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Abstract

The fungal pathogens Fusarium graminearum and F. culmorum cause ear blight disease on cereal crops

worldwide. The disease lowers both grain quality and grain safety. Disease prevalence is increasing due to

changes in cropping practices and the difficulties encountered by plant breeders when trying to introgress

the polygene-based resistance. The molecular basis of resistance to Fusarium ear blight in cereal species is

poorly understood. This is primarily due to the large size of cereal genomes and the expensive resources

required to undertake gene function studies in cereals. We therefore explored the possibility of developing

various model floral infection systems that would be more amenable to experimental manipulation and

high-throughput gene function studies. The floral tissues of tobacco, tomato, soybean and Arabidopsis

were inoculated with Fusarium conidia and this resulted in disease symptoms on anthers, anther filaments

and petals in each plant species. However, only in Arabidopsis did this initial infection then spread into the

developing siliques and seeds. A survey of 236 Arabidopsis ecotypes failed to identify a single genotype

that was extremely resistant or susceptible to Fusarium floral infections. Three Arabidopsis floral mutants

that failed to develop anthers and/or functional pollen (i.e. agamous-1, apetala1–3 and dad1) were signifi-

cantly less susceptible to Fusarium floral infection than wild type. Deoxynivalenol (DON) mycotoxin pro-

duction was also detected in Fusarium-infected flowers at >1 ppm. This novel floral pathosystem for

Arabidopsis appears to be highly representative of a serious cereal crop disease.
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Introduction

Fusarium ear blight infections of cereal crops (wheat,

maize, barley and rye) annually cause considerable losses

to grain quality and safety in numerous geographical

regions (Parry et al., 1995; http://www.scabusa.org). The

disease is disseminated by both sexual and asexual spores

released from the previous year’s crop debris. Fusarium

species synthesise a range of mycotoxins in planta. Those

of particular concern to human health are the sesquiterpe-

noid epoxide trichothecenes, primarily deoxynivalenol

(DON), 15-acetyl DON and nivalenol produced by Fusarium

graminearum Schwabe (sexual stage Gibberella zeae

(Schw.)) (Hohn et al., 1998), F. nivale and F. culmorum

and fumonisins produced by F. moniliforme and F. prolif-

eratum that are primarily a problem on maize and rice crops

(Nelson et al., 1993; Ueno et al., 1970).

Fusarium infection of cereal ears occurs primarily only

once per year at anthesis (flowering). For wheat, barley and

rye, this occurs when the anthers extrude from the spike.

This permits hyphae arising from the air-borne fungal

spores to enter either via colonising the anther and then

the filament or to penetrate directly into the top of the

exposed ovary as each floret (flower) opens to release

the three anthers (Kang and Buchenauer, 2000; Pugh,

1933). For certain wheat cultivars, if the anthers have been

carefully removed by physical emasculation, then the inci-

dence of infections is dramatically reduced (Strange and

Smith, 1971). Anthers and pollen contain two components

highly stimulatory to Fusarium hyphal growth and myce-

lium branching, namely choline and glycine betaine

(Strange et al., 1974). Fusarium mycotoxins are produced

shortly after hyphae invade floral tissue. These mycotoxins

may or may not contribute to host tissue penetration by

hyphae (Kang and Buchenauer, 1999; McCormick et al.,

1998). Highly aggressive but none or very low mycotoxin
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producing Fusarium isolates can be readily recovered from

infected field crops (Gang et al., 1998; Miedaner et al., 2000).

Further colonisation of plant floral tissue involves a mixture

of intercellular, intracellular, as well as extensive saprophy-

tic aerial growth (Kang and Buchenauer, 2000; Pugh, 1933).

Macroscopically, infected wheat, barley and rye ears pre-

maturely turn a light brown colour and under moist con-

ditions, masses of pink conidia are visible on the infected

grains and the various outer ear tissues, i.e. glumes, lemma

and palea. The disease does not cause a soft rot symptom;

all infected tissues remain structurally intact. At harvest, the

threshed grain is often shrivelled and has a ‘tombstone

appearance’ (http://www.scabusa.org). Frequently, this

grain is also internally infected with fungal hyphae lying

quiescent beneath the seed testa until seed germination

occurs. Non-invaded grains on a partially invaded ear/cob

can also accumulate fungal mycotoxins (Hui et al., 1997).

In wheat, there appears to be three main sources of

unrelated resistant germplasm to Fusarium ear blight: exo-

tics from Chinese/Japanese origin, for example Sumai-3

(Anderson et al., 2001; Ban and Suenaga, 2000); exotics

from Brazil, for example Frontana (Van Ginkel et al., 1996)

and numerous lines from central Europe known to be of a

distinct breeding lineage (http://www.scabusa.org). Inter-

estingly, all the resistant germplasm sources confer a

defence response that is both Fusarium species non-spe-

cific and race non-specific within a single Fusarium species.

However, only a poor correlation exists between resistance

to ear blight and to a second disease symptom, namely a

stem base rot that is also of frequent occurrence in cereal

crops (Parry et al., 1995). Some correlation between seed-

ling resistance to the DON mycotoxin at the time of seed

germination and resistance to ear infections has previously

been reported (Buerstmayr et al., 1997; Wang and Miller,

1988). However, similar results have not been observed by

others (Bill Hollins, personal communication; Paul Nichol-

son, personal communication).

There is a great paucity in our understanding of the

molecular control of the Fusarium ear infection process

of cereal crop species and the identity of the key compo-

nents of the plant resistance response leading to effective

pathogen containment in a species and race-non-specific

manner. Some molecular information exists on the regula-

tion of mycotoxin production, but this is limited to the

details of the steps in the specific biosynthetic pathways

and various regulatory genes (Hohn et al., 1998, 1999; Tag

et al., 2001). Others have commenced characterisation of

the defence genes induced in both resistant and susceptible

wheat ears following Fusarium infection (Pritsch et al.,

2001). In wheat, definitive plant molecular genetics experi-

ments are difficult to carry out because of its large and

hexaploid genome and the long plant generation time. Alter-

native diploid cereal model systems (i.e. rice and barley),

although possibly appropriate, lack suitable resistant

germplasm sources and also have long generation times.

We therefore decided to explore whether a range of experi-

mentally versatile dicotyledonous plant species could be

exploited for high-throughput molecular genetic studies.

Fusarium symptomless infections have previously been

noted on dicotyledonous weed species growing at the base

of infected winter wheat crops in the UK. Jenkinson & Parry

(1994) were able to recover five Fusarium species from the

surface-sterilised stem bases of 14 different weed species

that showed no evidence of macroscopic disease symp-

toms. These species were F. avenaceum, F. culmorum,

F. poae, F. sambucinum and F. graminearum, cited in

decreasing order of recovery frequency. Almost all of the

Fusarium isolates recovered from the weed species were

confirmed as also pathogenic to the stem bases of wheat

seedlings. There is also a second earlier report of visible

F. graminearum infections on the surface of detached, ripe

tomato fruits following artificial inoculation of wounds

(Crozier and Boothroyd, 1959). Other Fusarium species,

for example F. oxysporum are excellent invaders and colo-

nisers of the roots and stem bases of hundreds of dicoty-

ledonous species (Agrios, 1997). F. oxysporum primarily

attacks vascular tissues in upper parts of the plant from

the initial root and stem base infections. The direct infection

of F. oxysporum of wounded tomato fruits has been pre-

viously reported (Di Pietro et al., 2001), but direct flower

tissue infections have not.

In this paper, we describe experiments that show that the

wheat-attacking fungal pathogens, F. graminearum and

F. culmorum, can also attack the flowers of several dicoty-

ledonous species including, tobacco, tomato, soybean and

Arabidopsis to cause various disease symptoms. We also

reveal that flowers lacking functional anthers, either by the

use of physical ablation or genetic mutation, are highly

resistant to Fusarium attack. From a screen of different

Arabidopsis ecotype accessions, we did not recover any

ecotypes that exhibited a high level of resistance to Fusar-

ium floral infection. Through competitive ELISA experi-

ments, we confirmed that DON mycotoxin accumulation

occurs in infected Arabidopsis flowers. This novel floral

pathosystem for Arabidopsis appears to be highly repre-

sentative of a serious cereal crop disease. This compatible

model system will now permit various follow-up molecular

genetics and gene expression experiments to be performed

to identify the defence signals and responses that restrict

fungal hyphal colonisation in planta.

Results

Establishing the floral inoculation system

Various spray and droplet inoculation methods of flowers

and leaf tissue of Arabidopsis, tobacco (N. tabacum),
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tomato and soybean plants were attempted using a conidial

spore suspension. In all experiments, control wheat ear

inoculations were performed in parallel with the identical

solution of spores and environmental conditions. To obtain

floral disease symptoms, it was important to maintain the

plants post-inoculation under continuous high humidity

conditions, but ensure the plant roots did not become

waterlogged, which greatly perturbs normal flower devel-

opment and anther dehiscence. Also, a period of darkness

for a minimum of 16 h immediately post-inoculation was

required to ensure uniform floral infection. Fine spray

inoculations of open flowers were always found to be

more effective than small droplets because the later

were frequently lost to variable extents through droplet

run-off.

Inoculation of immature flowers or puncture wounded/

epidermis stripped/unwounded leaves did not result in the

invasion of plant tissue. Microscopic observation of trypan

blue–lactophenol-stained tissue taken at various times

post-inoculation revealed that Fusarium conidia germinate

on the leaf surface in the absence of anthers. However, the

growth of the germ tube extended a maximum of 5–10

spore length and thereafter growth ceased and the surface

hyphae collapsed. There were no obvious attempts to

penetrate leaf tissue. When leaf infection tests were per-

formed by mixing Fusarium conidia with detached anthers,

only a mass of saprophytically growing surface mycelium

developed (Figure 1a). Microscopic observations of stained

tissue again revealed the absence of tissue penetration by

hyphae in the presence of pollen.

The flower infection phenotypes on various solanaceous

and leguminous plant species

Spray inoculation of conidia into the open flowers of Ara-

bidopsis ecotype Columbia, tobacco cv. Petit Havana,

tomato cv. Moneymaker and soybean cv. A3244 resulted

in the development of aerial mycelia in association with

anther and anther filament tissue within 2 days (Figure 1b,c

and data not shown). There was a striking similarity in the

appearance of disease symptoms on the floral tissue of

these various dicotyledonous species and those observed

on the inoculated ear of the susceptible wheat cv. Bobwhite

(Figure 1d and as reported previously for wheat (Kang and

Buchenauer, 2000; Pugh, 1933). Microscopic observation of

trypan blue–lactophenol-stained tissue taken 0.5, 1 and

2 days post-inoculation of Arabidopsis flowers revealed

that conidia germinated and grew on the anther surface.

Hyphal entry into the anthers typically coincided with

anther dehiscence. Subsequently, hyphal growth was pre-

dominantly intercellular between the pollen grains inside

the anther sac, but there was also some evidence of intra-

cellular growth through the anther sac wall. Considerable

intercellular hyphal colonisation occurred within the anther

filament (Figure 1e). Subsequently, in Arabidopsis flowers,

the visible infection proceeded into the petals, ovary, sepal

and peduncle tissue before reaching the main stem within

another 2 or 3 days. By day 5 post-infection, the main stem

within the flower head had dried and constricted and turned

brown or grey. Necking over of the flower head at the point

of stem invasion was frequently seen and the developing

siliques exhibited grey or brown necrotic symptoms and

appeared slightly shrivelled, both above and below the

point of stem invasion (Figure 1b). Microscopic observa-

tions revealed both inter- and intracellular hypha colonisa-

tion of stem and silique tissue (Figure 1f,g) and colonisation

of the immature seeds within infected siliques (Figure 1h,i).

A considerable amount of aerial saprophytic mycelium

extended above the surface of all the colonised plant

tissues (Figure 1b,g). Over the comparable 2–5 days post-

inoculation in wheat ears, the infection had spread beyond

the colonisation of the extruded anthers into the corre-

sponding spikelet and caused the outer glumes, lemma

and palea tissues to turn pale brown. A mass of aerial

hyphae extending 1–2 mm from the surface of the glumes

was also visible (Figure 1d). By day 10 post-inoculation,

the disease symptoms on Arabidopsis were maximal and

the Fusarium infection did not spread down the main stem

to invade the base of the plant. The formation of pink

conidial masses were also evident on heavily infected floral

tissue from day 6 onwards (Figure 1j). In wheat cv. Bob-

white, between 10 and 15 days are required for Fusarium to

colonise the entire ear. Usually, these infections continue

into the adjacent stem tissue, but these do not extend below

the junction of the flag leaf. Pink conidial masses form day

12 onwards on infected spikelets and the entire ear

senesced prematurely and turns pale brown by day 20

(Figure 1d).

When tobacco flowers were inoculated, a mass of aerial

mycelium accumulated only in association with anthers by

2 days post-inoculation. Within another 2 days, the com-

plete inside of the flower trumpet was filled with white

mycelium (Figure 1c). This infection did not prevent the

normal flower fertilisation process because when the

flower petals and anthers senesced and dropped off, both

macroscopic and microscopic examination revealed that

the immature green seed pod below had not been invaded

(Figure 1c). In tomato flowers, a similar infection phenotype

was observed to that of tobacco. Due to the extreme waxy-

ness of the anther cone of tomato flowers, a single anther

was carefully removed with fine tweezers at the yellow or

green stage and a droplet containing conidia was placed

inside the remaining anther cone. Abundant aerial myce-

lium was evident with 2–3 days, but this did not affect the

normal fertilisation process and green uninfected tomato

fruits formed from each inoculated flower and the fruit

calyx remained healthy. Spray inoculations of soybean

flowers resulted in the colonisation of anthers and anther
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Figure 1. Various macroscopic and microscopic aspects of the Fusarium graminearum and F. culmorum disease phenotypes on floral and non-floral tissue of
Arabidopsis, tobacco and wheat.
(a) Superficial growth of F. graminearum mycelium extending from a detached anther over the surface of a tobacco leaf. In contrast, at the leaf position indicated
by S, a droplet of Fusarium conidia was placed and no hyphal growth is visible. Photograph taken 4 days post-inoculation.
(b) Arabidopsis floral tissue 5 days after spray inoculation with F. graminearum conidia. Extensive superfical mycelium covers the apical flowers and disease
symptoms are evident on newly formed siliques (si). The white square indicates the stem tissue region examined by trypan blue–lactophenol staining and shown
in panel (f).
(c) Tobacco flowers 4 days after spray inoculation with F. graminearum conidia. The petals are covered with mycelium and have senesced prematurely. At the
base of the infected flower, the developing seed pod (p) remains disease-free.
(d) Wheat ears inoculated at anthesis and photographed at either 4 days (left) or 20 days (right) post-inoculation. Superficial mycelium is located at day 4 only
where anthers were extruding from wheat florets. This region of the ear is highlighted by a white bracket. By 20 days post-inoculation, the entire wheat ear has
senesced prematurely and turned brown.
(e,f,h,i) Photomicrograph taken of whole tissue mounts stained with lactophenol–typhan blue.
(e) Arabidopsis anther sacs and anther filaments (af) enveloped in F. graminearum mycelium, 2 days after inoculation of flowers with conidia. Both intercellular
and intracellular fungal hyphal colonisation has occurred in both anther sac and filament tissues.
(f) Stem tissue sampled just below the point of visible infection highlighted in panel (b). Both intercellular and intracellular hyphal growth is evident in the
parenchyma tissue. The host cells in close contact with the Fusarium mycelium have not accumulated the trypan blue stain and are therefore still alive (Keogh
et al., 1980). V, vascular tissue.
(g) An older Arabidopsis silique entirely covered with aerial mycelium, photographed 5 days after F. graminearum inoculation.
(h) A single Arabidopsis flower, 5 days after inoculation with F. graminearum. Extensive hyphal colonisation is present in both petal (pe) and silique tissues (si).
(i) An Arabidopsis seed dissected from the Fusarium-infected silique shown in panel (h). Fungal hyphae are seen extending over the surface of the seed testa. The
arrow indicates the suspensor cell connecting the seed to the main vascular tissue in the silique.
(j) Arabidopsis ecotype Landsberg (La-er), 7 days after inoculation with F. culmorum conidia. Extensive mycelium is present at the flower apex and on the
siliques. Pink asexual conidial sporulation is also visible (c).

� Blackwell Publishing Ltd, The Plant Journal, (2002), 32, 961–973
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filaments, but these infections never extend into the devel-

oping pods (data not shown).

Of the four dicotyledonous plant species tested, the dis-

ease symptoms forming post-Fusarium-infection were

most extensive on Arabidopsis floral tissue, causing the

developing seeds and stem tissue to become infected. The

infections on tomato, tobacco and soybean flowers,

although resulting in the formation of extensive aerial

mycelium, did not proceed beyond floral tissues and did

not cause seed infections.

The flower infection phenotype are different between the

Arabidopsis ecotypes Columbia and Landsberg erecta

The research opportunities afforded by the Arabidopsis

ecotypes Columbia Col-O and Landsberg erecta (La-er)

are enormous (http://nasc.nott.ac.uk; http://arabidopsi-

s.org). Therefore, we examined in detail whether there were

differences in their Fusarium infection phenotypes. The

initial inoculation experiments (described above) had

already revealed considerable variation in the disease

symptom phenotype manifested on the various floral tis-

sues. Therefore, to assess quantitatively the degree of floral

invasion, the infection process was divided into three sub-

component parts based upon organ type, i.e. flower infec-

tion (F) comprising of open flowers and closed buds, new

siliques (NS) formed during the infection time course and

the older siliques (OS) already present at the time of inocu-

lation. Within each subcomponent, various degrees of

infection were recognised based on macroscopic symptom

assessments and follow-up microscopic observation of

stained material (Table 1). The final Fusarium–Arabidopsis

disease value (the FAD value) was calculated by adding the

three subcomponent scores, i.e. individual FþNSþOS

scores¼ FAD value.

Interestingly, the La-er plants exhibited a statistically

significant higher level of floral tissue disease than Col-O

plants. The mean FAD value for La-er was 10.7 compared

with 6.6 for Col-O when examined over 11 separate inocu-

lation experiments and scored at day 6 or 7 (Table 2 and

Figure 1j,k). When the three subcomponents of the total

infection score were examined in detail, it was recognised

that the La-er and Col-O flowers exhibited the identical

infection symptoms on the new siliques, namely tissue

drying and a pale grey or brown coloration. However, large

differences in the levels of infection between La-er and Col-

O were evident on the flowers and older siliques. Flower

infections in La-er were always maximum. All flowers were

covered with abundant aerial mycelium, the flower petals

and sepals had dried and taken on a grey or brown colora-

tion, the supporting peduncle had also dried and con-

stricted and these phenotypes extended into the adjacent

stem tissue (Figure 1j). In comparison, the Col-O flowers

showed various infection phenotypes over the 11 experi-

ments. These ranged from only aerial mycelium on flowers

(two experiments), drying and discoloration of flowers and

sepals (five experiments) (Figure 1k), to all of the previous in

association with some stem constriction (four experi-

ments). This is reflected in the very high standard deviation

(�1.3) for the flower score of 3.0 on Col-0, whereas for the

La-er plants in the same 11 experiments, there was a uni-

form response (Table 2). For the older silique infections on

La-er, these were comparable with those of the newly

formed siliques, and caused the siliques to dry and display

a pale grey or brown colour (Figure 1j). In contrast, the older

Col-O siliques only ever exhibited superficial aerial myce-

lium (Figure 1k). Inoculations using another isolate of F. cul-

morum and an isolate of F. graminearum confirmed that the

infections on La-er were always greater than Col-O (data not

shown).

Table 1 Description of the disease phenotypes used to quantify
the three subcomponents of Fusarium infection of floral tissue
on Arabidopsis plants

Organ Score Description of disease phenotypes

Flower (F) 0 Normal
1 Aerial mycelium visible on flower
3 Drying of flowers
5 Stem constriction within flower

head

New siliquesa (NS) 0 Normal
Older siliquesb (OS) 1 Aerial mycelium on silique surface

3 Drying of silique surface
5 Peduncle constriction or

mycelium on peduncle or loss of
siliques by disease travelling
down stem

7 Main stem constriction

Fusarium–Arabidopsis disease (FAD value)¼ FþNSþOS

The final FAD value is calculated by addition of the three
subcomponent scores.
aSiliques formed during the disease time course.
bSiliques already formed at the time of inoculation. Both silique
types are scored separately using the same scoring system.

Figure 1. continued
(k) Arabidopsis ecotype Columbia (Col-O), 7 days after inoculation with F. culmorum conidia. Some aerial mycelium is associated with the flower petals and
disease symptoms are present on the immature siliques.
(l,m) Tobacco flowers 4 days after inoculation with F. graminearum. (l) an emasulated tobacco flower with brown discoloration of petals but no aerial mycelium;
(m, left) a de-pistillated flower exhibiting extensive aerial hyphal colonisation of anthers and brown discoloration of petals and (m, right) a control non-inoculated
tobacco flower at the identical physiological age to the inoculated flowers shown in (l) and (m).
Bars¼2 mm in (a, g); 4 mm in (b, j–m); 1 cm in (c); 100 mm in (e); 10 mm in (f); 500 mm in (h); 200 mm in (i).
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The inconsistent infection phenotype of the Col-O flowers

to Fusarium is curious and was observed over a 1.5-year

period. Despite many modifications to the inoculation pro-

tocol and changes in the fungal isolate used, stability of

both the F and OS scores was never obtained. The variation

evident in the older siliques scores of Col-O was very

similar to that observed in the La-er older siliques, with

SD values of 0.53 and 0.64, respectively. The large variation

for the Col-O flower scores appears to have two main

underlying causes. Firstly, open flowers at the time of

inoculation, when infected, either become pollinated and

are therefore scored as new siliques, or they remain as non-

pollinated flowers attached to the flower peduncle by the

aerial mycelium (Figure 1k). Secondly, the closed Col-O

flower buds at the time of inoculation either open and

exhibit disease symptoms, open and escape infection or

remain closed and disease-free. Due to the different mor-

phology of the La-er floral apex (discussed below), neither

uninfected open flowers or uninfected closed buds were

observed (Figure 1j).

When the combined data in Table 2 was explored in

greater detail, an excellent positive correlation was evident

between the overall level of floral disease in a single experi-

ment (i.e. the FAD value) and the extent of disease symp-

toms on the flowers (r¼ 0.93). However, there was only a

poor positive correlation between the total FAD value and

the disease score of the older siliques (r¼ 0.38). No correla-

tion was found between the disease levels on the flowers

and older siliques (r¼ 0.01). Therefore, the limited infection

levels on the older Col-O siliques are not caused from an

overall lower infection level in a single experiment or

from less fungal biomass on the flowers. In the same

experimental series, the three subcomponents of the La-

er FAD values remained consistent (Table 2). Overall, the

total FAD values for Col-O was bimodal in distribution, with

seven experiments giving mean FAD scores statistically

below the overall mean and four experiments giving values

statistically above the mean (Table 2). For La-er, a normal

distribution was obtained, with the only difference between

experiments caused by the degree of colonisation of the

older siliques.

The most plausible explanation for the higher infection

phenotype of La-er compared to Col-O flower heads is the

large difference in their flower head architecture. The La-er

flower head is extremely compact, with immature siliques,

open flowers and unopened buds in extremely close proxi-

mity to each other at the time of inoculation (Figure 1j). In

comparison, the Col-O flower head is less compact with

each open flower slightly more separated from the uno-

pened flower buds. Also, a space of at least 4–6 mm sepa-

rates an open flower from immature siliques at the time of

inoculation (Figure 1k). These architectural differences will

greatly affect the propensity of the Fusarium aerial myce-

lium formed at the initial site of flower infection to grow

aerially into adjacent siliques and other flowers, and for the

various infection sites to coalesce. The maximal aerial

range of these Fusarium hyphae is around 2 mm for Arabi-

dopsis, although considerable greater aerial extension was

evident on wheat and tobacco. In addition, it is highly likely

that the overall humidity within the tight La-er flower head

could remain consistently higher than that in the more lax

Col-O flower heads, even though high-humidity chambers

were used throughout the experimental time course. Fusar-

ium infections always proceed faster under very high

humidity conditions because of the greater contribution

of the aerial mycelium to initiate new infection sites (Martin

Urban, unpublished data). We consider that the higher

severity of infection on the older La-er siliques already

formed at the time of infection could be the result of under-

lying genetic differences in the two ecotypes’ abilities to

respond to the Fusarium infection. However, because of the

compact La-er flower head, the vertical growth of the older

siliques causes them to come into contact with the abun-

dant aerial mycelium. A high proportion of secondary

Table 2 Component scores for Fusarium culmorum floral infections of Columbia (Col-O) and Landsberg erecta (La-er) Arabidopsis plants

Genotype Organ

Experimental replica

Mean SD1 2 3 4 5 6 7 8 9 10 11

Col-O Flower 2.4 4.4 4 0.9 3 3.2 0.9 2.3 4.1 4.8 2.8 3 1.3
New silique 3 3 3 3 3 3 3 2.8 3 3 3 3 0.06
Older silique 0 1.2 1.2 1.2 0 0 1.1 0.6 0.8 0.8 0 0.6 0.53
Total FAD 5.4 8.6 8.2 5.1 6 6.2 4.9 5.7 7.9 8.5 5.8 6.6 1.4

� �� �� � � � � � �� �� �

La-er Flower 5 5 5 5 5 5 5 5 5 5 5 5 0
New silique 3 3 3 3 3 3 3 3 3 3 3 3 0
Older silique 2.7 1.9 2.7 2.1 3.7 3.6 1.8 2.4 3 3.2 2.6 2.7 0.64
Total FAD 10.7 9.9 10.7 10.1 11.7 11.6 9.8 10.4 11 11.2 10.6 10.7 0.64

�Col-O single experimental mean statistically below the overall experimental FAD mean.
��Col-O single experimental mean statistically above 2 SD from the overall mean of 6.6 (P< 0.5).

� Blackwell Publishing Ltd, The Plant Journal, (2002), 32, 961–973
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infections then take place, which could also elevate the

overall disease score. Wheat cultivars with a compact

and dense ear architecture are known to be generally more

susceptible to Fusarium ear blight infection than those with

loose and open ear morphologies (reviewed by Parry et al.,

1995).

Screening a diverse collection of Arabidopsis ecotype for

genetic variation in both flower and leaf infection

phenotypes

In total, 236 Arabidopsis ecotype accessions were spray

inoculated with Fusarium when the primary bolt of each

plant had at least two open flowers and no more than two

siliques had already formed. A minimum of five inoculated

plants per ecotype were assessed for visible flower, silique,

stem and leaf infections, at either 7 or 8 days post-inocula-

tion. Twenty-five ecotypes in the primary screen with FAD

values below 3 or above 10 were re-grown and inoculated,

with the population size increased to 12 flowering plants.

None of these extreme FAD values re-confirmed during the

secondary screen. We therefore conclude that all 236 Ara-

bidiposis ecotypes are moderately susceptible to floral

head infections. No ecotype exhibited visible leaf infection

symptoms (http://www.iacr.ac.uk/ppi/staff/khkara.html).

The extent of Fusarium floral infections is significantly

affected by the presence and absence of functional

anther components

A key route for Fusarium to invade floral tissue involves the

anthers. In wheat, when the anthers are carefully removed

by physical emasculation, then the incidence of infections

can be dramatically reduced (Strange and Smith, 1971).

Two metabolites highly stimulatory to Fusarium hyphal

growth and mycelium branching are found in abundance

in anthers and pollen. Choline and glycine betaine (Strange

et al., 1974) have been suggested to be positive contributors

to fungal pathogenicity and possibly explain why F. grami-

nearum and F. culmorum invade flowers. Maximum cereal

ear invasion always occurs at anthesis. We therefore

wanted to explore whether there was a functional signifi-

cance to the anther invasions observed on the four dicoty-

ledonous species.

The large size of the tobacco flowers meant this plant

species was the most experimentally tractable of the four to

examine the effects of hand-emasculation and de-pistilla-

tion on the Fusarium-infection phenotype. When all the

pollen sacs were removed from the ends of the anther

filaments of tobacco flowers prior to pollen dehiscence,

very little aerial Fusarium mycelium was evident on the

remaining filament tissue post-inoculation and the petals

turned brown (Figure 1l). Microscopic analyses revealed

internal colonisation of petal tissue (data not shown). In

contrast, when the pistil was removed prior to anther

dehiscence and inoculation, the heavily infected flower

remained alive for a few additional days, but no colonisa-

tion of the underlying pistil and unfertilised ovary and sepal

tissues occurred (Figure 1m).

In Arabidopsis, a wide range of flower mutants exist that

have either the entire floral whorls missing or present in

duplicate, whilst other mutations result in no silique for-

mation (http://nasc.nott.ac.uk; http://arabidopsis.org). We

decided to examine the effects of the various genetic abla-

tions of anther whorls’ development or pollen function on

the FAD values in preference to hand emasculation. Three

floral mutants were selected for these experiments: aga-

mous-1 because it lacks the pistal and stamen whorls and

instead possesses a double petal whorl (Yanofsky et al.,

1990); apetala3-1 because it lacks both the stamen and petal

whorls, and has instead double carpel and sepal whorls

(Jack et al., 1992). The ag-1 and ap3-1 mutants are both in

the La-er ecotype backgrounds. The third mutant was the

recently reported jasmonic acid mutant called dad1, pre-

sent in the Ws-2 background (Ishiguro et al., 2001). The

dad1 mutant has all the floral whorls intact, but has defec-

tive pollen dehiscence and filament hydration processes

and the pollen is non-viable. In all three mutants, pollina-

tion does not occur. Instead residual, undeveloped ovules

and pericarp tissue in a silique-like structure remain at the

end of the flower peduncle following final petal and/or

sepal senescence.

Interestingly, all three mutants showed significantly

reduced Fusarium infection of flowers. For the agamous-

1 mutant, very little aerial mycelium formed and the flowers

appeared normal. The individual flower infection score was

La-er¼ 5 and ag-1¼ 1. Sometimes, slow petal senescence

occurred in the agamous-1 mutant under the high-humidity

conditions and this caused saprophytic aerial mycelium to

become visible only on the petals from day 5 onwards.

However, this petal phenotype did not result in additional

colonisation of other parts of the flower head. On the

apetala3-1 mutant, some aerial white mycelium was evi-

dent on the undeveloped ovary and calyx whorls by day 5.

But, again no further disease symptoms or tissue browning

ever occurred. The inoculation score of the flower pheno-

type for ap3-1¼ 1.0. We therefore conclude that the com-

plete ablation of the anther tissue whorl prevents Fusarium

hyphae from invading other tissues within the flower head.

The dad1 mutant also exhibited a very low disease phe-

notype, with no macroscopically visible hyphae on flowers

and minimal aerial hyphae on the surface of the non-ferti-

lised siliques. The FþNS score for the wild-type Ws-2

ecotype¼ 4.2, whereas for dad1¼ 2.1. This result was not

expected because the anther whorl is present, although

non-functional. When inoculated dad1 and wild-type Ws-2

flowers were examined microscopically over a 2-day time

course extending to day 10, this revealed that almost no
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extracellularly mycelial colonisation of the anther and

anther filament has occurred on the dad1 flowers and there

was no evidence of attempted tissue invasion. In the Ws-2

flowers, extracellularly mycelial colonisation was extensive

and other intercellular and intracellular hyphae were

detected in the peduncle and silique tissues (data not

shown). It would therefore appear that Fusarium hyphae

lack the appropriate mechanism to penetrate the intact

anther sac wall and do not use, as an alternative route,

the 4–6 stomatal pores present near the junction with the

anther filament. Also, the overall reduction in the density of

hyphae associated with dad1 anthers compared with Ws-2

may indicate a lower nutrient availability. Alternatively, it is

possible that the intact anthers containing immature non-

viable pollen grains either contain harmful pre-formed

metabolites (phytoanticipins) (Morrissey and Osbourn,

1999) or are able to mount a successful active defence

response at sites of attempted hyphal penetration. Micro-

scopic analyses revealed no evidence of a hypersensitive

cell death defence response or any specific modifications to

the appearance of plant cell walls in either the anther sac or

filament (data not shown).

The small amount of belated aerial mycelia evident on all

three of the Arabidopsis flower mutants on the unfertilised

and senescing calyx, siliques and petals (where present)

never resulted in disease symptoms forming on the under-

lying peduncle or stem tissues. The formation of aerial

mycelium on these tissues was to be expected because

Fusarium has excellent saprophytic colonisation abilities,

and can therefore utilise the considerable nutrients

released from these tissues as each enters a senescence

programme.

DON mycotoxin production during invasion of

Arabidopsis flowers

A feature of many F. graminearum and F. culmorum inva-

sions of wheat and barley ears and maize cobs is the

production of mycotoxins (Hohn et al., 1998). The trichothe-

cene mycotoxin, deoxynivalenol (DON) and its precursor

15-acetyl deoxynivalenol are of concern for human food

and animal feed safety (http://www.scabusa.org). The pro-

duction of DON mycotoxins may contribute to the overall

aggressiveness of naturally DON-producing Fusarium iso-

lates to invade plant tissues. However, DON production is

not a fundamental fungal pathogenicity factor (disease-

causing component) (Harris et al., 1999; Proctor et al.,

1995). DON production can also be induced under specific

in vitro conditions that attempt to mimic in planta condi-

tions, but DON and 15-acetyl is not synthesised when

F. culmorum or F. graminearum are grown on more general

culture media (Burmeister, 1971; Chen et al., 2000).

We explored whether DON and 15-acetyl DON production

occurred during Fusarium colonisation of Arabidopsis

floral tissue. Samples were taken at 8 days post-inoculation

with two different F. culmorum isolates and one F. grami-

nearum isolate known to produce DON mycotoxin when

invading wheat ears (Claudia Heppner, unpublished). In

both Col-O and La-er whole flowers, greater than 1 ppm

DON was detected in all Fusarium-invaded flower tissue at

8 days post-inoculation. On Col-O flowers, the recovered

values ranged between 1.22 and 1.42 ppm (SD¼ 0.10)

whilst on La-er, a slightly wide range was evident from

1.21 to 2.27 ppm (SD¼ 0.53). From water only-inoculated

Col-O and La-er floral tissue, DON levels of below 0.1 ppm

were recorded. This level of background non-specific bind-

ing of plant components in the DON competitive ELISA is

comparable to the values obtained for water only-inocu-

lated Bobwhite wheat ears (C. Heppner, unpublished).

When the two UK F. culmorum isolates were spray inocu-

lated onto the anthesising ears of Bobwhite wheat growing

in a field in Cambridgeshire, UK and subsequently mist

irrigated to ensure a high level of visible infection, the DON

levels recovered from the harvested and threshed grain

ranged between 6 and 50 ppm (C. Heppner, unpublished).

This indicated that the two F. culmorum isolates used in this

study are moderate producers of DON. The large difference

in the DON levels recovered from the wheat and Arabidop-

sis inoculation would appear to be caused by the total

length of the infection period prior to assaying for DON

levels. Only 8 days elapsed between inoculation and floral

tissue harvest in Arabidopsis, whereas there are 50 days

between inoculation and harvest for the wheat grain sam-

ple. In the later situation, considerably more time elapsed

for mycotoxin biosynthesis and accumulation to occur.

The detection of the accumulation of DON and 15-acetyl

DON mycotoxins in the Fusarium-infected flowers of both

Col-O and La-er flowers indicates that the complete infec-

tion phenotype is manifested within Arabidopsis floral

tissue.

Discussion

F. graminearum and F. culmorum are primarily considered

to be pathogens of monocotyledonous cereal plant species

and cause the serious ear blight disease (McMullen et al.,

1997). The combined data presented in this analysis clearly

indicates that both fungal species are able to penetrate and

invade the floral tissue of various dicotyledonous species

and for Arabidopsis, these infections extend into stem

tissue to cause severe disease symptoms, and the accu-

mulation of DON mycotoxins and hyphae to associate with

developing seeds inside infected siliques. This is a novel

pathosystem for Arabidopsis and is the first to be described

involving floral infection by any microbe. The lack of leaf

tissue infections also highlights a frequently overlooked

aspect of plant–microbe interactions, the phenomenon of

organ specificity and/or tissue specificity for successful
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microbial colonisation. Preliminary results using another

wheat floral pathogen Stagnospora (Septoria) nodorum

also indicates that this fungal species is able to invade

and cause visible disease on tobacco flowers and Arabi-

dopsis flowers, siliques and upper stem tissues (Martin

Urban, personal communication).

Mode of infection

The mode of infection by Fusarium hyphae of the four

dicotyledonous plant species, i.e. Arabidopsis, tobacco,

tomato and soybean was very similar to that found in wheat

and barley. Under high-humidity conditions, floral tissue

was invaded but not leaf or lower stem tissues. The micro-

scopic observations of the trypan blue–lactophenol-stained

tissue indicate that the advancing hyphal front colonised

living plant tissue, and therefore the pathogen is hem-

ibiotrophic in these dicotyledonous plant species. Why

F. graminearum and F. culmorum are primarily flower

and stem base invaders is not known. This may be because

of: (i) the local abundance of specific metabolites within the

flowers, e.g. choline and glycine betaine; (ii) the excessive

nutrients available post-fertilisation in the primarily sink

tissues or (iii) tissues with no or highly reduced photosyn-

thetic capacity have a different baseline primary metabo-

lism. The extensive aerial mycelia that developed in

association with anther tissue early in the infection was a

striking feature of all five pathosystems. However, only

when attacking the flowers of monocotyledonous cereal

plants and Arabidopsis did the Fusarium infections spread

into other floral tissues to eventually reach the stem and

developing seeds. In tobacco, tomato and soybean, the

infections were always contained within the open flowers

and these infections were excised completely at flower

senescence. It is currently unclear why these infections fail

to spread further.

Within Arabidopsis floral tissue, both extensive intercel-

lular and intracellular invasion occurred and this led to

tissue drying and browning in association with asexual

spore production. The same disease symptoms are seen

in wheat and barley ears. However, unlike in wheat, the

Arabidopsis infections invariably resulted in the diseased

floral heads necking over at the point where the stem tissue

became invaded, late in the time course. Infected wheat and

barley ears remain vertical and firm even under periods of

extended high humidity. We consider this major difference

in disease symptoms to be primarily due to differences in

the physiological age of the floral tissue invaded by the

fungal hyphae and hence the degree of secondary cell wall

modifications, i.e., lignification, that has occurred. At

anthesis, the entire floral structure in both wheat and barley

ear is approximately 30 days old. Whereas for Arabidopsis,

at the onset of anthesis, the floral head is <10 days old and

is considerably more supple.

The Arabidopsis floral mutants, agamous-1, apetala3-1

and dad1 confirm the need for the presence of both anthers

and pollen function to permit the successful and extensive

invasion of other floral tissues. An analysis of various male

sterile barley genotypes (Matsui et al., 2002) has revealed

that lines producing sterile pollen were significantly more

susceptible to Fusarium ear blight than sterile lines produ-

cing no pollen. The negative infection results with the

Arabidopsis dad1 mutant suggests that Fusarium may have

difficulties penetrating non-dehiscing anther sacs. The

emasculated tobacco flower results reveal that petal infec-

tions can take place even in the absence of pollen in this

species. In contrast, another cereal floral fungal pathogen

Claviceps purpurea, the causal agent of ergot disease, only

enters floral tissue via the female stigmatic tissues (Mey

et al., 2002).

Resistance

Both F. graminearum and F. culmorum lack the ability to

invade unwounded plant leaf tissue of both monocotyle-

donous and dicotyledonous plant species. No infection

occurs even in the presence of detached anthers. Instead,

infections by these two Fusarium species are confined to

either the flowers or the stem bases. This tissue- or organ-

specific resistance suggests one of three potential hypoth-

eses: (i) specific signals are missing to trigger the onset of

the Fusarium infection process; (ii) specific defence

responses operate in the non-infected organs prior to, or

during attempted penetration or (iii) in the predominantly

non-photosynthetically active plant tissue, a full defence

response cannot be manifested and this permits the fungal

hyphae to gain entry. In wheat, F. graminearum infection of

floral tissue triggers the induction of the typical set of

defence-related genes (Pritsch et al., 2001). Amongst the

Fusarium genera, it is noticeable that most species occupy

just specific tissue niches within the plant and do not attack

every plant organ. For example, Fusarium wilt fungi such as

F. oxysporum f sp. lycopersici are restricted to attacking the

vascular tissue near the stem base (Agrios, 1997), whilst

F. oxysporum f. sp. matthiolae, the only other Fusarium

species reported to attack Arabidopsis, is primarily a stem

base–root coloniser (Epple et al., 1998).

The Arabidopsis ecotype screen had a disappointing out-

come, with no extremely resistant or susceptible ecotypes

identified. A similar outcome was found when a large

number of Arabidopsis ecotyopes were inoculated with

the economically important sugar beet cyst nematode spe-

cies Heterodera schactii. Although statistically significant

differences between La-er and Col-O infection phenotypes

were repeatedly evident, these differences have probably

more to do with overall floral architecture than inherent

differences in their resistance response. One of the easiest

ways to test this hypothesis is to transform the Landsberg
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allele of the erecta gene into the Col-O background and

repeat the Fusarium inoculation tests.

In wheat, two main types of germplasm resistance are

recognised. Type 1 resistance prevents initial infection,

whilst type 2 resistance operates post-infection to reduce

the rate of secondary spread through the entire ear

(reviewed by Parry et al., 1995). The spray inoculation

protocol undertaken in this study is very useful in trying

to identify type 1 and type 2 resistance components

together. However, to focus specifically on type 2 resistance

(i.e., resistance to spread) would require the use of a single

flower point inoculation technique. In wheat, a single spi-

kelet inoculation technique is frequently used to identify

germplasm exhibiting good type 2 resistance (Schroeder

and Christensen, 1963).

Exploitation

This novel Fusarium floral pathosystem on Arabidopsis will

now permit a study of various defence mutants and trans-

genics for their ability to restrict or enhance disease sus-

ceptibility and to alter symptomatology. A wide range of

defence mutants already exist for Arabidopsis unlike wheat

or maize. In parallel with these inoculation experiments, it

will be important to determine whether the various genetic

mutations that affect the levels of specific defence-signal-

ling molecules, for example salicylic acid, jasmonic acid,

ethylene and reactive oxygen species actually cause similar

changes in floral tissues as reported for leaves. For most of

the mutants, this type of information has not been reported.

Large-scale gene expression array experiments could also

be undertaken to examine the global changes in the tran-

scriptome caused during Fusarium infection of floral tissue.

These gene expression experiments could be extended to

leaf tissue to determine whether plant cells actively

respond during surface colonisation by non-penetrating

Fusarium mycelium.

The biological complexity of the Fusarium infection pro-

cess in floral tissue and the lack of specific infection struc-

tures at the site of initial host tissue penetration, i.e.

appressoria formation means that any mutation screen

would best be achieved by using a transformed isolate of

Fusarium expressing both the green fluorescent protein

(GFP) and b-glucuronidase (GUS) reporter genes. This

would permit an initial non-destructive and high-through-

put analyses to be performed using UV to detect the pre-

sence of the green fluorescent protein within the fungal

hyphae. This would be followed by GUS staining and light,

epi-fluorescence and confocal microscopic analyses to

evaluate the true extent of internal Fusarium colonisation.

A recent study using a transgenic Fusarium strain consti-

tutively expressing the GFP gene reporter was used to

document Fusarium invasion of wheat ears (Pritsch et al.,

2001).

The detection of DON mycotoxin production within the

Fusarium-infected floral tissue will also permit a detailed

examination of the plant factors regulating mycotoxin bio-

synthesis. This type of analysis, which could be undertaken

using monocotyledonous and/or dicotyledonous host plant

species, is also best achieved using a transgenic Fusarium

strain because the DON ELISA and GC–MS tests are both

expensive and requires large amounts of infected plant

tissue (>4 g). One suitable transgenic Fusarium strain to

monitor DON induction could harbour a Tri5 promoter:

GFP-GUS reporter gene construct. The Tri5 gene of Fusar-

ium encodes for the enzyme trichodiene synthase, and this

is the key regulatory step for DON mycotoxin production

(Proctor et al., 1995). By using a pTri5:GFP-GUS transgenic

Fusarium isolate, the onset of DON biosynthesis can be

pinpointed to specific infection stages and plant tissues.

Then, commercial monoclonal antibodies to DON can be

used on tissue sections to confirm associated DON produc-

tion. By this approach, will it be possible to compare DON

production in various mutant and transgenic Arabidopsis

lines to that occurring in wheat and barley ears and maize

cobs.

Experimental procedures

Fusarium strains and media

The two F. culmorum isolates used in this study were strains 97/7
and 98/11 which had been isolated from naturally infected wheat
ears taken from the Trumpington Cambridge site in 1997 and 1998,
respectively (Bill Hollins, personal communication). The F. grami-
nearum isolate 16A originated from the USA, was isolated from
infected wheat grain collected from a wheat grain elevator in
Montana in 1997 and was a gift from Linda Lahman (Monsanto,
St. Louis). All three isolates were capable of causing severe ear
blight symptoms on susceptible wheat cultivars and to produce
DON mycotoxins (M. Urban and C. Heppner, unpublished data).

Both F. culmorum and F. graminearum were propagated on SNA
plates (synthetic nutrient poor agar) containing 0.1% KH2PO4, 0.1%
KNO3, 0.1% MgSO4�7 H2O, 0.05% KCl, 0.02% glucose, 0.02% sac-
charose, 2% Bacto agar (Difco) supplemented with 200 ppm biotin
and 200 ppm thiamine. For long-term storage in liquid nitrogen,
conidiospore suspensions were prepared to a density of 107

spores ml�1 in 10% glycerol. Spore suspensions for plant inocula-
tions were derived from culture plates which had been subcultured
a maximum of four times. Conidiospores were harvested from
90 mm SNA agar plates after 10 days incubation by adding 5 ml
sterile water and scraping off conidiospores with a spatula. Alter-
natively bubble cultures (Cappellini and Peterson, 1965) were
established to create a greater volume of conidiospores. The
spores were recovered by centrifuging at 3000 g for 6 min at
48C, then re-suspended gently in growth media and stored for
up to 7 days at 48C prior to use. For plant inoculations, aliquots of
spores were taken from the stock, recovered by centrifuging at
3000 g for 6 min at 48C, washed once with sterile de-ionised water,
centrifuged again and re-suspended in water plus 0.001% Silwet L-
77 to give a final spore concentration of 1	 105 spores ml�1. Con-
idiospores were counted using a haemocytometer. All experiments
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involving the F. graminearum isolate 16A were conducted in bio-
logical containment facilities under DEFRA licences PHL 39B/3819
(5/2001) and PHL 39A/3493 (01/2001).

Growth of plant material

Arabidopsis seed was sown into Levingtons F1 compost and kept
in a propagator for 4 days at 48C to ensure even germination. The
pots of germinated seeds were then moved to a controlled envir-
onment growth room with a temperature of 208C and a 12-h light/
12-h dark cycle. Light was supplied by a mixture of metal halide
and incandescent lamps to produce a fluence level of 171 microM
at 64.5 W msq�1 at the plant surface. Ten days later, at the one leaf
stage, seedlings were pricked into vacupots (24 units per tray),
again into F1 compost. Plant pots were placed on capillary matting,
which was kept moist at all times. Flowering commenced approxi-
mately 3 weeks after the seedling were pricking out. Under these
environmental conditions, the full ap3-1 Arabidopsis mutant phe-
notype was always evident.

Tobacco seeds of cultivar Petit Havana, tomato seeds of cultivar
Moneymaker (Cf-0) and soybean seeds of cultivar A3244 were
sown in Levingtons F1 compost, and pricked out singly into
Levingtons F2 compost at the 2–4 leaf stage into 10-cm pots.
The plants were grown in a controlled environment growth
room at 248C during the 16-h day and 168C at night. Light was
supplied by a mixture of metal halide and incandescent lamps to
produce a fluence level of 207 microM at 86.2 W msq�1 at the plant
surface.

Wheat seeds of spring cultivar Bobwhite were sown in Leving-
tons C2 coarse potting compost for 2 months in a controlled
environment growth room at 188C during the 16-h day and 168C
during the 8-h night at 50% relative humidity. Light was supplied
by a mixture of metal halide and incandescent lamps to produce a
fluence level of 207 microM at 86.2 W msq�1 at the plant surface.

Plant inoculations

Only flowering plants were selected for inoculation. The Arabi-
dopsis plants possessed an unbranched bolt with both open
flowers on the terminal inflorescence and two to three developing
siliques. Ten plants from each genotype were selected for each
Fusarium inoculation, and a further two to three control plants to
be sprayed with water. A permanent black marker pen was used to
mark the position on the flower stem above which only open
flowers were present and below which siliques had already set.
Tobacco, tomato, soybean and wheat plants were selected just as
flowering/anthesis commenced. Six plants of each species were
selected for each experiment. One to three flowers per plant were
inoculated. A randomised block experimental design was used to
minimise experimental error and each experiment was conducted
a minimum of three times.

For the inoculation of Arabidopsis flowers, a fine droplet spray
applicator was used. The spore suspension was applied until
droplet run-off had just commenced. After this, each inflorescence
was re-inoculated with the inoculum dispensed this time from a
medical nasal applicator, four puffs per flower head. Control plants
were inoculated in the same way using de-ionised water. The
inoculated plants were then kept in large plastic propagators at
100% relative humidity for the next 7 days. For the first 2 days, the
chambers were shaded with capillary matting to exclude light. A
similar dark procedure is used when inoculating wheat ears.
Individual plants were scored for disease symptoms from day 2
onwards with the final disease score taken at day 7 post-inocula-
tion.

For the inoculation of the tobacco flowers, soybean flowers and
wheat ears, the inoculum was dispensed from the medical nasal
applicator, four puffs per open flower and eight puffs per wheat
ear. The anther cones of the tomato flowers are extremely waxy
and this caused most spore droplets to be lost immediately
through run-off. Therefore, a single segment of the tomato flower
anther cone was removed by the use of a pair of fine forceps.
Then, using a P10 Gilson pipette, 5 ml of spore suspension was
added to the inside of each anther cone. After inoculation, all
the plants were treated as described above for the Arabidopsis
inoculations.

Disease scoring on Arabidopsis

To quantify accurately the levels of disease symptoms visible on
the various Arabidopsis floral tissues, a numerical scoring system
was devised. This is shown in Table 1. The disease phenotypes
were assessed for three separate floral subcomponents, namely
flowers (F) that were either open flowers or closed buds at inocu-
lation, new siliques (NS) that were fully open flowers at inoculation
(i.e. located above the permanent mark placed on the stem) and
older siliques (OS) already present at inoculation. An increasing
numerical score was used to quantify the abundance of aerial
mycelium on a tissue surface (0, 1), as well as the increasing
severity of the disease symptoms visible on plant tissue as the
invasion process progresses (3–7). The intermediate scores of 2
and 4 (F), and 2, 4 and 6 (NS and OS) were reserved for when all the
tissue on a single plant exhibited the disease phenotype described
for the preceding score. For example, 100% drying of flowers
received a score of 4. The final Fusarium–Arabidopsis disease
(FAD) value was calculated by addition of the three subcomponent
scores, i.e. FþNSþOS¼ FAD. Arabidopsis genotypes with FAD
values of 3 and below were classified as exhibiting resistance to
Fusarium ear blight whereas those with values of 10 and above
were classified as susceptible.

Plant infection studies

Floral tissue was taken at 2, 3, 4, 5, 6 and 7 days after inoculation
from each genotype/Fusarium isolate interaction. Conventional
histochemical staining of fungal hyphae was performed using
lactophenol–trypan blue and de-staining with chloral hydrate
(Keogh et al., 1980). Microscopic observations were made on a
Carl Zeiss ‘Axioskop 2’ instrument under phase contrast and
photomicrographs were prepared with Kodak Ektachrome 160
Tungsten films. Statistical analyses were conducted according
to Snedecor and Cochran (1980) and using either the SAS statis-
tical package or the data analysis tools in MS Excel.

DON determinations

Four grams of infected Arabidopsis floral tissue from La-er and
Col-O plants was harvested 8 days post-Fusarium-inoculation, fro-
zen in liquid nitrogen and stored at �808C. Similar samples were
collected from water-inoculated control plants. The frozen tissue
samples were ground to a fine powder in a mortar using a pestle in
the presence of liquid nitrogen. One gram of each sample was then
re-suspended in 3 ml of water and thoroughly mixed using a
polytron for 30 sec. The mixture was then incubated for 30 min
at 308C in a water bath. All solid parts were removed by centrifuga-
tion and the supernatants were analysed for mycotoxin content.
Quantitative analysis of combined DON and its precursor 15-acetyl
DON measurements were made using the commercially approved
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competitive ELISA Veratox 5/5 kit (Adgen, Ayr, Scotland) and
deploying a standard curve for DON ranging from 0.25 to
3.00 ppm. OD650 values were measured 5 min after the addition
of the stop solution to the multiwells. To ensure accuracy, each
biological same was quantified twice for combined DON and 15-
acetyl DON levels.
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