individual looks for 330 

opportunities at a coarse scale, expanding their seeking range to cover a large geographic 331 

area. Second, the ideal location is chosen based on the proximity of the opportunity to the 332 

individual’s home, and the weight of the benefits in comparison to other opportunities closer 333 

to the individual’s home. A closer location with sufficient opportunities is more likely to be 334 
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chosen over a farther location with better opportunities (i.e., travel distance has more weight 335 

over the opportunity value). For example, someone in an urban area who wants to enjoy a 336 

hike may first identify (or have existing knowledge of) all the greenspaces that are within an 337 

hour’s drive from their home. Within this area there may be several small greenspaces, a few 338 

large greenspaces, and one long corridor of greenspace. While the small greenspaces may be 339 

very close to the person’s home, they do not offer much in terms of hiking. The large 340 

greenspaces may have a few short trails and are a short drive from home. The corridor of 341 

greenspace may be an hour drive from their home but provides a scenic hiking trail. In theory, 342 

based on the radiation model, the individual would likely choose one of the nearby large 343 

greenspaces with sufficient hiking opportunities, over the farther location with better 344 

opportunity. However, this would depend on the exact distances and the exact value of the 345 

opportunities at each location.  346 

 The radiation model resolves some of the major limitations of the gravity model, 347 

having strictly defined parameters, accounting for variable population density in between the 348 

origin and destination, and resulting in a flow output that predicts both the average flow and 349 

its variance (Simini et al., 2012). However, one of the major limitations of the radiation model 350 

is the issue of scalability. There have been multiple studies in which the radiation model has 351 

overestimated the flows terminating at short-distances, and underestimated long-distance 352 

flows at the city level, due to the underlying assumption that an individual will terminate their 353 

search process once they encounter the closest suitable opportunity (Kotsubo & Nakaya, 354 

2021; Liang et al., 2013; E. Liu & Yan, 2019). As a response to this shortcoming, the model has 355 

been adjusted with different parameters to address different areas depending on the scale of 356 

the study (Kotsubo & Nakaya, 2021; Simini et al., 2012; Yang et al., 2014). 357 
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 These population-level human mobility models offer key aspects to consider for 358 

incorporating the proximity, density, and diversity aspects of the x-minute city. The concept 359 

of intervening opportunities and distance-decay are both critical in understanding how 360 

people navigate the urban environment and make decisions on where to go based on what 361 

amenities and opportunities are available within their vicinity.  362 

 363 

2.4 A Close-up on Citizens: Exploring individual mobility models.  364 

Individual-level mobility models account for personal preferences and constraints and can 365 

help in understanding the variability in people's mobility patterns (Barbosa et al., 2018). These 366 

models can simulate diverse mobility behaviours, aiding in the assessment of how different 367 

population groups access greenspaces in the city. For instance, some individuals might 368 

prioritize proximity, preferring to use the closest amenities, while others might prioritize 369 

quality or variety and be willing to travel further for better options.  370 

Random walks serve as a foundational concept, providing a null model of individual 371 

movement. However, their randomly generated movement trajectories do not mirror actual 372 

human movement (Barbosa et al., 2018; Song, Koren, et al., 2010). In a random walk model, 373 

each step in the trajectory is independent, uninfluenced by previous locations visited. Due to 374 

the random nature of these models, they are not the best fit for realistic human movement, 375 

which often exhibits more predictable properties. As a result, various versions of the random 376 

walk model, such as Brownian motion (Wang & Uhlenbeck, 1945) and continuous time 377 

random walks (Montroll & Weiss, 1965), have been developed. 378 
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A particularly successful variant is the Lévy flight model, which has been shown to 379 

accurately capture many aspects of human and animal movement. Lévy flights are 380 

characterized by a pattern of many small steps interspersed with occasional long jumps, 381 

creating a power law distribution for the jump length (Chechkin et al., 2008). This mirrors 382 

common human mobility patterns, such as daily commuting interspersed with occasional 383 

long-distance travel (González et al., 2008). While Lévy flights can describe routine behavior 384 

of human mobility, this model may not capture the nuances of urban travel and the decision 385 

of where to travel to. For example, Lévy flights do not consider the external factors present 386 

in the city, such as the crowdedness of a destination or the amount of traffic on the street, 387 

only creating a network of travel along the edges and nodes of the graph (Barbosa et al., 2018).  388 

The Exploration and Preferential Return (EPR) model (Song et al., 2010a), incorporates 389 

an additional component of human behavior, the propensity to visit previous locations at a 390 

higher frequency than new locations. The EPR model works on a principle of balance between 391 

two significant behavioural actions: exploring new locations and returning to previously 392 

visited ones. The evolution of this model over time has seen several adaptations aimed at 393 

increasing its realism and representativeness of actual human mobility. For instance, the 394 

density-EPR model combines the gravity model and cumulative knowledge of an individual to 395 

guide the decision of which location to visit next (Pappalardo et al., 2016). Additionally, 396 

incorporating recency bias into the model accounts for another layer of human behavior 397 

prioritising the tendency of an individual to re-visit a recent location rather than a frequently 398 

visited location (Barbosa et al., 2015).  399 

The recency model breaks down the EPR model, deriving two separate ranks—400 

frequency and recency (i.e. ranking the most frequently/recently visited locations) (Barbosa 401 

et al., 2015).  The recency model operates in much the same way as the EPR model with the 402 



18 
 

same probability for exploration, however, the preferential return probability is altered to 403 

adjust the jumps to return locations to be selected from both frequently visited locations and 404 

recently visited locations (Barbosa et al., 2015). This additional nuance captured by the 405 

recency model enhances the overall output of the EPR model, making it more applicable to 406 

use in generating trajectories in urban environments. By combining recency and frequency, 407 

the frequency of visits can be broken down to better understand the human motivation for 408 

visiting a location.  409 

Agent-Based Models (ABMs) represent another approach in individual mobility 410 

modelling, simulating the decision-making process of individuals based on a set of rules and 411 

interactions. While previous models like EPR and recency models focus on predicting 412 

movement patterns based on historical behavior, ABMs allow for more complex decision-413 

making processes that incorporate both individual preferences and environmental factors. In 414 

these models, agents are programmed to make autonomous decisions about their movement 415 

patterns while responding to both environmental conditions and the behavior of other agents 416 

(Serena et al., 2023). 417 

 ABMs are particularly valuable for their ability to represent heterogeneous types of 418 

agents with varying decision conditions and to handle only partial data in complex urban 419 

environments, reducing the need for large training datasets (Maggi & Vallino, 2016). One key 420 

advantage of ABMs over other mobility models is their ability to capture how individuals 421 

adapt their route choices, departure times, and transportation modes in response to dynamic 422 

conditions such as congestion, availability of services, and the presence of other agents in the 423 

system (Heppenstall et al., 2012). This makes them especially suitable for studying complex 424 

urban environments where multiple factors influence movement decisions. However, ABMs 425 
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struggle with validation because they produce emergent behaviours that cannot be easily 426 

observed or verified in the real world (Heppenstall et al., 2021).  427 

Recent advances in big data analytics, particularly from smartphone GPS data and 428 

financial transactions, have given researchers the ability to understand human mobility 429 

patterns and can be used to help validate theoretical models. High-resolution smartphone 430 

GPS data enables researchers to track individual movements with precision, allowing for 431 

detailed examination of how movement patterns vary across different temporal and spatial 432 

scales, and in response to different environmental conditions. The ability to track individual 433 

movements has proven especially valuable for analysing specific population segments, from 434 

commuters to tourists, revealing how different demographics interact with urban spaces 435 

(Rout et al., 2021). When combined with other data sources like financial transactions and 436 

social media check-ins, researchers can create rich behavioural profiles that capture not just 437 

where people go, but also the purpose and context of their movements (Andrade et al., 2020; 438 

Birkin, 2019). Studies using mobile phone data have opened up the possibility to reveal how 439 

socioeconomic factors shape mobility patterns. For example, research in Bogotá 440 

demonstrated how lower-income groups maintained higher mobility levels during COVID-19 441 

due to necessity, while higher-income groups could more easily adapt their movement 442 

patterns through remote work (Guzman et al., 2021). This type of granular mobility data 443 

analysis helps validate theoretical models while uncovering critical patterns in how different 444 

demographic groups navigate and access urban spaces. Such insights contribute to 445 

understanding the real-world implications of accessibility disparities and evaluating the 446 

effectiveness of urban interventions across different population segments. 447 

Individual mobility models have great potential in assessing the movement of people 448 

through urban environments, particularly regarding greenspace accessibility. Random walks 449 
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and their variants, such as Lévy flights, establish foundational principles for modelling 450 

movement trajectories, though their limitations in capturing real-world behavior require 451 

more sophisticated approaches. The EPR model and its extensions offer valuable insights into 452 

the balance between exploration and routine behavior, with the recency model adding 453 

nuanced understanding of temporal decision-making patterns. ABMs further enhance our 454 

understanding by incorporating complex decision-making processes and environmental 455 

interactions, though their validation remains challenging. The integration of big data analytics, 456 

particularly from smartphone-GPS, has significantly improved these models' accuracy and 457 

applicability, however, there are concerns surrounding the ethical usage of this data. 458 

 While each model type has specific limitations, collectively they provide 459 

complementary insights into how individuals navigate and utilize urban spaces. Collectively, 460 

these models for understanding greenspace accessibility are capable of capturing both 461 

routine usage patterns and exploratory behaviours, resulting in factors such as distance, 462 

quality, and temporal variations in visitation patterns. Future research could enhance these 463 

approaches by better integrating environmental quality metrics, social dynamics, and 464 

seasonal variations, potentially leading to more robust predictions of greenspace usage 465 

patterns in the context of the x-minute city.466 
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Figure 1. A summary of the advantages, denoted by ticks, and limitations, denoted by crosses, for each family of models. 
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3. Building a Holistic Framework: The Multi-context Inclusive City Framework 401 

The previous sections explored different models and approaches to understanding human 402 

movement and accessibility within the x-minute city, examining methods from GIScience, 403 

behavioural ecology, and human mobility research (Figure 2). Each approach encompasses 404 

particular aspects of both the urban environment and human behavior, providing distinct 405 

perspective on urban accessibility. These approaches have been developed largely in parallel 406 

to each other. However, while this parallel evolution has led to sophisticated methods within 407 

each domain, it has also created methodological “silos” that limit the processes in which we 408 

examine urban mobility and accessibility. 409 

Recent studies demonstrate this limitation. For instance, GIScience approaches excel 410 

at identifying spatial inequalities in greenspace access (Wu et al., 2022), but may miss the 411 

behavioural factors that influence actual usage patterns. Similarly, mobility models can reveal 412 

movement patterns through urban greenspaces (Zheng et al., 2024), but often lack 413 

environmental and social context. Behavioral ecology approaches offer insights into decision-414 

making processes but may not fully account for spatial constraints. This fragmentation of 415 

approaches mirrors a broader challenge in urban planning, the disconnect between physical 416 

infrastructure, human behavior, and movement patterns (Smith & Walters, 2018).  417 

To address this knowledge gap, while acknowledging practical constraints, these 418 

approaches can be combined in various ways to address specific urban planning challenges, 419 

particularly in understanding access to greenspace. We propose the Multi-context Inclusive 420 

City (MIC) approach as a flexible framework that can be adapted based on data availability 421 

and research needs (Figure 3). 422 
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 423 

Figure 2. A general overview of the different Multi-context Inclusive City (MIC) models. Each of the circles represents the three 424 
approaches used to model human movement in the city: Human mobility (HM), Behavioral Ecology (BE), and GIScience (GIS). 425 
These sections describe the reason for using the individual model, as well as the priorities for using this type of model. The 426 
overlapping areas describe the different MIC frameworks by describing a potential scenario or application, and giving a brief 427 
example of the types of data that could be used.  428 

The MIC framework represents a new perspective in how we conceptualize and 429 

analyse urban accessibility. Rather than treating spatial distribution, human behavior, and 430 

movement patterns as separate phenomena, we recognize them as interconnected 431 

dimensions of urban life that influence each other. The framework identifies four distinct 432 

approaches for combining different analytical methods: GIScience-Behavioral Ecology (GIS-433 

BE), Human Mobility-Behavioral Ecology (HM-BE), GIScience-Human Mobility (GIS-HM), and 434 
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a combined GIScience-Human Mobility-Behavioral Ecology approach. Each integration 435 

pathway within the MIC framework opens new possibilities for examining urban accessibility.  436 

The GIS-BE approach combines spatial analysis with behavioural insights to 437 

understand how environmental conditions, the built environment, and individual perceptions 438 

influence movement patterns. This integration proves particularly useful for scenarios where 439 

understanding both spatial distribution and human behavior is crucial. GIS analysis reveals 440 

critical spatial patterns in urban resources distribution and accessibility barriers (Jin et al., 441 

2023; Leboeuf et al., 2023), complemented by behavioural movement analysis that quantifies 442 

how people navigate through based on environmental factors and resource availability such 443 

as greenspace crowdedness (Mears et al., 2021; Vallejo et al., 2015; Xu et al., 2024). Together, 444 

these approaches provide a robust framework for evaluating both the spatial and behavioural 445 

dimensions of urban accessibility.  446 

The HM-BE approach integrates individual movement patterns with behavioural 447 

principles to understand the motivations behind urban mobility. This combination provides 448 

unique insights that neither field can achieve alone (Demšar et al., 2021). Rather than treating 449 

movement patterns as purely spatial phenomena, this integration acknowledges that human 450 

mobility emerges from complex decision-making processes shaped by both individual 451 

preferences and environmental contexts. Empirical research demonstrates how behavioural 452 

frameworks enhance our understanding of human mobility patterns. Ladle et al. (2018) used 453 

smartphone GPS data combined with behavioural resource selection analysis to quantify how 454 

university students select greenspaces. Their integration revealed that students' selection of 455 

greenspaces and trails varied significantly by season and day of week, with stronger selection 456 

during summer months and weekends. Oliver et al. (2020) demonstrated how mobile phone 457 
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data could track behavioural responses to public health measures, showing how people 458 

adjusted their mobility patterns in response to interventions during the COVID-19 pandemic. 459 

These studies show how integrating mobility data with behavioural analysis helps explain 460 

both the temporal dynamics and underlying motivations driving urban movement. 461 

The GIS-HM approach merges spatial analysis with empirical movement data, creating 462 

a bridge between static data approaches and dynamic human behaviour. This integration 463 

reveals how people actually navigate and utilize urban spaces, expanding upon traditional 464 

accessibility measure. The incorporation of GPS-derived mobility data (or synthetically 465 

modelled movement data) allows for a more realistic representation of travel paths and 466 

individual behavior patterns (Mears et al., 2021). This creates the possibility to distinguish 467 

between potential accessibility—the theoretical opportunity to access a place based on its 468 

location and population demand—and realised accessibility, which accounts for actual 469 

mobility patterns, transport modes, and temporal dynamics (Filazzola et al., 2022; Lin et al., 470 

2024; Tao et al., 2018). In terms of greenspace accessibility, mobility data and spatial analysis 471 

can be used to assess how accessibility fluctuates depending on factors such as the time of 472 

the day or the number of greenspace access points. It can also reveal how disparities in 473 

accessibility differ between different socioeconomic groups, to uncover barriers to safe and 474 

consistent greenspace access. The integration of human mobility approaches with traditional 475 

spatial analysis provides a more realistic lens for understanding how cities are experienced 476 

and accessed by different communities.  477 

The GIS-HM-BE approach represents the most comprehensive integration within the 478 

MIC framework, combining spatial analytics from GIScience, movement pattern analysis from 479 

human mobility studies, and decision-making frameworks from behavioural ecology. For 480 
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example, when analysing greenspace accessibility, the GIScience component provides spatial 481 

distribution and network analysis, human mobility models or data can reveal actual usage 482 

patterns and temporal tracking, while behavioural ecology frameworks help explain and 483 

quantify the underlying motivations for these patterns. The model can capture complex 484 

interactions between spatial contexts (e.g., demographics, socioeconomic status, 485 

neighbourhood segregation, transportation networks) and behavioural factors (e.g., 486 

individual preferences, social dynamics, temporal constraints).  487 

While the GIS-HM-BE approach provides the most complete analysis of urban 488 

movement patterns, its implementation requires substantial data resources and processing 489 

capacity. Therefore, researchers should carefully consider whether their specific research 490 

questions necessitate this full integration or if a simpler MIC combination would suffice. Like 491 

other MIC approaches, the GIS-HM-BE approach serves as a complementary tool to existing 492 

urban analysis methods. One promising application is in urban digital twins, where the 493 

model's ability to simulate realistic human behavior patterns can help evaluate proposed 494 

urban interventions before implementation (Deng et al., 2021). 495 

The selection of appropriate models and methods for analysing urban accessibility 496 

depends heavily on both data availability and specific research objectives. While 497 

comprehensive analytical frameworks offer powerful opportunities, their application is often 498 

constrained by real-world data limitations. For example, studies in regions with limited digital 499 

infrastructure may need to rely primarily on GIS approaches, as data for mobility tracking or 500 

behavioural analysis may be unavailable. Similarly, research questions themselves often 501 

dictate methodology choice—investigating spatial equity patterns might primarily require GIS 502 

techniques, while understanding temporal usage patterns would necessitate mobility data 503 
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(Figure 3). When combining these approaches, the balance between the methods needs to 504 

be carefully calibrated based on both the specific research objectives and practical constraints 505 

of data availability, while ensuring that the selected combination provides meaningful insights 506 

without unnecessary analytical complexity. 507 

 508 

Conclusion 509 

The Multi-Context Inclusive City framework presented in this review marks a collaborative 510 

approach in how we conceptualize and analyse urban accessibility, particularly concerning 511 

greenspace. While traditional approach to the x-minute city have focused on spatial proximity, 512 

this multidisciplinary approach attempts to bridge the divide between GIScience, human 513 

mobility analysis, and behavioural ecology, opening new pathways for understanding the 514 

complex relationship between urban residents and their environment. The framework’s value 515 

extends beyond theory by providing practical tools for addressing persistent spatial 516 

inequalities in urban planning.  517 

 Whilst the comprehensive MIC framework proposed here needs to be tested 518 

empirically as a unified approach, evidence already exists in support of individual components 519 

and specific integrations within the framework. The GIS-BE component is well-represented in 520 

studies by Comber et al. (2008) and Van Herzele & Wiedemann (2003), who combined spatial 521 

analysis with behavioural factors to understand how different demographic groups perceive 522 

and access urban greenspaces. The HM-BE component has been demonstrated by Ladle et al. 523 

(2018), who analysed human mobility data alongside behavioural decision-making processes 524 

to reveal patterns in greenspace selection and movement responses. For the GIS-HM 525 

component, Filazzola et al. (2022) and Lin et al. (2024) distinguished between potential and 526 
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realised accessibility by incorporating empirical movement data with spatial analysis. While 527 

the full three-way GIS-HM-BE component of this framework is novel and has yet-to-be fully 528 

implemented, Mears et al. (2021) have made important contributions in this direction by 529 

combining GPS human mobility data with GIS analysis and behavioural factors influencing 530 

greenspace selection. These existing studies provide a strong foundation for the value of our 531 

proposed MIC framework, while highlighting the need for further research fully implementing 532 

the comprehensive integration.  533 

 Several key research directions emerge from this integrated approach. First, there is a 534 

need to develop more sophisticated methods for incorporating subjective experiences and 535 

perceptions into quantitative accessibility measures. While current approaches can map 536 

physical access to greenspace, they often fail to capture the qualitative factors that make 537 

greenspaces truly accessible to diverse communities. The behavioural ecology component of 538 

the MIC framework offers promising avenues for addressing this gap, particularly through the 539 

adaptation of movement ecology to urban contexts.  540 

 A critical area for future development lies in the framework's application to emerging 541 

urban challenges in greenspace access, particularly in understanding how different 542 

socioeconomic groups access key ecosystem services. The MIC approach could help planners 543 

understand how communities adapt their movement patterns in response to environmental 544 

stressors such as urban heat islands, extreme weather events, and air pollution. By integrating 545 

spatial analysis with behavioural and mobility data, planners can identify barriers that prevent 546 

certain communities from accessing these vital services and develop targeted interventions. 547 

For instance, the framework could reveal how low-income neighborhoods might alter their 548 

greenspace usage patterns during heatwaves, or how the distribution of tree canopy coverage 549 
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affects walking routes in different communities. These insights would inform more equitable 550 

and resilient urban design strategies that ensure essential ecosystem services are accessible 551 

to all residents, regardless of their socioeconomic status (Masson et al., 2020).  552 

 The availability of big data and the rise in artificial intelligence presents both 553 

opportunities and challenges for implementing the MIC framework. While machine learning 554 

algorithms can process vast amounts of mobility data to identify movement patterns and 555 

predict behavioural responses to urban changes, these tools must be carefully calibrated to 556 

avoid perpetuating existing biases. For instance, GPS data from smartphones might 557 

underrepresent elderly populations or low-income communities who have limited access to 558 

technology, potentially skewing any analyses (Kang et al., 2020). AI-driven approaches could 559 

help integrate diverse data types—from social media check-ins to environmental sensors—560 

but questions remain about data privacy, ownership, and the ethical implications of tracking 561 

urban movement patterns (Shanley et al., 2024). Future research should focus on developing 562 

frameworks for data governance and ethical AI implementation while ensuring that 563 

technological advances in mobility analysis serve to reduce, rather than exacerbate, existing 564 

urban inequalities.  565 

 The success of the MIC framework will depend largely on its ability to bridge the gap 566 

between theoretical understanding and practical implementation. This requires developing 567 

user-friendly tools and guidelines that enable planners, policymakers, and researchers to 568 

apply these integrated approaches. For example, the framework's flexible structure allows 569 

cities to leverage their existing data infrastructure while systematically incorporating new 570 

data streams and analytical capabilities. Comparative case studies will demonstrate the MIC 571 

framework's enhanced capacity to capture complex accessibility patterns and inform 572 
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evidence-based planning decisions, particularly in optimizing greenspace distribution and 573 

identifying barriers to access. These applications will further refine the framework while 574 

expanding its utility across different urban planning challenges. 575 

 As urban populations continue to grow, the challenge of providing equitable access to 576 

urban greenspace becomes increasingly critical for public health and environmental justice. 577 

The multi-dimensional perspective offered by the MIC framework contributes to this goal by 578 

revealing the complex interactions between spatial distribution, movement patterns, and 579 

human behavior that shape urban accessibility. Through its integrated approach, the 580 

framework provides essential tools for evidence-based planning decisions that can address 581 

historically overlooked barriers to greenspace access. By combining GIScience capabilities, 582 

human mobility insights, and behavioural ecology principles, this approach enables planners 583 

and policymakers to develop targeted interventions that not only optimize the spatial 584 

distribution of greenspace but also account for how different communities perceive, access, 585 

and benefit from these vital urban resources. The MIC framework thus represents a significant 586 

step forward in creating more accessible, sustainable, and equitable urban environments for 587 

all residents.  588 
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