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25 Abstract
26

27 Cassava is a staple in the diet of millions of people in sub-Saharan Africa, as it can grow in 

28 poor soils with limited inputs and can withstand a wide range of environmental conditions, 

29 including drought. Previous studies have shown that the distribution of rural populations is an 

30 important predictor of cassava density in sub-Saharan Africa's landscape. Our aim is to 

31 explore relationships between the distribution of cassava from the cassava production 

32 disaggregation models (CassavaMap and MapSPAM) and rural population density, looking 

33 at potential differences between countries and regions. We analysed various properties of 

34 cassava cultivations collected from surveys at 69 locations in Côte d’Ivoire and 87 locations 

35 in Uganda conducted between February and March 2018. The relationships between the 

36 proportion of surveyed land under cassava cultivation and rural population and settlement 

37 data were examined using a set of generalized additive models within each country. 

38 Information on rural settlements was aggregated around the survey locations at 2, 5 and 10 

39 km circular buffers. The analysis of the original survey data showed no significant correlation 

40 between rural population and cassava production in both MapSPAM and CassavaMap. 

41 However, as we aggregate settlement buffers around the survey locations using 

42 CassavaMap, we find that at a large scale this model does capture large-scale variations in 

43 cassava production. Moreover, through our analyses, we discovered country-specific spatial 

44 trends linked to areas of higher cassava production. These analyses are useful for validating 

45 disaggregation models of cassava production. As the certainty that existing cassava 

46 production maps increases, analyses that rely on the disaggregation maps, such as models 

47 of disease spread, nutrient availability from cassava with respect to population in a region, 

48 etc. can be performed with increased confidence. These benefit social and natural scientists, 

49 policymakers and the population in general by ensuring that cassava production estimates 

50 are increasingly reliable.
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51 Introduction 

52 Manihot esculenta (Euphorbiaceae), commonly known as cassava, is a perennial 

53 vegetatively propagated tuber crop with a high calorific content. Cassava is endemic to 

54 Brazil but has become a staple in Africa following its introduction to the continent in the 16th 

55 century, where it is now grown both for subsistence and as a cash crop for direct sale and 

56 industrial applications [1]. Beyond South America and Africa, it is also widely cultivated in 

57 southeast Asia, where Thailand is the biggest producer followed by Indonesia [2]. Today, 

58 cassava is grown in more than 39 African and 56 other countries around the world [1] and 

59 has become the staple food crop of approximately 800 million people worldwide [3]. The 

60 total worldwide production of cassava was about 303 million metric tons in 2019 with 

61 Nigeria being the world’s largest cassava producer and Africa contributing to approximately 

62 63% of the global production [2]. The widespread cultivation of cassava can be attributed to 

63 the flexibility of planting season and harvest, its high drought tolerance, and its ability to 

64 grow even in poor soil conditions [3]. Additionally, while many other crops are projected to 

65 be negatively impacted by climate change in Africa, cassava is one of the few crops that is 

66 expected to benefit from it [4].

67 Despite the importance of cassava as a staple crop, there is a lack of verified information 

68 describing the spatial distribution and density of cassava cultivation. Improved 

69 representation of cassava cultivation spatially would enable more targeted surveillance and 

70 management planning for devastating cassava pests and pathogens, including cassava 

71 mosaic disease (CMD), cassava brown streak disease (CBSD), cassava bacterial blight 

72 (CBB), cassava mealybug and fungal pathogens causing root rot [5–9]. Each of these 

73 diseases can cause significant yield losses, with CMD and CBSD able to lead to between 

74 30-40% yield losses in Africa, and up to 70% yield loss [10]. It would also enhance the 

75 monitoring and prediction of pathogen spread and the planning of pest and disease control 

76 strategies such as the dissemination of clean seeds and deployment of improved varieties. 
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77 One challenge in accurately mapping the cultivation of cassava is results from the highly 

78 flexible planting and harvesting patterns of smallholder cassava growers. Small field sizes 

79 and frequent intercropping pose continued challenges in mapping cassava using satellite 

80 imagery. As cassava is both a subsistence and cash crop requiring relatively low inputs, it is 

81 often grown in rural areas. Previous studies (Carter & Jones, 1993; Herrera Campo et al., 

82 2011; Szyniszewska, 2020; Ugwu & Nweke, 1996) have shown that socioeconomic and 

83 demographic properties, including the density of rural population, are important predictors of 

84 cassava density in sub-Saharan Africa's landscape [11–14]. 

85 Consequently, one method that has been used to produce more precise information on the 

86 cassava spatial distribution is the use of disaggregation models, which take coarse 

87 indicators, such as yield information for individual provinces and rural population density 

88 maps, to predict the spatial distribution of crops at finer scales. Two such models, which we 

89 study in this paper, are the Spatial Production Allocation Model MapSPAM [15–17] and 

90 CassavaMap [14]. MapSPAM was first developed to derive estimates of 8 crops in Brazil at 

91 a resolution of 25-100 square kilometers [18], but has since been expended to include 42 

92 crop types at a 5 arcmin resolution [19]. The MapSPAM cassava distribution layer 

93 represents a disaggregation of the crop production statistics using various inputs, including 

94 irrigation masks, cropland and rural population distributions, and crop biophysical suitability 

95 indices. The disaggregation outputs from MapSPAM were produced simultaneously for 42 

96 crops including cassava, using an entropy-based data-fusion approach [15–17]. 

97 CassavaMap specifically illustrates cassava production density for the year 2014 on an 

98 approximately 1 km x 1 km spatial resolution [14]. This model disaggregates sub-national 

99 crop production statistics, operating on the primary assumption that the rural population is 

100 the strongest predictor of cassava cultivation distribution in Africa [14] as defined by the 

101 LandScan 2014 [20] population density layer [15]. 

102 In this study, we developed and carried out surveys in cassava-growing regions of Côte 

103 d’Ivoire and Uganda to 1) quantify the characteristics of cassava cultivation across distinct 
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104 cassava-growing regions, 2) to corroborate or discard the hypothesis that directly links rural 

105 population and cassava density, 3) to find out how the cassava density in the surveys 

106 correlates with two existing cassava cultivation density models, and 4) to investigate the 

107 driving influences in the observed mismatch between surveyed data and point predictions 

108 from CassavaMap.  For the survey data collection, we used the ArcGIS Collector app to aid 

109 the measurement of the extent of the survey locations grids [21] and for the data and 

110 statistical analyses, we used the R programming language [22] due to their ability to produce 

111 the desired analyses, ease of use and accessibility.

112 In both countries, the northern parts experience a hotter, semi-arid climate. In contrast, the 

113 southern regions have more humid, tropical climate, supporting dense vegetation and 

114 agriculture. As both countries represent a variety of agro-climatological zones they provide 

115 insight into the patterns of cassava cultivation in various climates.

116 Materials and Methods

117 Data Sources

118 Cassava density survey 

119 The cassava cultivation surveys obtained information from 69 locations in Côte d’Ivoire and 

120 96 locations in Uganda during a total of four weeks of fieldwork conducted in February and 

121 March 2018 (Fig 1). A predefined 100 x 100 m2 fishnet grid was set up in the ArcGIS 

122 Collector app to aid the measurement of the extent of the survey locations grids [21]. Survey 

123 locations were chosen at random at approximately 15-20 km intervals along major motorable 

124 roads in each country (Fig 1). 

125 Before accessing the sites, we sought permission from the farmers or village leaders to 

126 conduct the survey. The survey locations represented various levels of population density, 

127 including rural, suburban, and urban areas.
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128 Fig 1.  Illustration of the visited locations in Uganda and Côte d’Ivoire for the cassava density survey 

129 over the CassavaMap (left) and the SPAM2010v1 model (right). Sources: [14,17]

130

131 At each sampling location, the team surveyed an area of approximately 200 x 200 m2 area, 

132 consisting of four 100 m x 100 m predefined quadrants. The surveyors recorded the 

133 perimeter of all cassava fields within the selected study area, the size of small cassava 

134 patches and the number of individual plants grown outside  any main field patch. In the 

135 following, we use field to mean an area of cassava cultivation with reasonably uniform 

136 density within the study area. The team recorded attributes of the individual fields and 

137 patches, such as whether the cassava was intercropped, the cassava plants' age, and the 

138 density of each field (high, medium, and low density). The density of cassava cultivation was 

139 not defined on strict measurements, and rather the subjective experience of surveyors in 

140 assessing the planting practices. For intercropped fields, the other crops present in the fields 

141 were listed. The locations of inhabited buildings were recorded as point locations within each 

142 surveyed quadrant  and the approximate building size was recorded. The surveyors could 

143 turn on the tracking function which automatically marked the route of the survey team on the 

144 ArcGIS Collector screen to ensure the whole area was visited. In areas with access 

145 difficulties or safety concerns, for example, in certain suburban areas, only one or two 100 x 

146 100 m quadrants were selected for surveys for practical reasons.

147 The data collected in the survey were exported and saved as a collection of polygon and 

148 point locations [23]. The data were post-processed to calculate the proportion of the study 

149 area with cassava fields [24] . The area of the cassava fields was calculated from the 

150 perimeter of the fields and patches, and for individual plants, a 0.5 m radius was assumed 

151 around each plant.

152 The total area in cassava production at each survey location AC was calculated as 

153 AC =  
∑M

i = 1αi + ∑N
j = 1βj + ∑K

k = 1γk

δ #(1)



[7]

154 where  is the area of a cassava monoculture field and  is the total number of αi M

155 monoculture fields at the survey location;  is the area of a cassava intercropped field and  βj N

156 is the total number of intercropped fields at the survey location;  is the area of an individual γk

157 cassava plant and  is the total number of individual plants at the survey location.  is the K δ

158 total area of the survey location. A secondary measure of total cassava production was 

159 calculated to incorporate i) a lower density of cassava production in intercropped fields 

160 (calculated as a weight of 0.75) and ii) the qualitative assessment of cassava density within 

161 each field or patch. Specifically, weights  were assigned according to ωi,j

162 Table 1. All other fields with no specific density recording were given a weight of 1.

163 Table 1. Assignment of quantitative weights to the qualitative assessment of cassava 

164 density within fields and patches as defined by the surveyors.

Density Weight

Very High 1.75

High 1.5

Regular 0.75

Sparse 0.5

Very 

sparse

0.25

165

166 Thus, the weighted area of cassava production ACW was defined by,

167 ACW =  
∑M

i = 1ωiαi + 0.75 ⋅ ∑N
j = 1ωjβj + ∑K

k = 1γk

δ #(2)

168 Cassava production models

169 For both CassavaMap and MapSPAM, we extracted predicted cassava density, and 

170 additionally from CassavaMap, we extracted harvest area at the point locations of each 

171 survey location. We used the 2010 SPAM v1 cassava production and harvested area 

172 outputs, which are provided at approximately 10 km by 10 km spatial resolution. We 
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173 compared observed and predicted cassava production by calculating the Spearman rank 

174 correlation coefficients using the R package ggcorrplot [25] and by analysing the change in 

175 predicted cassava production at survey locations where cassava production was absent and 

176 at survey locations where cassava production was present. To investigate the potential for 

177 spatial mismatch, we additionally extracted CassavaMap predictions summarised in a 

178 buffered region about each survey location.

179 Rural population data

180 Population distribution data were obtained from LandScan 2014 [20] and a binary mask 

181 representing rural settlements from the WorldPop 2018 [26] models. The LandScan 2014 

182 dataset, with a resolution of approximately 1 km by 1 km (~30′′ by 30′′), was developed as 

183 part of the Oak Ridge National Laboratory (ORNL) Global Population Project utilising sub-

184 national census data combined with additional variables such as land cover, roads, urban 

185 and rural locations. The census population count data are redistributed according to a 

186 weighting scheme [26]. Rural population data (both population density and rural settlements) 

187 were extracted at the survey point locations. In addition, these data layers were summarised 

188 over buffered regions around each survey location and can be found at [24].

189 Data Processing Methods

190 Aggregation of buffered data layers

191 Aggregation of the information related to variables in the vicinity of the cassava density 

192 survey was done using the raster package in R statistical programming software [27]. The 

193 buffer data was obtained from the raster layers of the Landscan population data [20], 

194 WorldPop settlement data and CassavaMap disaggregation model by extracting values of 

195 the raster within specified buffered areas around the sample locations. Specifically, buffer 

196 polygons of 2, 5 and 10 km were created around the sample location coordinates. We 



[9]

197 applied two ways of calculating summary statistics for the buffers around each survey point 

198 location. The first approach is to dissolve the buffers, using the function mask in R from the 

199 raster library, into one object, removing all intersecting areas of the buffers. This was used in 

200 the analysis of spatial trends (see Section 2.6). The second approach is to keep an 

201 individual buffer object (polygon) for each sample point from which general zonal statistics 

202 are calculated on the buffered areas and used in the regression modelling (see Section 2.5). 

203 The summaries of the CassavaMap predictions that were considered were the mean, 

204 median, standard deviation, minimum, maximum and lower and upper quartiles. Similarly, 

205 summary statistics were calculated at each location for the population data layer and for the 

206 settlement data layer, this was restricted to the mean as the settlement information is a 

207 binary layer of presence/absence of settlement in each pixel. Aggregated were stored in 

208 tabular format and can be found at [24].

209 Linking survey data to modelled cassava

210 Baseline regression models (Table 2) were used to assess the association between 

211 observed cassava production and cassava production predicted from CassavaMap. 

212 Table 2. Baseline regression models for each variable of interest.  Transformation of 

213 the explanatory variable was chosen to best explain the observed relationship. c is a 

214 small constant offset calculated as half the minimum non-zero value of the 

215 explanatory variable.

Country Survey Response 

Variable (y)

CassavaMap Explanatory 

Variable (x)

Model

Côte d'Ivoire Total Cassava Area Production y~log⁡(x + c)
Côte d'Ivoire Total Cassava Area Harvest Area y~log⁡(x + c)
Uganda Total Cassava Area Production y~log⁡(x + c)
Uganda Total Cassava Area Harvest Area y~x

216
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217 No transformation of the response variables was deemed necessary through inspection of 

218 the residual plots. Transformation of the explanatory variable was chosen to best explain the 

219 observed relationships.

220 To investigate the impact of the spatial resolution of cassava production and harvested area 

221 of CassavaMap predictions along with any potential biases associated with settlement and 

222 population density in the surveyed locations, a systematic regression framework (Fig 2) was 

223 used for six response variables: total cassava density, total cassava density under 

224 monoculture, total cassava density under intercropping and their associated weighted 

225 versions. Firstly, to understand the spatial representativeness of CassavaMap, rather than 

226 considering the point predictions as an explanatory variable, the extracted aggregated 

227 summaries for predicted cassava production density, as listed in S1 Table, were each 

228 considered in turn. The form of the regression model was constrained to one of four types, 1) 

229 a linear relationship, 2) a logarithmic relationship, 3) a quadratic relationship and 4) a non-

230 parametric spline. Secondly, a measure of population density was included (in addition to the 

231 measure of predicted cassava) through one of the extracted aggregated summaries as listed 

232 in S1 Table. The population density variable was constrained to one of four relationships in 

233 the model, 1) linear, 2) logarithmic 3) independent non-parametric spline or 4) dependent 2-d 

234 non-parametric spline with predicted cassava. Thirdly, a measure of settlement density was 

235 included (in addition to the measure of predicted cassava) through one of the extracted 

236 aggregated summaries as listed in S1 Table. The settlement density variable was 

237 constrained to one of four relationships in the model, 1) linear, 2) logarithmic 3) independent 

238 non-parametric spline or 4) dependent 2-d non-parametric spline with predicted cassava. 

239 Finally, we considered including measures of both population and settlement density in the 

240 model through the relationships described above and an additional 2-d non-parametric 

241 spline over both variables. 

242 Fig 2. Illustration of the regression framework to explore the relationships between observed survey 

243 data, the predicted cassava density from CassavaMap and settlement and/or rural population density.
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244 In total, we explored 31,164 combinations of distinct regression models for each response 

245 variable in each country. For each regression model, the Akaike Information Criterion (AIC), 

246 Bayesian Information Criterion (BIC) and adjusted R2 were extracted as a measure of model 

247 performance. 

248 AIC =  - logLik + 2p

249 BIC =  - logLik + log (n)p

250 R2
adj = 1 -

∑i(yi - yi)2

(n - p)
∑i(yi - y)2

(n - 1)

251 Where,  is the log likelihood of the model, is the number of model parameters,  is logLik p n

252 the number of data points included in the regression model,  is the data,  is the fitted value y y

253 from the regression model and   is the mean of all .y yi

254 The strategy outlined above was used to i) find the best model that explains variation in the 

255 survey data of cassava production and ii) to assess the impact of both the distance and type 

256 of aggregated summary on predicting cassava production. For the latter, we used an 

257 unbalanced ANOVA screening procedure on the extracted AIC from all fitted models. Each 

258 of the 31,164 statistical models was associated with particular factors defining what 

259 explanatory terms were included, the summary statistic used, and at what buffer distance 

260 along with the form of the model (linear vs generalized additive). ANOVA was then used to 

261 assess the impact of these distinct factors on the AIC. The ANOVA treatment model is 

262 specified by equation 3.

modeltype *  (cass_type *  population_type *  settlement_type + cass_type
* (cass_dist *  cass_summary ) + population_type/(population_dist 
*  population_summary) + settlement_type/settlement_dist)

(3

) 

263 where modeltype is a binary variable indicating whether the fitted model is a linear model or 

264 generalized additive model, cass_type is a binary variable indicating whether the cassava 
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265 model prediction is production or harvest area, population_type is a binary variable indicating 

266 whether a population covariate has been included or not and settlement_type is a binary 

267 variable indicating whether a settlement covariate has been included. The terms _summary 

268 indicate the type of summary statistic used and _dist indicates the distance of a buffered 

269 region. Point estimates of predictions and population data have a summary = mean and a 

270 distance = 0 km.

271 Due to partial confounding between terms, type II F-statistics were extracted. 

272 Regression models were fitted in R programming language, with generalized additive 

273 models fitted using thin-plate regression splines from the mgcv package [28,29] and type II 

274 statistics obtained from the car package [30]. 

275 Spatial trends

276 Geographical trends in the survey data were summarised by i) linear models accounting for 

277 administrative regions and ii) generalized additive models along the different transects of the 

278 sampling. For both countries, the total cassava area was first log-transformed and separate 

279 additive terms were fitted over longitude and latitude independently. There was insufficient 

280 data to fit an interaction between the two. 

281 Geographical trends in the CassavaMap predictions are summarised through generalized 

282 additive models (GAMs) using the dissolved buffer extraction of the spatial maps of the 

283 survey locations to investigate large-scale regional changes. Models were fitted to the 

284 natural logarithm of the prediction production with additive smooth terms for longitude and 

285 latitude.
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286 Results

287 Characteristics of Cassava Cultivation

288 Côte d'Ivoire

289 In Côte d'Ivoire, of the 69 visited locations, 52 were found to have some cassava production 

290 with 17 having no cassava plants at the time of the survey. Of these 52 locations, 38 

291 included one or more intercropped fields, 46 included monoculture fields and 8 included 

292 individual cassava plants outside of a main field area. The number of individual plants at 

293 these 8 locations was generally relatively small ranging from 1 to 9. The median (lower and 

294 upper quartile) number of cassava fields at each location was 7 (2, 16). The field size was 

295 highly skewed with a mean (median) of 557.3 m2 (72.9 m2) for cassava monoculture and 

296 689.2 m2 (142.1 m2) for intercropped cassava fields. The total area allocated to monoculture 

297 or intercropped fields was relatively consistent over the 52 locations. In total 221 

298 intercropped fields and 288 monoculture fields were recorded over all surveyed locations. 

299 The ratio of intercropped vs. monoculture fields in each location did vary, but in general, 

300 categorised into locations either in complete monoculture (27% of locations), complete 

301 intercropping (15% of locations) or a 50:50 split (23% of locations), the rest of the locations 

302 were represented by an equal mix of intercropping and monoculture fields. A summary of 

303 cassava production for the surveyed region is shown in Table 3. The total area under 

304 cultivation of cassava per location was highly skewed (Fig 3a and b), but similar between 

305 cassava in monoculture 3086 m2 (1057 m2) and in intercropped fields 2929 m2 (1511 m2), 

306 mean (median) (see Table 3). The type of cassava cultivation (monoculture, intercropping or 

307 as individual plants) was generally uncorrelated (Fig 3c).

308 Table 3 Summary of cassava production across surveyed sites in Côte d'Ivoire

Cassa
va

Intercroppin
g

Monocropping Individu
al plants

50:50 
split
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presen
t

Locations
Locations (n=69 visited) 52 38 46 8
Locations with complete 
cultivation of this type 
(%)

27% 15% 23%

Area cultivated per 
location – mean (lower, 
median, upper)

2929 m2 (0, 
1511, 3322
 m2)

3086 m2 (208, 
1057, 4587 
m2)

Fields
Total number of fields 
across all locations

221 288

No. of cassava fields per 
location – median (lower 
and upper quartile)

7 
(2,16)

Field size – mean (lower 
quartile, median, upper 
quartile)

689.2 m2 
(18.7, 
142.1, 
706.7  m2)

557.3 m2 
(12.9, 72.9, 
375.0 m2)

309 Uganda

310 In Uganda, of the 87 visited locations, 76 were found to have some cassava production with 

311 11 having no cassava plants at the time of the survey. Of these 76 locations, 57 included 

312 intercropped fields, 69 included monoculture fields and 20 included the presence of 

313 individual cassava plants. The number of individual plants at these 20 locations was 

314 generally quite small ranging from 1 to 6, although 2 locations had 16 or more plants. The 

315 median (lower and upper quartile) number of cassava fields at each location was 6 (3, 14). 

316 The field size was highly skewed with a mean (median) of 685.8 m2 (322.4 m2) for cassava 

317 monoculture and 499.9 m2 (230.9 m2) for intercropped cassava fields. The total area 

318 allocated to monoculture or intercropped fields was relatively consistent over the 76 

319 surveyed locations. This corresponds to 297 intercropped fields and 339 monoculture fields 

320 recorded over all surveyed locations. The ratio of intercropped vs. monoculture fields in each 

321 location did vary, but around 26% of locations demonstrated a general preference for 

322 complete monoculture. The total area in cassava production per location was highly skewed 

323 (Fig 3d and e) with more in monoculture 3059 m2 (1806 m2) than in intercropped fields 1954 



[15]

324 m2 (887 m2), mean (median). Intercropped and monoculture cultivation were generally 

325 independent, but a positive correlation was observed between the cultivation of individual 

326 plants and intercropped fields (Fig 3 f). A summary of cassava production for the surveyed 

327 region is shown in Table 4.

328 Table 4. Summary of cassava production across surveyed sites in Uganda

Cassava
present

Intercropping Monocropping Individual plants

Locations
Locations (n=87 visited) 76 57 69 20
Locations with complete 
cultivation of this type 
(%)

9% 26%

Area cultivated per 
location – mean (lower 
quartile, median, upper 
quartile)

1954 m2 (42, 
887, 2601 
m2)

3059 m2 (374, 
1806, 4356 m2)

Fields
Total number of fields 
across all locations

297 339

No. of cassava fields per 
location – median (lower 
and upper quartile)

6 (3,14)

Field size mean (lower 
quartile, median, upper 
quartile)

499.9 m2 
(46.2, 230.9, 
548.9 m2)

685.8 m2 (322.4 
69.4, 887.5 m2)

329

330 Fig 3. Histograms of the total area in cassava production at each survey location separated by 

331 management system (monoculture vs. intercrop). The heatmap illustrates the correlation between the 

332 total area under different cassava cultivation types (monoculture, intercropping and individual plants). 

333 The top row represents results from Côte d'Ivoire and the bottom row from Uganda. Relationships 

334 between surveyed cassava density and existing cassava cultivation density model.
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335 Linking survey data to rural population density

336 No detectable relationships were observed between predicted cassava production at the 

337 surveyed point locations and the observed cassava area in either Côte d'Ivoire or Uganda 

338 (Table 5). 

339 Table 5. Spearman rank correlation values between surveyed cassava density and 

340 predicted cassava production from CassavaMap and SPAM2010v1. The upper triangle 

341 shows values for Côte d'Ivoire and the lower triangle for Uganda.
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342

343 However, investigating if the presence and absence of cassava production in the surveyed 

344 locations are related to model predictions (Fig 4), there is some indication of a positive 

345 relationship between the presence or absence of cassava production in the surveyed 

346 locations and the cassava distribution models predictions.

347 Fig 4. Boxplots of model predictions a) CassavaMap production, b) CassavaMap harvest area and c) 

348 SPAM2010v1 compared to the presence or absence of cassava production in the surveyed locations. 

349 The top row is Côte d'Ivoire, and the bottom row is Uganda.
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350 Spatial trends in surveyed cassava density and 

351 CassavaMap predictions

352 Despite the lack of association between the survey locations and point estimates of the 

353 model predictions, larger-scale predictions were investigated through spatial trends. Since 

354 the survey was not designed to explore spatial patterns and was restricted to main 

355 motorable roads, traditional geostatistics cannot be applied. Instead, we have investigated 

356 large-scale directional trends. 

357 Côte d'Ivoire

358 In Côte d'Ivoire, marginal differences in the total area under cassava production across 

359 administrative areas were observed (F8,60=1.88, p=0.08, data square root transformed, Fig 

360 5a). Further, survey areas in the southeast corner and the westerly edge appear to be 

361 associated with higher cassava production. This is evident in the predicted smoothed 

362 function over longitude (Fig 5b). By extracting the predicted cassava production from 

363 CassavaMap at a 10 km buffer around each survey location, similar spatial trends in the 

364 longitude could be identified (Fig 5d, and e), indicating that at larger scales, the CassavaMap 

365 predictions capture large-scale variation in cassava production. 

366 Fig 5. Spatial trends in Cassava density in Côte d'Ivoire. a) Total cassava area (weighted) at each 

367 survey location b) and c) Predicted smooths over longitude and latitude from a fitted generalized 

368 additive model to data in a). d) Predicted Cassava production at 10km buffers from survey locations 

369 extracted from CassavaMap [14], e) and f) Estimated smooths over longitude and latitude from fitted a 

370 generalized additive model to data in c). The country shapefiles were obtained from Global 

371 Administrative Areas (GADM) [31] 
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372 Uganda

373 In Uganda, there appear to be “hotspots” of cultivation types across the area, with a higher 

374 density of monoculture in the East and a higher density of intercropping in the South region 

375 (S1 Fig). These differences, however, were not found to be significant in association with the 

376 regional boundaries except for the total area under intercropping having a marginal effect 

377 (F3,83=2.62, p=0.056, after square root transformation). In addition, part of the southern 

378 survey locations appears to be associated with higher cassava production. This is evident in 

379 the predicted smoothed function over latitude seen in Fig 6f. Predicted cassava production in 

380 10 km radius buffers around each survey location, yielded similar spatial trends in the 

381 latitude, indicating that at larger scales, the CassavaMap captures large-scale variation in 

382 cassava production in Uganda like in the case of Côte d'Ivoire. 

383 S2 and S3 Tables show the ANOVA results from analysing cassava production variables 

384 across distinct administrative regions in Côte d’Ivoire and Uganda, respectively.

385 Fig 6.  Spatial trends in Cassava density in Uganda. a) Total cassava area (weighted) at each survey 

386 location b) and c) Predicted smooths over longitude and latitude from a fitted generalized additive 

387 model to data in a). d) Predicted Cassava production at 10km buffers from survey locations extracted 

388 from CassavaMap, e) and f) Estimated smooths over longitude and latitude from fitted a generalized 

389 additive model to data in c).  The country shapefiles were obtained from Global Administrative Areas 

390 (GADM), [31].

391 Impact of settlement and population information 

392 on the association between cassava density 

393 survey and CassavaMap predictions

394 Through the extensive regression framework outlined in Section 2.5, we investigated the 

395 impact of including each data layer and the form with which this should be included, the type 
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396 of summary statistic used and the buffer distance for each of the different response variables 

397 collected from the survey data. Results tables are shown in S4 and S5 Tables. 

398 The type of regression model used (linear versus generalized additive) is hugely influential in 

399 lowering the AIC (minimum AIC achieved with a linear model is -54 and -117  compared with 

400 a GAM of -76 and -156 for Côte d'Ivoire and Uganda respectively). The non-parametric GAM 

401 gives a better model fit with model summaries shown in (Fig 7). AIC is improved when 

402 cassava predictions are summarised over a buffered zone. In general, a slight difference is 

403 observed in the size of the buffer zone (2, 5 or 10 km) in Côte d'Ivoire, but in Uganda, 2 km 

404 buffer zones generally outperform larger radii. The summary type of cassava prediction has 

405 a greater influence in Côte d'Ivoire than in Uganda. Distance of buffer zone and summary 

406 type appear to have little impact on the influence of either the population or settlement 

407 summaries, although in both cases, AIC is improved (in general) when these terms are 

408 included in the model. Furthermore, in Uganda, AICs are improved when harvest area is 

409 used as predicted output from CassavaMap whilst in Côte d'Ivoire, there is no detectable 

410 difference. Interestingly, in both countries, the settlement data layer appears to have greater 

411 influence than the population data layer although both are informative (S4 and S5 Tables).

412 Fig 8. AIC from all model runs using a GAM framework as outlined in Section 2.5 for the total cassava 

413 density response variable. The top panel is Côte d'Ivoire and the bottom panel is Uganda.

414 The influence of the additional data layers appears to relate to cassava cultivation. Under 

415 monoculture, more focus is given to how cassava predictions are summarised (type, 

416 distance, etc.) rather than the additional covariates whilst the opposite is seen under 

417 intercropping, with more focus on the additional data layers of population and settlement (S4 

418 and S5 Tables). However, we cannot put too much emphasis on these results as the survey 

419 design was not stratified along these types of cultivation methods. 

420 To visualise the non-parametric smooths fitted to the data, we fitted splines from the “best” 

421 model for each of Côte d'Ivoire and Uganda under the AIC (S2Fig). For Côte d'Ivoire this 
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422 corresponded to the following terms included as explanatory variables: the mean predicted 

423 production at a 10 km buffer, the minimum population at a 2 km buffer and the average 

424 settlement density at a 2 km buffer. The resulting splines show a relatively flat surface fitted 

425 to the settlement layer, but a more complicated interaction between predicted cassava and 

426 population data. In particular, higher cassava production is associated with higher population 

427 values, but also medium-predicted production.

428 For Uganda, the “best” model corresponded to the following terms included as explanatory 

429 variables; the predicted cassava harvest area at the point location, the median population at 

430 a 5 km buffer and the average settlement density at a 2 km buffer. It is clear that a higher 

431 predicted harvest area is not necessarily associated with higher observed cassava and that 

432 this interacts on a complex surface with the population information. It can also be seen that 

433 in the average settlement density, the highest production is observed when the density is 

434 neither too sparse nor too dense.

435 Discussion and conclusions
436

437 In recent years substantial progress has been made in using models to identify cropland 

438 around the world, including in smallholder farming systems [32–34]. However high-precision 

439 mapping of the distribution of specific crops and their production density has lagged due to 

440 various complicating factors, including the small size of farming plots, the increased 

441 prevalence of intercropping, and crop rotation. For cassava specifically, data scarcity, highly 

442 variable agroecologies, soil conditions, and other socio-economic factors make it challenging 

443 to develop a comprehensive multivariate model to predict cassava density, despite many 

444 sources of data [2,16,17,26] and models [12,14,15,33] being available that may serve as 

445 indicators. 

446 It is expected that in rural small-holder farmer systems, the distribution of subsistence crops 

447 would be associated with the distribution of the rural populations, but this relationship may 

448 be complex. On one hand, an increase in population density increases the demand for food 
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449 and calories and thus the required area under cultivation and/or the intensity of cultivation 

450 may increase. However, in high population density areas, land scarcity and consequently a 

451 gradual soil degradation can limit the area available for cultivation and therefore potential 

452 production. Additionally, in areas with high population density, alternative economic 

453 opportunities may make cassava cultivation less prevalent.

454 Our aim in this study was to a) quantify the characteristics of cassava cultivation across 

455 distinct cassava-growing regions, in this particular case in Uganda and Côte d’Ivoire, b) 

456 understand how well the distribution and density of non-urban populations can predict 

457 cassava density, as this had previously been considered an important cassava production 

458 predictor in sub-Saharan Africa [11,12,14], c) find out how the cassava density in the survey 

459 correlated with existing cassava cultivation density models and d) investigate the driving 

460 influences between the surveyed data and point predictions from CassavaMap. To test 

461 whether the relationships between the distribution and density of non-urban populations with 

462 cassava density were consistent in different regional contexts, and to discover additional 

463 links between the cassava density data collected in-situ  and existing cassava cultivation 

464 models, we developed and carried out surveys in cassava-growing regions in both Uganda 

465 and Côte d’Ivoire. 

466 Data was collected by surveying cassava fields, and collecting data on several 

467 characteristics (e.g., whether the cassava was intercropped, the planting density, etc). This 

468 allowed us to provide summaries of the characteristics of cassava cultivations in regions of 

469 Uganda and Côte d’Ivoire.

470 The survey demonstrated that cassava production remains an important staple crop in rural 

471 areas of Sub-Saharan Africa, with 75% and 87% of the randomly selected 200 meter square 

472 survey sites containing one or more cultivated cassava plants in Côte d’Ivoire and Uganda, 

473 respectively. However, cultivation of cassava was highly variable across sample locations 

474 both in terms of the number and size of fields but also in the type of cropping used, i.e. 

475 monoculture versus intercropping.  
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476 Baseline regression models were used to assess the association between the observed 

477 cassava production and the cassava production predicted from the CassavaMap model [14], 

478 which predicts two measures of production, the area of land under cassava cultivation and 

479 the production in each square kilometre. 

480 Using these baseline models, we found that, in all cases, the model prediction had a non-

481 significant relationship with the survey data, explained very little of the variation in survey 

482 data and did not establish rural population as an important driver of cassava density. 

483 However, by investigating if the presence and absence of cassava production in the 

484 surveyed locations were related to model predictions, we did find an indication of a positive 

485 relationship. 

486 Furthermore, once we aggregated the population data, we discovered that geographical 

487 trends are present in both the survey data and the CassavaMap predictions. To associate 

488 these with geographical trends observed in the CassavaMap predictions, a buffered region 

489 about the survey locations was extracted and then generalized additive models were fitted to 

490 investigate large-scale regional changes. Despite the lack of association between the survey 

491 locations and point estimates of the model predictions, we find that at larger scales, the 

492 CassavaMap does capture large-scale variations in cassava production. It is perhaps 

493 unsurprising that model performance is improved when cassava predictions are summarised 

494 over a buffered zone as it may start to account for the spatial mismatch between a person’s 

495 habitation and the location of cassava cultivation. For instance, in areas of dense population 

496 cassava fields may be located further away from the main homestead. 

497 It is important to note that the “best” (as measured by AIC) models for observed cassava 

498 production were those that additionally included settlement and population covariate 

499 information, with the settlement data layer appearing to have greater influence than the 

500 population data layer. Furthermore, the influence of the additional data layers differs 

501 depending on the type of cassava cultivation. Under monoculture, more focus is given to 

502 how cassava predictions are summarised (type, distance, etc.) rather than the additional 
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503 covariates whilst the opposite is seen under intercropping, with more focus on the additional 

504 data layers of population and settlement. 

505 Thus, we conclude that existing models are able to capture large-scale regional trends in 

506 cassava production but fail to capture the local variation and are limited in their ability to form 

507 reliable estimates at local scale. Due to the scarcity of data, published models of cassava 

508 distribution rely on a series of assumptions to make their projections. It is evident that the 

509 cultivation of cassava in smallholder systems exhibits significant variation, likely driven by a 

510 multitude of factors ranging from climate and soil conditions to cultural preferences, and the 

511 distribution of rural population and income. Specifically, we believe that a better 

512 understanding of the drivers of cultivation practice may yield significant insight that when 

513 combined with existing models will greatly improve the accuracy of predictions of cassava 

514 production at a local scale. 

515 Given the global importance of cassava, more comprehensive surveys linked with the 

516 application of remote sensing and machine learning, are needed to understand, upscale and 

517 model this variation across the continent and globally. Improved data collection, combined 

518 with interdisciplinary analytical approaches, will present an opportunity to better understand 

519 the distribution of cassava spatially which will greatly benefit decision-making, cassava 

520 disease management and planning.

521
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