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APPENDIX

For the M step of the EM algorithm given in Section 2.1, we need to maximize Q16, 0%), v
LAY, Z, 8) with Z; replaced by wy;. For concise notation we will use p; for P, B, x), A
¢+ dx;, u; for u+ ¢+ dx;=p+ A, and omit the ranges for ¥, 2%, Recall th:
be 0, then set p; = w; = 0, and if Z; is known to be I, then set p, = Wi = 1. Th T
is

809, 8)
Jda

99 4, 6y = 230w — p,
66 (0’ 0 ) - EE(WU p,)x,,

= EE(W;’, . pi):

a0, 6”)
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@%0—") = 22(wp(Yy — il/od,

9Q(8, 6*)
ad

30, 8")
do h

The Hessian H(0) of Q(0, 0") is block-diagonal with the (e, ) part similar to that for standard
logistic regression: The (0, 6;) elements of H(8) are =X/, (dy, 0;; 8), where hyle, a; 0) = =(1. = p)py,
hi(e, B, 0) = —(1 = p)pix,, and hy (8, B; 0) = —(1 — p)pix?. The estimates (@™, g:*) are
unique (when they exist) and can be found easily by Newton-Raphson iteration of (4"*', gy =
(a", B") = Haxnla", B7)'VOL(6", 07), where (&, 8°) are used as starting values and (e, ) is
the 2 X 2 part of H(#) relating to (e, 8), and VQ; is defined analogously.

The estimates ("', ¢"*', d**!, ¢**') are explicitly found by setting VQ(4, 6°) = 0; e.g.,

A= 231 - wHYE/E3(1 — wh),

= Z2[(L = wi(Yy; = p) + wi(Y; — up)l/a?,

= Z2[wi(Yy — u)lxi/o?,

23[-0% + (1 = wi)(¥y — u)? + wil¥, — p))/o™

R 1 1 N
¢t = N Z2(1 - WZ)(KJ . M"H)z + W:’j(YU - I-¢7+])2]-

Following Louis (1982), the sample information matrix I(Y) (see §2.2) may be computed as
I(Y) = —H(6) — K(9), where 8 is the ML estimate and

K(0) = E[VLAY, Z, 6) - (VL(Y, Z, 8))" | Y, 6].

The elements of H(f) relating to («, 8) were given above. The remaining nonzero elements are
H,;,; = —N/&z, H;,g B Hgg = —EXW,_-,-/(}Z, Hﬁf/ = Hg-,) = —EEW,-,-X,'/&z, H,},} = —Zzwijx:g/&z’ and H‘;'; -
—2N/a?, where Wy is wi; evaluated at §” = 4. ol !

With &, = & + A, as above, the (0, 8,) elements of K(f) are Z2(1 — Wi )Wy @i (O Oy Wheﬁe
ay@, & = 1, ay@ B) = xi, ay(B, B) = x, ay(i, & = —AJ3 ayli, B) = —AXUEs
au(l&» I:’:) = af.{!&l‘l ff,;{{?. (t] =¥y - .f:‘—r)/(&:v ay (('! 16) - (}’i; - ;‘:)-XJ,/"}?- aj (f k) = _'ﬁ:{ Yya Fq/dﬂ,
ay@, & = ¥y = V), ayd, & = (Y, — ax/a® a)(d, ) = (¥y — ai/d® a(d B) =
“AYy = jx/6 ayd & = (Y — )xi/a', ayd, d) = (Y, — jux/e’, @ "‘e)) N
[(Yu . [jli)z . (Yl'j - 11)2]/&3> ay(a, B) = aij(f}, @)Xy, ay(e, i) = _au(&« “)A‘!%*' (fa,r{“'
ay(6, XYy — 4)/6% ay(5, d) = ay(a, &)x,, and ay (s, 6) = (Y, — ) — (Y, — iF /6"
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SUMMARY

pew index is described that is especially appropriate for measuring the aggregation of entomological
4 in the form of counts per sample unit and that can make use of spatial information when it is
gilable. Calculation of the index is based on a comparison of the effort required of individuals in a

i Introduction

animals, unlike plants, move. The spatial information usually collected by animal

'logjsts is therefore less precise than the maps of individuals analysed by plant ecologists,
flich have inspired the development of powerful methodology (Besag, 1978; Ripley, 198 1

ggle, 1983).
Entomological data usually consist of a count, x;, made in each of #n sample units, / = I,
., 1. The spatial coordinate of each individual is rarely recorded; if the sampling device
fitrap then sampling proceeds over time and the location of each individual is unknown
flor to capture. Furthermore, the spatial location of each sample unit may not be recorded
teported. For this reason, animal aggregation is often quantified by the relation between
fiple summary statistics such as the sample mean, m = ¥i xi/n, and the sample variance,
=3, (x; — m)’/(n— 1), or statistics derived from m and s2, such as the moment estimator
& the shape parameter of the negative binomial distribution.
dludies employing variance-mean relationships (Perry, 1981, 1987a), parameters such
it (Taylor, Woiwod, and Perry, 1979; Perry and Taylor, 1986; Clark and Perry, 1989),
Ihresence-absence data (Perry, 1987b) can provide valid, albeit limited information about
imal distributions, even if the spatial locations of sample units are unrecorded. Taylor et
(_1983) give examples from population-dynamic behaviour; Perry and Taylor (1988) for
flistical studies; Woiwod and Perry (1990) from sampling invertebrates. However, draw-
L ks of such studies are their inability to use any spatial information when it is available,
Mlthe lack of any direct relationship between the components of the index and the spatial
faviour of the individuals concerned. Southwood (1984), Taylor (1986), Perry (1988a),
¥ Cormack (1988) have commented on the need for measures and models of insect
tteation to incorporate, where possible, information concerning the movement of
flViduals within real spatial frames.

Or single samples, ecologists have traditionally assessed spatial pattern by testing the
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'[:lllH hypothesis that individuals are distributed randomly over an area, their
following a Poisson distribution. The most extensively used measur¢ of aggregate WS¢
probably the Poisson index of dispersion, s?/m, for which the test slatis%ia tion g
(n — 1)s*/m, has an approximate x2-y distribution under the null hypothesis aﬁ’ i
vides quite a powerful test of randomness (Perry and Mead, 1979). > 41 pro.
The purpose of this paper is to give details of a new index of aggregation (Perry, |g

that seeks to overcome these problems, and to assess the power of tests of rant‘io %
based on it. The index is capable of substantial development, but to justify this it mul:tm
be shown that it provides a more powerful test of randomness, for a 'rangc of se ﬁm
alternative hypotheses, than standard methods. The index of dispersion does not p: Sl'l-}‘i'e..
the only useful standard test, nor is the composite Poisson o
by Perry and Mead (1979) the only useful alternative, but they provide a useful benchmgyy
against which to assess the new index, and further comparisons are beyond the scomm
this paper. s

2. A New Index

Sipce almost all samples of animals display aggregation (52
(s* < m), the latter condition is ignored, although the index could be modified easily 10 g
count for it. The basis for the index is to measure the aggregation of a sample by comparing
the net effort required of individuals in transferring successively from unit to unit to achiews

> m) rather than regulanty

complete crowding, with that required to conform to «randomness”, here defined by the

condf.tion ¢ < m. For example, consider a sample of Myzus persicae, collected by
Harrington (1987) in n = 15 units, with counts 3, 3, 3,4, 5, 6,7.8,8,9, 10, 10, 10, 10, 15,
and foy which m = 7.40, s* = 11.83. If there were no spatial information available [antll
assuming it took the same amount of effort for an individual to transfer from its own it
to any of the others) complete crowding could be achieved with minimal effort if all the
individuals except those in the unit with the largest count, Xmaxs transferred to that unit—
a t'ota! of (3 Xi — Xmax) “moves”. So the “moves to crowding”, mic, are 111 — 15 = 96,in
this example. The condition s¢ < m could be achieved with minimal effort if, Su®
cessively, an individual from the unit with the largest current count, Cmax;
that with the current smallest, Cmin- Each such “move” reduces the sample variance by
2(Comax — Cmin — D)/ = 1) In this example, the condition is achieved after three individ
from the unit initially containing 15 transfer, successively, to each of the units initialy
containing 3, and, finally, an individual from that same unit (now containing 12 individuals
transfers to one of the .
transfers) with counts 4, 4, 4, 5, 5.6,7,8,8,9, 10, 10, 10, 10, 11; the sample mean 15,
course, unchanged, but the sample variance is nNOw 6.54. The “moves to randomness’ s L
are thus 4. The index of aggregation, S, is formed from some function of mtr and il
That considered in this paper, S = mir/(mtr + mic), gives a range between zero and unitt:
and allows a logit transformation of S: In[S/(1 — SH] = In(mtr) = In(mtc), which may be
sensible basis for further analyses. For this example, S = .040, indicating a mildly aggfﬁgawi
sample, relatively more close 10 randomness than complete crowding.

It is clear that the index
when the sample units are regularly spaced; true spatial movement then replaces trans
beween sample units, and this is done for a rectangular grid of units in Section 3.

| It is admittedly less than ideal to define the condition for randomness in terms
§2. since although the existence of a Poisson distribution implies that the expected "ah.les'
of m and s* are equal, the reverse is untrue. However, it is difficult to define an alterﬂa“
condition, directly in terms of expected frequencies of the Poisson distribution, that wo!
not make calculation of the index unacceptably cumbersome.

of m and

alternative hypothesis describg |

-y clearly be influenced by the number and size of the sample units. Consider

transferred 10§

four cells currently containing 4. This gives a sample (following:

S can be extended to incorporate available spatial ir:f'rn"ma‘j{_“l

A New Index of Aggregation

{h) (e)

1. Imaginary counts in sample units of varying size and number; for each situation the index
of aggregation is S = 1.

{(a)

1984) discusses proposed attributes of a “perfect coefficient” to measure the
domness. The index described here satisfies most of the requirements, but
n=2
2 ft, with eight individuals sampled in one unit and non¢ in the
fier (Fig. 1a) for which S = 1. If now mor¢ information were available, and the counts
i been made in four 2-foot-square units (Fig. 1b), or sixteen l-foot-squarc units
g lc), it is clear that.S = 1 becomes more exceptional and unlikely as the number of
its increases. Whether this is a disadvantage is arguable, but, in any casc, the issue
cerns pattern at several scales (see Section 8), which 1s beyond the scope of this paper.
The concept underlying the index has parallels with the “number of moves” diversity
jex of Fager (1972) (see also Lyons and Hutcheson, 1983).
‘The following two sections investigate tests of randomness using
1o spatial information available.

mple units, each 4 X

the index S when there

‘Tests of Randomness When No Spatial Information Is Available

o tests are proposed: The first is very quick to computc but approximate; the second is

ndomisation test.

for all combinations of five
lues of a Poisson parameter,
fisson random deviates was
ioup GOSCAF generator (NAG Ltd,

sample sizes, 1 = 10. 20, 50, 100, and 500, with eleven
9= 5.1.2,3,5,.% 10, 17.5, 25, 35, and 50, a sample of
simulated 10,000 times, using the Numerical Algorithms
1988). The value of S was calculated for each
fMulation and the values ordered; Sos, the 95th centile of the resulting frequency distri-
ilion, is tabulated for each combination of n and 0 in Table 1. It was found that Ses was
Mroximated closely for each combination of n and 0 by

212 6 204 898
Jon 2.28 + Vn Jo—.198 Jon— 729

given sample to be con-
m and to reject the null
Mothesis of randomness at the 5% level if the calculated value of S from the sample
Keeds Sys(n, m). The actual size of the test using this method was estimated by simulating
- dom deviates for combinations of values of n and 0, carrying out
€ test procedure, and recording the percentage of times out of 40,000 simulations the
il hypothesis was rejected. The results are shown in Table 2; the test procedure is not
Fmmended for values of 0 < 3 when n < 20, or for any values of § < 1. Two-thirds of
labulated values were within two standard errors of 5%, and the test scems adequate as

informal, rough guide to indicate nonrandomness. Results with values other than those

s enables a quick, approximate test of randomness for any
tted. The procedure is 10 replace 0 in the above formula by
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1l information, Sss. Value of Sss above;

1) below.

—
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5,
o
o
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=
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=
3
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o

of mtr/(mir + m

¢ value

corresponding

index of aggr

for the

95:h centile of 10,000 simulations

20

50

00516 .00440

00742 00611

0100
10/998

0146 0115

0194

0678 0421 0262
4/95

4/59

100

22/5,001
00164

15/2,457  18/3.487
00193

00234

13/1,752

6/309 7/478 9/785

00751

5/191
00981

00536 00425 .00380 00275
13/2,423 16/3,769 19/4,994 24/8,717 29/12,408 34/17,615 41/25,063

11/1,465

0245 0156
6/245 8/512 10/1,019

500
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Table 2
purcentage of simulations for which the quick test of randomness, with no spatial information,
indicated rejection of the null hypothesis when true

1]

1.5 10 17.5 25
59 4.95 5.08 4.99
22 4,77 4.29 470
15 5.03 5.10 5.10
06 5.15 5.32 4.87
84 5.01 495 4.89

10 5
20 5
% 424 504 494 5
0 545 476 490 5
bs0 538 569 4.36 4

hlated values of n and f appeared similar. For the data given in the previous section,
alculated value of S was .040 and Sos(13, 7.4) was 0436, so the quick test would (just)
i reject the null hypothesis of randomness at the 5% level. Interestingly, the index of
Lersion test statistic for these data is | = 22.4. corresponding 10 a probability level of
bt 7.5% under the associated chi-squared fest.

i\ less quick, but potentially more accurate method, and one that gives an estimated
shability under the null hypothesis, is provided by a randomisation test (see, €. Besag
i Diggle, 1977). In this, each of the total number of individuals, ¥; X in the sample is
Wlocated randomly to one of the n sample units, and the value of S for this randomised
nple, say Srands 18 calculated and stored. The procedure is repeated r times and the
portion of the r occasions for which Sena = S gives a probability of the actual value of
under the null hypothesis of randomness. For the data in the previous section, out of
1000 randomised samples, in 571 of them Stna = 040, the actual value of S, giving a
ihability level of P = .0571.

0f the two tests, the former is recommended solely for use in the field, where only a
ind calculator may be available. For general use, where access 10 high-speed computers is
filable, the latter test is accurate, acceptably fast, and easy to program; the next section
fiestigates its power.

Power of Randomisation Test When No Spatial Information Is Available

Yie methodology for determining the power of the randomisation test based on S when

spatial information is available, and the class of alternatives to the null hypothesis of
domness, follows closely that used by Perry and Mead (1979), who investigated the
ver of the index of dispersion test. Briefly, the alternative consisted of an infinite mosaic
\tontiguous squares of unit side, each containing a Poisson distribution of individuals
h density either A (dense squares) or (sparse squares), the dense squares occurring

fidomly with probability . The squares were sampled with a circular quadrat of radius r

‘ 5), randomly “thrown” onto the mosaic, which therefore overlapped up 10 four
tarcs, The distribution of X, the count per quadrat, was therefore Poisson with parameter
(ndent on quadrat area (wr?), areas of overlap, and densities of overlapped squarcs. In
> Study, a random Poisson deviate (with the appropriate parameter) was simulated for
h quadrat “thrown” and the procedure repeated n times 10 give a sample, for which the
-“’}, denoted Su,, was calculated. This was repeated 10,000 times to yield a frequency
fbution of Su,. For the corresponding null hypothesis, 10,000 samples of size 1 Were
"{n l'rpm a Poisson distribution with parameter [As + (1 — $)plar’, to yield a frequency
hf;hul.so_n of the index, denoted Sy, With 95th centile denoted Sy (95%). The power for

1 of size 5% was then obtained by finding the percentage of values Su, = S (95%).

results, for various combinations of values of \, u, 8, and 1, given in Tables 3 and 4,
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j ower 1@)6) cent) of the inde y Ly Mati,
) f 29 ()fagg) egaZIOIl LS test in lhe apsence ()fspallal ”fﬁ”‘
- u’“on

Mu

2

n =20,
P

s=.5, )‘;‘N=60 B

14.33
23.86
36.70
50.95
63.75
74.97
83.01

32.40
60.02
79.54
92.09
97.05
98.66
99.59

61.10
88.93
98.15
99.62
99.85
99.96
99.96

98.87
99.88
99.98
100.00
100.00
100.00

n =20, chessboard pattern (se; Perry and Mead, 1979), A+ u = 60
] =

15
.20
25

r

11.80
16.64
23.82

25.14
41.83
57.90

—

48.45
73.45
83.13

76.80
93.91
97.93

n =40,

H A5

s=.5 A+u=60

20.59
37.03
57.25

5243
83.58
97.03

T

99.09
99.98
100.00

87.07
99.32
99.96

Table

4

P()\VE/ (g7€IC€}’l ndex [[g Iega”()” ! n e apsen al in mation
[) ()_/‘thel 1 X 0_/ g 5 S, est [/’l cenece OfSpall / f()]

n=20, s=.5 r=

25, )\/p, =8

- 7.5

Power

1007

15
16.76

(ST

30

3673

45
58.95

n=20, s=.5, r=

.20, Mu=3

10

20

Power 16.29

36.76

30

ST

55.97

_40
74.02

n=20, r=.2, Nu=3

s >\+IJ=60

2

3 4

Power 69.71

69.72

67.05

s
5

58.16

6
47.28

3
2l

-
34.40

—

n=20, s=.5 MNu=3,

A+ p)2=1.2s7

S
34.25

45

Power R 39_. 7_0

35
4741

it
41.14

3

25

4954 5338

53.38

n=20, s=.5 MNu=

2,

(A + )2 = 1.875¢2

5

Power 25.10

2535

.45 4

2811

¥

35

33.50

3
34.18

3720

B f their Table 2 should have been
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the results for identical combinations for the index of
and Mead (1979) in their Tables 1-4. (Note that in Perry
= 2. n = 40 was 21.59, not 28.30 as given; also,
labelled N/ = 3, not A/ = 2.) In almost all cases
1 is more powerful than that based on the index
in one case. It behaves much as the

2 e directly compared with
L sion test reported by Perry
i\cad’s Table 1, the power for Au

st based on the index of aggregatior
lipersion, usually by at least 2% and by over 10%
b of dispersion does as regards variation in power with A, g, 7 and s, and so conforms
with the conclusions for that test drawn by Perry and Mead (1979). We might
any available spatial information were incorporated in the index of aggrega-
lead to a further increase in power; this is investigated in the next two

.1.'I izl
et that if
S then this might
"gns.

¢ Index of Aggregation with Spatial Information

Th
mple units with j=1,..., 4 rows and k =

fsider a rectangular grid of equally spaced sa
.., bcolumns (so the sample size is n = ab), with counts X. For example, the previous
s persicae data of Harrington (1987) were actually collected at 10-metre intervals on
4= 3, b=15grid marked out along the side of a cabbage field, as shown in Table 5a.

e is little evidence of extreme clustering, although the larger counts scem {0 occupy

it near one of the “diagonals” of the grid.
One obvious way to incorporate such info
wider a single “move” to comprise an individual
fghbouring unit, along a Yow of column but not diagonally;

fthen synonymous.
Now, the minimal movemen
gibility that any unit may act a

rmation into the index of aggregation, S, is to
moving from its current unit to any
“effort” and “movement”

t for complete crowding must be calculated allowing the
s “host” for the individuals from other units, not just

Table 5

a. Actual counts of Myzus persicae on an equally spaced 5 X 3 grid
k

10 15

3 10 10
g the algorithm to achieve

b. Final configuration after six moves, usin

§ < m (see text)
k

5

10
8
4

_4___
9

13
8

tion of counts identical to those in (a) but with

9
¢. Artificial initial configura

more obvious clustering
k

e ——————

J 1 2 3 4 5
1 5 6 7 10
2 3 10 9

8 10 15

3
3 4 3




unit then complete crowding is achieved with a net movement of %+ ¥ X

|k = k'|) = c(j, k) say, so the value of mic. the moves to crowding, is the milfi l
¢(Jj, k) over all values of j and k. In our example, although the maximum value O?um-of-
curs at j = 2, k = 4, for which ¢(2, 4) = 213, the minimum of ¢(J, k) is 206 fgﬁjmc‘-'
k = 3. So mie = 206. -

Whereas the minimal movement for complete crowding can be found easily by enym
ation. the minimal movement required for the condition for “randomness” (s* < me!-.”
found most efficiently using an algorithmic approach. We believe that, for all but pat'h:f
logical cases, the following algorithm leads to the condition in the fewest possible moy |
and this appears to have been the case in all the tests carried out: (1) Calculate the currept
differences between each possible pair of neighbouring units, choose that pair with the
largest difference, and move one individual from the unit of the pair (denoted the “donor®
unit) with more individuals to the unit of the pair (denoted the “receiver” unit) with fewer:
(2) if more than one donor-receiver pair exist with the same difference choose that whgg,;
receiver currently has the fewest individuals; (3) if there is still a choice among several
possible donor-receiver pairs choose that whose receiver has the neighbour with the smallest
count; (4) if this fails to select 2 unique pair choose that whose receiver has the set of
neighbours with the smallest average count; (5) if this still fails to select a unique pair,
make a random choice among those available; (6) after a move has been made return to
(1). In practice, there is rarely a need to invoke the full algorithm, and even when step (5)
has been necessary the calculated value of mir has never differed. For example, it may be
verified that for the data in Table 5a, mur = 6. and the random choice necessary on
move 3 has not affected mir, or indeed the “final configuration” shown after move 6 in
Table 5b. when s? has been reduced to 7.0. _

The value of S with spatial information is calculated, as previously, from
mir/(mtr + mte) = 6/212 = 10283, It should be emphasised that the values of mir, mit
and S found here are all different from, and cannot be compared 1o, those values found
for the index when no spatial information was available, in Section 2. .

A randomisation test, carried out in an exactly analogous way to the test described in
Section 3 (the total individuals are randomised spatially over the ab sample units), 15
available for the index of aggregation with spatial information. For the data in Table 5
out of 10,000 randomised samples, 342 gave values of Syana = .0283, the actual value o!_'S.
yielding a probability of 10342 under the null hypothesis. By utilizing the spatial information
the power of the index of aggregation has been increased still further over the index 0
dispersion, in this case enabling the null hypothesis to be rejected at the 5% level. (A similaf
randomisation test applied to the index of dispersion gave a probability of .0739 under the
null hypothesis.)

For a sample with identical counts, but more obvious clustering, we might expect the
power of the test to increase further. For example, the counts in Table 5¢ differ from t
in Table 5a only in position, the largest having been artificially displaced to the T igh_l- qu
these, mtr = 9, mtc = 194, § = 0443, and the probability under the null hypothesis 1
reduced 1o .003. It should again be emphasised however, that although s> < m in the fin?
configuration, this does not imply that the counts in the final configuration are distribu® |
at random. The next section assesses how the power is affected by incorporating spa
information into the index.

24.50 (25.52)
23.82 (24.22)
36.91 (37.58)
35.74 (36.92)
55.84 (58.08)
55.96 (56.53)
77.69 (78.30)
79.20 (79.21)
36.55 (36.94)
37.21 (37.41)
55.07 (55.89)
53.74 (54.87)
75.51 (77.15)
73.63 (74.83)
89.63 (90.12)
89.82 (90.21)

22.09 (22.88)
24.57 (25.17)
36.10 (36.49)
36.88 (37.24)
5779 (59.54)
58.45 (59.98)
82.85 (84.21)
81.67 (83.08)
35.68 (36.85)
35.64 (36.43)
55.90 (56.68)
56.10 (56.25)
79.09 (80.42)
77.34 (78.85)
96.25 (96.84)
95.65 (95.95)
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that cell with the maximum value of xj. If all individuals not in unit (j, k) Move 1o 4
g o tha

26.24 (26.40)
23.94 (24.87)
38.19 (38.28)
36.61 (37.62)
57.57 (57.90)
57.15 (57.27)
82.00 (81.85)
31.28 (81.93)
37.09 (37.88)
36.06 (36.49)
56.86 (57.24)
5572 (56.77)
78.94 (79.45)
77.40 (78.93)
95.17 (95.22)
95.65 (95.99)

23.28 (23.86)
25.21(25.43)
37.45 (37.09)
37.76 (37.66)
57.90 (58.32)
56.56 (57.36)
77.91 (77.83)
78.36 (78.20)
36.07 (36.62)
37.29 (36.87)
57.08 (57.21)
55.78 (55.60)
74.53 (74.72)
74.92 (74.80)
89.71 (89.64)
91.16 (90.97)

(first entry) and without (in parentheses) spatial information

Table 6
23.88 (23.41)
23.22 (22.59)
37.12 (36.17)
38.48 (37.38)
55.66 (55.77)
57.11 (56.08)
80.52 (80.13)
81.51 (80.25)
34.75 (33.64)
36.10 (35.08)
55.11 (53.56)
58.00 (56.75)
75.76 (75.53)
76.81 (76.38)
95.67 (95.33)
95.01 (94.55)

24.33 (22.31)
23.36 (20.42)
37.32 (34.70)
36.67 (34.08)
54.40 (51.66)
55.41 (51.37)
79.29 (76.76)
80.50 (77.59)
34.28 (31.93)
36.98 (34.18)
55.74 (52.19)
57.63 (53.98)
72.20 (70.12)
75.42 (72.24)
93.06 (91.85)
94.45 (92.98)

19.94 (17.68)
22.46 (18.95)
33.00 (29.15)
37.67 (33.49)
42.98 (38.18)
49.94 (44.09)
67.70 (63.47)
76.73 (10.87)
26.60 (23.42)
31.12 (26.19)
46.23 (40.75)
53.83 (46.84)
56.13 (52.27)
62.35 (57.16)
81.99 (79.85)
87.51 (83.74)

Power (percent) of the index of aggregation, S, test with

10.47 ( 9.30)
15.04 (12.26)
19.40 (16.44)
31.24 (25.27)
19.51 (17.03)
32.27 (27.97)
40.49 (36.16)
61.74 (55.38)
12.25 (10.48)
19.33 (15.47)
25.29 (21.58)
43.31(36.12)
25.97 (22.51)
38.69 (33.45)
4869 (44.53)
70.45 (67.10)

5%x4
10x%x2
8§ X5
20 X 2
S5x 4
10x2
8X5
20% 2
5x4
10x%x2
5x 4
10%x2

6. Power of Randomisation Test When Spatial Information Is Available

axb
axb
axXb
8§X5
20 % 2
axb
g8 x5
20X 2

B

. . . d
To assess the power of the index when spatial information is available, the basiC methoﬂd
ology of Section 4 was used, except that for each sample, instead of randomy
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independently throwing n quadrats, a complete rectangular grid of n = ab quadrats.

and b columns), whose centres were equally spaced a distance d apart, was thrown o L|
n

onto the mosaic. For integral values of d each quadrat will overlap different squg

with identical areas of overlap, and there will be lack of independence between oye Ia
squares within the grid unless d > 1 + 2r. Hence comparability is possible hctw;en

results in Section 4 and these only if d is both relatively large and noninteger, But g

in which spatial information is important—i.e., in which clustering is apparent—are

the class of alternatives considered here, generated by values of d substantially smalleg

unity, because the scale of pattern is then larger than the interquadrat distance. Therefy
for a fair comparison, the power of the test was calculated from 10,000 samples with s’,,a
information under null and alternative hypotheses, and then, for each sample, the counts
were retained but the spatial information was discarded, and the power rccalculatcd,,'].'ﬁik?
was done for various combinations of d, X, g, 8, 1, @, and b, and the results are given m

Tables 6 and 7.

For values of d < 1, as expected, the incorporation of spatial information increased|

% and sometimes by up to 6%. Further, as d increased, so that the scalet
ual to or less than the interquadrat distance, the gain in power became!
and sometimes was even slightly negative. Sha '
d < .25, power being larger for longer,
to more squares than the squarer-shaped
test, power increased with d for d < 1,
that all quadrats within the grid overlapped squares of the same P
yielding small values of S. As expected,
test for d = 2.75 and those for correspon
but note also some large differences in power between integral d =
d = 2.75. Insofar as the comments above relate to the n
probably give a good guide also to the behaviour of the in

power, often by 4
of pattern was eq

negligible,

same sampling regime and class of alternatives.

To summarise, the test based on S with no spatial information generally prov
powerful test than the index of dispersion, itself quite power
alternatives considered. When spatial information was available,

Power (percent) of the index of aggregation, S, test with
spatial information

Table 7

the agreement between r
ding parameter values given in Table 3 was good,

(first entry) and without (in par

onspatial form of
dex of dispersion test under the

ful against t
and the scale of patierm

d

5

5

r=.2,

45,

p=15,

a=>3,

b=4

S

56.24 (52.39)
62.62 (58.51)
53.22 (49.43)
33.40 (31.43)
22.58 (21.06)

61.30 (60.74)
67.14 (65.92)
53.75 (53.19)
35.38 (33.64)
21.72 (21.10)

61.54 (61.22)
64.31 (65.55)
56.76 (57.09)
33.76 (34.60)
20.93 (21.03)

o
I
n

N
2

p=135,

a=>3,

b=4

~

hhwoo |||
i

W

65.82 (63.36)
53.86 (49.98)
46.81 (40.58)
40.32 (36.07)
32.37 (27.48)

67.45 (66.71)
56.57 (55.81)
49.74 (46.60)
43.45 (41.98)
36.09 (34.23)

69.16 (69.57)
56.22 (56.66)
50.30 (49.55)
42.07 (41.31)
35.90 (34.34)

pe of grid was important when
thinner grids, which were more likely to overlap
grids. For both spatial and nonspatial forms of
because for small d there was a greater chance
oisson parameter, A OF f,
esults for the nonspatial

3 and noninteger
S, they would

_'_________‘_._.--‘

64.18 (65-33)
68.26 (69.65)
57.94 (59.53)
33.95 (33.84)

21.09&;@),,#

67.61 (67.91)
54.63 (56.40)
18.94 (49.53)
42.46 (43.61)

While the index of aggregation was developed for irfsccl counts, 1t can
¥nisms, such as plants, especially if no map 1s available. Thompson

ided a more Solidago rigida in square metre quadrats in his Figure 4B2. The data are sparse: for
ided a mor .

he class of

entheses)
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arge relative to the interunit distance, there was a further increase in power for

i fest-

rther Examples |
£(1941) gave, in his Table 4, the number ot_' !’r)pm{'a japonica larvae i1.1_ each [fJ[ 11*151'01?l

:'.foot units selected at random from within coutlguous'plom mcasu?mg (_\. 1 X f

-'| 5.ft margins on each side. The methodology developed in _Sccmm i 1\ val:d ()ljhi ol

'1|;a spaced units; for other situations (€.g.. rectangular units) allcr_na.lwt‘, mu}md(.)‘-.lug);‘
developed. However, in this case the L_legrcc of unequal spacing of the u:nu::s 0

'lots is slight and has been ignored. Choosing rand('umly one of tl}c three ’CDI:IHES ron;1
i plot yields the data in Table 8. Clearly, counts in rows 1-4 [I“ab!e 8a) are muc ‘
ler than those in rows 5-8 (Table 8b), s0 the more mlcres}mg tests of ra;‘nd(‘)nn_xe‘ss arla,
L within the two sets of a=4rowsand b=38 columns. For l"abk? 8a thc; 421 1}1dw1(%ua S
m=13.2 and §? = 18.4. For the traditional index ql‘ d_lspcrsmn <_:h|»squaued.tes>i on
baorees of freedom, [ = 43.3 with P = .08; a randomisation test w_Eth 10,()0? samples
b P = .0696. For the index of aggregation, mir = 11, mic= 1.385,_ S= .0_084). Ei.'n(.i 11}(;
Homisation test with 10,000 samples gave P=.0336.(The nor}spz}tl_al version fosfgl;l;
fegiven a higher probability, of .0686.) For Table }_.(h 1}1(-: 747 :pdwtdL_lals huw‘: m e

i = 31.3; [ = 41.6 with P= .10, and the randomisation test for the ‘lmlcx_oi dlS})LI 510:‘1
e P = 0985. For the index of aggregation, mir = 16, mlc = 2.'|“) 1,8 = :()(??25. .mq th\c
domisation test gives P = .0199. (Again, the nonspuual_ version of S gives a h.xghur
Shability of .0670.) Both examples demonstrate data for wi);ch the hypothesis of ll'amdnm-{.
8 is re'iected at the 5% level by the index of aggregation, but not by the m_dE:x ’0

i wsion. Of course, a fuller analysis of Bliss’ data would account for pattern at different
i be useful for other
(1958) gave counts

256. only 80 individuals were counted, with m = 3125 and

=16, b = 16, n =

b= 3725, 1 = 304 (x3ss, P = .018), while a randomisation test with 10,000 samples gave

0316. For the index of aggregation, mir = 5. mic = 621, S = 00799, and the

fdomisation test gives P = .0229.

Table 8 _
Counts of Popillia japonica from Bliss (1941)

t the detection of nonrandomness is of little interest

™ . 1 - 2
Wause so few observed sets of animal data are random (T a_ylm, Woiwod, ‘}:\d lc_llle,
'18). It is more illuminating 1o estimate and describe the spatial pattern and, if possible,
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to model it. 8 sacite of avaresatic
m)m'andmtn :13;1; 12__\;]:1::4?51:1% qf' aggregation should be capable of demonstrag
P e 1201" t_uI;-hg_ﬂlsﬁllail;trolghl.m'ng lhg new index of aggregation, § Iyg.
interest will be the relationship im{:wt;cl:[1;3::51$'12:sﬁ31i1ng anld areaiy S?‘k&a
arive officie . . 2 o S power law ¥ LRATA
(Lj:':]l]:;;l:l?ﬁ]‘:.: 12;2:::[:[]; ng' ,L-:‘chemcs_ (Taylor et al., l‘)é%{‘%}. /{il}sol_“ia\[f]i{;::{su(srf)]g%mn‘
several spatial scales YBI;?-L.:FD:EZ"’&] the need for studies of populations 10)' and.".
devieloped by Mead (-1-9?4 8 ‘( 1) method, rediscovered by Greig-Smith P
de Beliir “;)73] e ];‘1‘1:!5 bafcn revitalised by the work of Gérard (1970) 395 | ‘an
review and ("he‘;:;c] -1:1{j (?Lb.bc.l {1}78‘~|979)' [See Chessel and Gautier H“)Sﬁ‘ll 'Pmi#
work is req uired u; dev drtv.(. (1978) for an application to presence-absence dat; i
Thioulouse (1987) ,-‘,.(_: b ‘:’p fhc index of aggregation to allow for several s)d:]]? :
for various ‘;pecicsf}l'l';s-l?h%c-(ljm.!l examples for cabbage-stem flea-beetles, and [r;"gm; 084
il diag{n;a] -mm-’eg :- ir L and crucial, area for development is the gcncr"llr'ry (L%
pan S e genc[‘--i;‘il r::fmu.] ually spaced _gl'lds_. which would be difficult algo;i:lsa hfn;n'.-- ;
s Tl 51 ba;ede 10:53 to allow locz.umns in full two- or three-coordinate s ‘"‘lleafl‘
The computation re qud ‘seems sufficient to justify such studies. PaceiLiie
in Section 7. inclu dinq 1318 Oé)son(-)t excessive; that required for the data in Table 8a reported
i 5 u\’/axII ke egsoft’ 1andom}sed samples, totalled less than 22 minu‘[esp (g’
dependent only 10 a minor Z?;fezvalid\:rlil(ttle flﬁl olrfltPEgs Vax FORTRAN 77, and is machi’ﬁg-
e.

ACKNOWLEDGEMENTS

3 G 5 3

RESUME

Un nouvel indice est décri i e ..

entomologiques se Dl‘éS:Y(l:{Elltn? lsl(])fss t1 Spfec-lalemem approprié pour mesurer I'agrégation de donnees
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a celui pour atteindre une distrib t_essane o mdw'f“h'x pour atteindre la concentration compléte
aléatoire basés sur cet indice se révglelzonlutso ta'len:jc‘m aléatoire, La puissance des tests de dispersion
spas@sment temee nlmaaiin Spaliialegelsindizl:)((i)lrl](;l;.lz”c des tests basés sur I'indice de dispersion,
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imation of von Bertalanffy Growth Curve Parameters from
. Recapture Data

Ian R. James

School of Mathematical and Physical Sciences, Murdoch University,
Murdoch 6150, Western Australia

SUMMARY

dnple method of constructing estimating functions for parameters in the von BertalanfTy growth
B E[v()]) = LI — exp(—K0)] is presented for tag-recapture data when the age of the animal is
jown. The estimating functions ar¢ unbiased under very general distributional assumptions
ided K does not vary between animals. Simulations of growth in lobsters and whelks: indicate
ite method performs well provided the initial capture times and recapture intervals vary over

Bonable ranges. Comparison is made with methods based on least squares, which have been shown
e generally inconsistent.

ntroduction

s von Bertalanffy growth curve is used extensively In fisheries and other areas 10 model
growth of an animal as a function of age from some origin fo. If y(t) represents the
Bith measurement (which we refer to as length for convenience) after time £, then for a
kile animal the model assumes

E[y(1)] = L[1 — exp(=K1)] (1)

{ positive parameters [, and K. With this parametcrisaiion L is referred to as the

ptotic or maximum length of the animal, while K regulates the expected percentage
i achieved after a particular age. There has been discussion in the
fature about whether such interpretations are biologically meaningful [see, for instance,
light (1968)].

'!_flhe available data consist of pairs (y(1), 1) and the parameters L and K are assumed to

lhe same for each animal, then the estimation problem may be approached by relatively

findard nonlinear regression methods, possibly using reparameterisation 10 improve
imputational and statistical properties (Kimura, 1980; Gallucci and Quinn, 1979;
lilkowsky, 1986). More realistically, one might assume that the parameters L and K

between animals according to some distribution, in which case onc has a

-dpm-coefﬁcients model and interest centres on the estimation of properties of the

bution; see, for instance, Sainsbury (1980) and Palmer, Phillips, and Smith (1991).
We are concerned in this paper with recapture data for which the age of the animal is
known, so that the available data consist of the lengths at each capture and the time

Rrements between measurements. For a single recapture, weé observe for each animal the

Wwords: Distribution-free estimation; Growth curves; Simulation; Tag-recapture data; Unbiased

estimating functions.
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