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Soil hydraulic properties are an important factor to optimize and adapt water
management for a given crop. Pedotransfer functions (PTFs) present a solution to
predict soil variables such as hydraulic properties, using fundamental soil properties.
In this research, we compared two sources of soil information: iSDAsoil data and field
data, in four regions in Morocco. We then used this data to evaluate published data
and developed new PTFs using soil information to estimate soil gravimetric moisture
content at saturation (w0), field capacity (w330) and permanent wilting point (w15000).
A total of 331 samples were collected from four regions: Doukkala, Gharb-Loukous,
Moulouya and Tadla. The data was divided into calibration and validation datasets.
For development of different PTFs, we used simple linear regression, multiple linear
regression, regression tree, Cubist algorithm, and random forest approaches. PTFs
developed by Dijkerman (Geoderma, 1988, 42, 29–49) presented the best
performance, showing lower RMSE, Bias and MAE compared to other PTFs. Using
multiple linear regression to develop PTFs, models based on clay, silt and soil organic
matter as input variables showed the best performance after calibration (R2 of 0.590,
0.785, 0.786 for w0, w330, and w15000, respectively). Regarding the techniques based
on machine learning, random forest showed the best performance after calibration
compared with other algorithms (R2 of 0.930, 0.955, 0.954 for w0, w330, and w15000,
respectively). PTFs represent a low cost and easy technique to estimate soil hydraulic
properties, to improve water management efficiency for the farmers.
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1 Introduction

Agricultural intensification coupled with changing climate are
causing soils to become increasingly vulnerable to stresses; of
particular concern and importance is the effect of drought.
Specifically, within African countries that presented large
agricultural areas with arid and semi-arid climates, and low water
availability for agriculture. These countries are characterized by high
soil diversity and limited financial resources (Diop et al., 2022).

During the last decades, water scarcity has become an important
issue in African agriculture, due to the high space-temporal variability
of rainfall, elevated rate of evaporation, groundwater depletion, and
continuing degradation of water quality. Therefore, irrigation
management is crucial for sustainable water use by increasing
water use efficiency, water productivity, and reducing water waste.
Scientists developed several models based on soil characterization and
other parameters to help the farmers in deciding different irrigation
strategies to be adopted. These models include SPAW model (Saxton
and Willey, 2005), the AquaCrop model (Steduto et al., 2009), and the
IRRINET model (Mannini et al., 2013). They use principally data
related to soil hydraulic properties and water retention curve (Strati
et al., 2018).

The water retention curve (WRC) is a soil hydraulic property that
describes the behavior of water storage in the soil in different tensions,
giving the relationship between matric potential and soil water content
at equilibrium (Klute, 1986). Two specific points in this WRC are
important: field capacity (FC) and permanent wilting point (PWP). FC
corresponds to the upper limit of available water in the soil, which can
be determined in the laboratory by evaluating soil water content at a
matric potential of -33 kPa in almost all of the soils (Cassel and
Nielsen, 1986). Soil moisture at FC corresponds to the optimum
hydraulic condition for plant growth, by allowing higher
absorption of water and nutrients by the plants. PWP corresponds
to lower limit of available water in the soil. At this stage, the soil still
contains some water, but it is difficult for the roots to extract it from
the soil (Rai et al., 2017). Therefore, available water capacity (AWC)
for each soil type is defined as the amount of water retained between
the FC and PWP.

Standard methods for determining soil hydraulic properties
(WRC, FC, and PWP) are performed in the laboratory using a
series of equilibria between water in the soil sample and matric
potential applied. At each equilibrium, the volumetric or
gravimetric water content of the soil is determined and paired with
a value of the matric potential. Several methods are used to measure
soil hydraulic properties with different ranges of matric potential, such
as the hanging water column, the pressure cell, the long Column, the
Pressure Plate Extractor, and the Suction Table (Klute, 1986).

Soil hydraulic properties have different applications compared to
agriculture and environment. Such as its use in smart irrigation
monitoring to define the amount of water, and to define the
starting time of irrigation events, principally based on the FC as
the upper limit of soil moisture in the soil and lower threshold value at
management allowable depletion, which presents 40–50% of AWC
depending on climate conditions, soil, and crop demands (Allen et al.,
1998). AWC can be used also as an indicator of water storage
(Reynolds et al., 2002), for modeling of water drainage (Pires et al.,
2008), and for water flow forecasting (Zhuang et al., 2017). However,
determination of soil hydraulic properties is a time consuming task
given the high variability of the soil and the limited number of

laboratories carrying out this type of analysis across Africa (Gupta
and Larson, 1979).

In some cases, soil properties modelled using pedotransfer
functions (PTFs) can present a solution to overcome the
limitation of infrastructure and facilities. PTFs are predictive
models based on statistical techniques to estimate soil properties.
These models use easily measurable soil properties (soil texture and
soil organic matter) to predict complex soil properties. Several PTFs
were developed to estimate different soil properties such as bulk
density (Brahim et al., 2012; Sevastas et al., 2018), soil erodibility
(Zhu et al., 2022), cation exchange capacity (Enang et al., 2022), and
soil hydraulic properties (Rudiyanto et al., 2021; Amorim et al., 2022;
Acevedo et al., 2023).

In African conditions, the development, and evaluation of a PTF is
needed because the continent presents a high diversity and variability
of soil and there are only a few laboratories that have the capacity and
resources to perform the analysis of hydraulic soil properties. The
development of PTFs on regional and continental scales is very
limited. Few works focused on the development of PTFs for
African soils. The first study that developed PTFs on this continent
was the research conducted by Pidgeon (1972), which involved 44 soil
samples of Ferratilic soil from Uganda. This research used multiple
regression equations to estimate field capacity and permanent wilting
point from soil texture and Soil Organic Matter (SOM). Later, Lal
(1978), Aina and Periaswamy (1985), and Dijkerman (1988)
developed PTFs to estimate available water-holding capacity from
soil texture, bulk density, and SOM. Further, Botula et al. (2012)
presented pedotransfer functions for predicting water retention of
soils in Lower Congo. This research was performed using 60 samples
mainly from sandy soil using PTFs developed in tropical and temporal
regions.

Moreover, according to the literature, there are two approaches
used by the researchers in the development of PTFs regarding soil
data information used. Firstly, can be used specific dataset related to
soil sampled from the study area. Almost of PTFs developed for
African soil used soil data generated in a specific study or project
(e.g., PTFs developed by Lal (1978) using 199 samples of Nigerian
soil, PTFs developed by Dijkerman (1988) using 166 samples from
13 regions in Sierra Leone). Secondly, PTFs have been developed
regional or continental soil information databases (e.g.,
Hydrophysical Database for Brazilian Soils (Brazil) (Ottoni
et al., 2018), Grenoble Catalogue of Soils for French soils -
GRIZZLY (Haverkamp et al., 1997), Unsaturated Soil Hydraulic
Database for the soils the United States - UNSODA (Nemes et al.,
2001)).

The lack of soil information in Africa is a constraint for the
development of sustainable agriculture, improvement of crops
management systems, and reducing yield-gap (Maynard et al.,
2022). Technological progress and digital soil mapping have
allowed the production of soil maps with high resolution and low
cost. However, the use of this technologies is limited in Africa, due to
unavailability of soil information at national or regional scales
(Bodenstein et al., 2022). Chen et al. (2022) reported that
publications related to soil mapping are less than 10% in this
continent. Despite several projects trying to map the soils of Africa,
there are only few studies evaluating this product by the final users
(Maynard et al., 2022).

Therefore, this study aimed: 1) to evaluate published pedotransfer
functions for their application to Moroccan soils, 2) to assess whether
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the improvement can be obtained by fitting new equations and models
using regressions and machine learning algorithms, and 3) to compare
soil hydraulic properties estimate with PTF’s and soil data from the
iSDA with those using measured soil data.

2 Material and methods

2.1 Study area

The study area spans four important agricultural areas in
Morocco, which have a marked contrast regarding ecological,
pedological and climate condition. These regions are: Doukkala,
Gharb-Loukous, Tadla and Moulouya (Figure 1).

Doukkala is a region located in the west-central Morocco, covering
an area of 1,328,500 ha. Agricultural area is 428,000 ha, divided into
rainfed agriculture (75%) and irrigated agriculture (25%) (Doumali
and Ibno Namr, 2018). This region is characterized by a semi-arid
Mediterranean climate, with rainy winter and dry summer. Rainfall
distribution is irregular throughout the months and years, with an
annual average of about 322 mm, mostly occurring from October to
February. The soils of the region are constituted by six types: poorly
developed soils (16.5%), vertisols (30%), calcimagnetic soils (9.4%),
isohumic soils (36%), soils with iron sesquioxides (6.7%), and
hydromorphic soils (1.4%) (Doumali and Ibno Namr, 2018).

Gharb-Loukous region is constituted by the plain of Gharb and the
watershed of Loukous. Gharb -Loukous region is in the northwest
Morocco. It is a large plain with very flat relief and an altitude bellow
50 m (Bounouira et al., 2018). Agricultural area is 616,000 ha, divided

into rainfed agriculture (40%) and irrigated agriculture (60%). This
region is impacted by the oceanic influence, and according to
Emberger classification, it is a subhumid bioclimatic stage with
temperate winter with a gradual transition to the semi-arid level
going east (FAO, 2015). Gharb plain is constituted by the following
soil types: poorly developed soils (33%), vertisols (57%),
hydromorphic soils (8.5%), and calcimagnetic soils (1.5%).

Moulouya region is located in the lower of the Moulouya
watershed, which is the largest watershed in North Africa
(Tovar-Sánchez et al., 2016). Climate in the basin is typically
Mediterranean to semi-arid, characterized by large variability in
precipitation with yearly accumulated values ranging between
230 and 380 mm.

Tadla region is in the central Morocco, with an area of 360,000 ha
constituted by the Tadla plain. The average altitude is 400 m. The
climate is arid to semi-arid. The dry season extends from April to
October, while the wet season occurs during the period from October
to March. The summer is very hot because of the scorching winds
from the south-west called Chergui which raises the temperatures
above 40°C. Tadla plain is constituted by the following soil types:
isohumic (83%), calcimagnetic soils (11%), and hydromorphic
soils (6%).

2.2 Soil sampling

Disturbed soil, sampled from topsoil (0–20 cm). We selected to
sample the topsoil because this layer presents the layer most
affected by the soil management systems principally the

FIGURE 1
Location of study areas and sampling regions in Morocco.
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alteration in soil organic matter, compared deeper layers. The
samples were collected from four agricultural regions in
Morocco and georeferenced using a handheld GPS (model
Garmin GPSMAP 64s), with a resolution of 3.65 m. These
samples were collected in different periods from 2019 to 2022.
Total of 331 samples were collected from four regions in Morocco:
Doukkala (78 samples), Gharb-Loukous (116 samples), Moulouya
(73 samples), and Tadla (74 samples). Location of studied regions is
shown in Figure 1. In the laboratory, samples were air-dried,
crushed, mixed, and sieved through 2-mm mesh. Soil samples
were classified following the USDA soil texture classification,
and the textural triangle was plotted using R package soil
texture ‘soiltexture’ (Moeys et al., 2018).

2.3 Soil physical and chemical analysis

Determination of soil organic carbon was performed using
sulfochromic oxidation of carbon in a mixture of potassium
dichromate (K2Cr2O7) and sulphuric acid (H2SO4) at of 135°C,
according to Walkley and Black (1934). Particle size distribution
was conducted using a hydrometer method (Bouyoucos, 1962),
using a sodium hexametaphosphate with a concentration of 5% as
dispersing solution, and recording the hydrometer reading at 40 s,
2 h, 4 h, 6h, and 24h. Soil water content at field capacity (FC) and
permanent wilting point (PWP) were measured following the
methodology proposed by Klute (1986). Disturbed samples
using approximately 40 g of soil put in soil rings (0.053 m of
diameter and 0.01 m of height) without packeting. Soil samples
were saturated by capillarity with water up to two-thirds of the ring
height, and submitted after saturation, to the matric potentials of
-33 kPa (FC) and -1,500 kPa (PWP) (Klute, 1986; Vomocil, 1986).
The use of disturbed samples to determine FC and PWP was used
in different previous studies (Shaykewich, 1970; Jong et al., 1983).
Available water capacity for plants (AWC) was calculated using the
Equation (1). Water content at saturation, FC and PWP is
expressed in gravimetric moisture content as mass of water by
mass of dry soil, presented by w0 at saturation, w330 at FC, and
w15000 at PWP.

AWC � w330–w15000 (1)

2.4 Soil map acquisition and processing

The field dataset was compared with the regional soil information
iSDAsoil dataset, which was from a soil map published by Hengl et al.
(2021), with 30 m of resolution. To obtain soil information regarding
clay, sand, silt, and total soil organic carbon, digital soil maps were
downloaded from the site https://www.isda-africa.com/isdasoil/. For
the calculation of the soil organic matter (SOM) from total soil organic
carbon, we used the factor of 1.724 by multiplying the total soil organic
carbon to obtain SOM (Khatoon et al., 2017). To avoid the effect of
spatial autocorrelation, we used average nearest neighbor analyses to
remove spatially correlated data (Fortin et al., 2001). After this
selection, 282 samples were kept from 331, to compare between
both sources of data (field and iSDAsoil); for the modeling all
samples (331) were included.

2.5 Pedotransfer functions (PTFs)

PTFs were evaluated based on gravimetric soil moisture. We
selected PTFs used and tested in different studies from literature to
predict soil moisture at field capacity (w330) and permanent wilting
point (w15000) (Pidgeon, 1972; Lal, 1978; Arruda et al., 1987;
Dijkerman, 1988). The selection of PTFs was based on the
selection of PTFs that used soil texture, and soil organic matter as
input variables, and gravimetric soil moisture as output. PTFs assessed
in this study are summarized in Table 1.

2.6 Calibration and validation procedures of
PTFs

For the evaluation of the PTFs, we followed two procedures.
The first procedure is the calibration procedure by building models
using the equation developed by other authors, selected in the
Table 1 (Contreras and Bonilla, 2018). The second procedure is the
validation procedure, by changing the parameters of the PTF
equation (Contreras and Bonilla, 2018). Soil database was
separated in two subsets, 50% of samples were used for
calibration, and 50% of samples were used for validation.
Random numbers were generated to split and to select points
from each subset as recommended by Minasny and McBratney
(2002), using R software (R Core Team, 2017).

2.7 Machine learning techniques

In general, the PTFs were based on simple linear regression, to
look for the relationship between the estimated variable and an
available soil information property (soil texture or soil organic
matter). We tested different models of simple linear regressions
using different soil properties using the version 4.1.3 of R software
(R Core Team, 2017). In addition, we tested new PTFs by using
multiple linear regression following a stepwise procedure. For this,
we included all soil variables in the model, then we selected models
that presented high coefficient of determination (R2) and significant
p-value. Furthermore, we evaluated models based on machine
learning and non-linear algorithms such as regression tree,
Cubist algorithm and random forest.

Regression tree was described by Breiman et al. (1984), as an
algorithm using a binary recursive partitioning to split the data into
partitions or branches, and then continues splitting each partition into
smaller groups as the method moves up each branch.

Random forest is an algorithm constructed using an ensemble
of decision trees. The tree is created randomly from different
samples of rows and different sample of features is selected for
splitting. Each tree performed its own individual prediction, then
the prediction of the model is averaged using the prediction of each
tree (Breiman, 2001).

Cubist algorithm is a rule-based model based on the predictors
used in previous splits, and the prediction is made at the terminal
node. Linear models are used at each step of the tree, and the tree is
reduced to a set of rules (Kuhn and Johnson, 2013).

These algorithms were performed using the specific R packages
and adjusted parameters following the methodology used by Cueff
et al. (2021). Regression tree was carried out using “rpart” package
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(Therneau et al., 2022); the minimum number of observations that
must exist in a node was 50 (minsplit = 50). Cubist algorithm was
performed using “cubist” package (Kuhn et al., 2022), using the
following parameters: number of rules by node (rules = 5). The
predictions rules are adjusted to value of extrapolation of 5
(extrapolation = 5), number of the models used (committees = 1).
Random forest was performed using “randomForest” package (Liaw
andWiener, 2018), using the following parameters: number of trees in
the model (ntrees = 1,000), number of variables in each node (node
size = 10), and number of variables randomly sampled in each division
(mtry = 2).

2.8 Evaluation of the PTFs performance

The evaluation of the PTFs performances was carried out using
different metrics: coefficient of determination (R2) (Eq.2), mean
absolute error (MAE) (Eq.3), and root mean square error (RMSE)
(Eq.4), BIAS (Eq.5), and the concordance correlation coefficient (CC)
(Eq.6). All statistical analysis and modeling equations were performed
using the version 4.1.3 of R (R Core Team, 2017).

R2 � ∑n
i�1 Ŷi − �Y( )2∑n
i�1 Yi − �Y( )2 (2)

MAE � ∑n
i�1 Ŷi − �Y( )

n
(3)

RMSE �
�����������
1
n
∑n
i�1

Ŷi − �Y( )2√
(4)

BIAS � ∑n
i�1 Ŷi − Yi( )

n
(5)

where Ŷi is predicted value for observation i, Yi is observed value for i,
�Y is the average for soil variable selected, n is the number of
observations.

CC � 2 σ12
µ1 − µ2( )2 + σ21 + σ22

(6)

where µ1 and µ2 are the mean for observed and predicted variables,
respectively. σ1 and σ2 are the standard deviations for observed and
predicted variable, and σ12 is their covariance.

3 Results and discussion

3.1 Preliminary analysis of the dataset

Soil texture distribution is presented in Figures 2, 3 following the
USDA classification. Clay is the dominant class (38.07%), followed by
Clay Loam (20.24%) and Sandy Clay Loam (9.97%), representing the
different soil textures which could be present in arid and semi-arid
regions (Figure 3). Figure 4 shows the results of hydraulic properties in
different sampled regions. Soil hydraulic properties presented the
same trend comparing the four regions, increasing from left to
right side of the textural triangle (Figure 3). However, the lower
values of w0 and w330 were in Doukkala region, 0.55 g g−1 and
0.15 g g−1 respectively (Figure 4). Though, the highest values were
in Gharb-Loukous region with value of 0.76 gg−1 and 0.30 gg−1,
respectively. Moulouya region presented the highest value of AWC
of 0.11 gg−1. In other words, the results show that both the w330 and
w15000 increase with decreasing of soil particle size.

3.2 Comparison between iSDAsoil and field
dataset

In general, field data have a high variability when comparing the
coefficient of variation (CV), and the classification of soil variability
established by Oku et al. (2010), which classifies soil variability in the
following classes: low variability (CV: 0%–15%), medium variability
(CV: 16%–35%), high variability (CV>36%).

For the Doukkala region, iSDAsoil dataset presented low
variability, with CV less than 15% in all soil properties studied. In
Table 2, it is observed that the CV is higher than 35% for clay, silt, and
SOM in the collected samples of the Doukkala region. Gharb-Loukous
region presented the same trend regarding the low variability in soil
information used from iSDAsoil dataset. However, the field data
presented high variability with values of CV of 85.16%, 38.16%,
and 40.01% in the sand, silt, SOM, respectively. In the Moulouya
region, moderate variability was observed in the clay fraction in field
data and iSDAsoil dataset. Regarding the field data, this region
presented lower soil variability when compared to other regions. In
the Tadla region, low variability in all soil properties in iSDAsoil data,
contrariwise moderate to high variability was observed in the field

TABLE 1 Selected PTFs from literature to predict soil moisture at field capacity (w330) and permanent wilting point (w15000) using water expressed in gravimetric
moisture (g.g−1).

Model Equation References

Model 1 w330 = 0.29 x (Clay + Silt) + 9.93 Arruda et al. (1987)

w15000 = 0.27 (Clay + Silt) + 1.07

Model 2 w330 = -0.35 x Sand +36.97 Dijkerman (1988)

w15000 = 0.39 x Clay +0.74

Model 3 w330 = 0.065 + 0.004 x Clay Lal (1978)

w15000 = 0.006 + 0.003 x Clay

Model 4 w330 = 0.0738 + 0.0016 x Silt +0.003 x Clay +0.017 x SOM Pidgeon (1972)

w15000 = -0.0419 + 0.0019 x Silt +0.0039 x Clay+0.005 x SOM

SOM: soil organic matter.
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data. In general, in all studied regions, iSDAsoil dataset tended to
underestimate clay and silt content, and overestimate sand content
and SOM (Table 2).

Regarding the performance of iSDAsoil data among studied
regions, Gharb-Loukous region presented higher value of RMSE
and MAE in all soil variables, principally for clay with RMSE
27.32%. According to Minai et al. (2021), clay prediction in
digital soil mapping is based on the position on landscape using
the information derived from digital elevation model. High clay
content was predicted in flat depositional area and low clay contend
in the alluvial area characterized by slopy and erosional landscape.
We noted high clay content in the studied soil compared with
Mediterranean soils, which could be explained by the position in

landscape of the sampling points, as described in previous sections
the studied regions constituted by plains and flat landscape. Field
dataset with similar results were obtained by Eljebri et al. (2019) in
the Doukkala region.

3.3 Evaluation of the performance of iSDAsoil
data

ISDAsoil data presents an ambitious project of mapping African soil
with 30 m of resolution. This project was modelled using a machine
learning framework with a compilation of 150,000 soil samples and
different covariate layers representing information related to land cover,

FIGURE 2
Distribution of texture classes of soil samples for all regions.

FIGURE 3
Soil texture of the collected samples plotted by soil region based on USDA texture classification.
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land use, land surface temperature, digital terrain parameters and
bioclimatic variables.

Different criteria of evaluation of the performance of iSDAsoil data
(predicted) and field data (observed) are presented in Table 3, comparing
studied variables in the four regions. Silt showed lower values of RMSE and
MAE. RMSE ranged from 11.22% to 27.32%, 9.34%–20.92%, 16.44%–
40.31%, and 1.37% to 1.86, for clay, silt, sand, and SOM, respectively.
Gharb-Loukous region presented highest values of RMSE and MAE in all
soil variables, and the lower values are presented in the Moulouya region
and Doukkala region. Regarding the SOM, Tadla region presented low
values of RMSE (1.37%) and MAE (1.17%).

Variables used in the present study had a good accuracy and
performance (Hengl et al., 2021). Using this iSDAsoil dataset allowed
to predict hydraulic properties with different accuracies. However,
iSDAsoil data tended to overestimate soil moisture content using
PTFs, that could be explained by the overestimation of the soil
properties used as input variables in the models. In addition, PTFs
developed and selected presented the same trend regarding the
performance in both data (iSDAsoil and field data).

The comparison between field and iSDAsoil data showed high values
of RMSE and MAE in the Gharb-Loukous region. The clay soil in Gharb-
Loukous region is a Vertisol formed on marl or on alluvial and colluvial
material, as described by Moussadek et al. (2017), with clay content that
could reach 80%. The solum formed by marl can reach several meters
before finding a calcareous crust or a sandy horizon (Moussadek et al.,
2017). However, the soils in Doukkala region are clay sandy soil as
confirmed by ours results (Moussadek et al., 2017). Low accuracy to
predict SOM could be explained by under-representation of the studied
regions, and soil organic carbon dynamic in the soil, affected by the soil

management system, crop systems, and climate change (rainfall,
temperature, and mineralization) (Hengl et al., 2021).

3.4 Evaluation of the performance of the PTFs

3.4.1 Dataset calibration
Results of the evaluation of the pedotransfer functions using the

calibration dataset is shown in Table 4. Comparing different PTFs
using the same parameters that constituted different PTFs as
published in the literature are presented in the Table 1. PTFs
developed by Dijkerman (1988) had the best performance with low
errors using the RMSE, Bias and MAE, followed by the PTFs
developed by Arruda et al. (1987). However, PTFs developed by
Lal (1978) and Pidgeon (1972) presented high error in the
prediction of hydraulic properties for Moroccan soils.

Table 5 summarized different equations using calibration dataset, for
performing simple linear regression to predict gravimetric soil moisture at
saturation w0, FC (w330) and PWP (w15000). The results showed that
higher values were obtained using the sand content as predictor variable,
with R2 values were 0.49, 0.75, and 0.72, for w0, w330, and w15000,
respectively. Followed by the model constituted by clay, which had
the best performance for predicting soil moisture content at PWP
with value of R2 of 0.60. Other models based on SOM, silt, clay + silt,
and clay/silt, presented poor performance between selected soil properties
and soil hydraulic properties in the study regions.

To assess the contribution of different predictor variables to
estimate different soil moisture, we used the multiple linear
regression, and the result is presented in Table 6. From the

FIGURE 4
Gravimetric water content at (A) saturation (w0), (B) field capacity (w330), (C)wilting point (w15000), and (D) available water capacity for different regions in
Morocco.
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30 plausible models, we kept only five models that had high R2 and
significant statistical test for multiple regression (R2 ≥ 0.5 or
p-value ≤0.001), as showed in Table 6. Silt and sand models
presented a negative coefficient, which indicates an inverse
relationship between soil moisture and silt and sand content.
Model_MLR2 and Model_MLR5 presented the best performance
with R2 value of 0.785 and 0.786 for predicting soil moisture

content at FC and PWP, respectively. In all five selected multiple
regression models the prediction of the soil moisture content at FC
and PWPwere better than the prediction of soil moisture at saturation.

3.4.2 Evaluation of PTF using validation dataset
Table 7 presents the performance of the PTFs using simple and

multiple linear regression. For predicting w0, RMSE ranged from

TABLE 2 Descriptive statistics of the soil sampled from four regions in Morocco (282 samples).

Region iSDAsoil data Field data

Clay Silt Sand SOM Clay Silt Sand SOM

-----------------------------------------------------------% by weight---------------------------------------------------------

Doukala

n = 72

Mean 28.09 13.70 58.22 2.55 26.51 17.53 56.81 3.19

Max 51.85 55.42 86.00 8.59 34.00 20.00 68.00 3.78

Min 8.17 0.04 13.00 0.42 19.00 14.00 45.00 2.75

SD 11.88 8.67 17.78 1.37 2.93 1.40 4.42 0.24

CV 42.28 63.33 30.54 53.74 11.03 8.00 7.78 7.42

Gharb-Loukouss

n = 94

Mean 50.48 36.64 12.88 2.31 27.71 19.93 51.88 3.78

Max 85.17 71.00 73.89 4.83 38.00 25.00 61.00 4.30

Min 15.19 10.66 0.49 0.57 21.00 17.00 38.35 2.92

SD 14.82 13.98 10.97 0.92 3.69 1.58 4.70 0.29

CV 29.35 38.16 85.16 40.01 13.33 7.94 9.06 7.69

Moulouya

n = 58

Mean 31.33 40.25 28.41 2.79 22.45 20.91 55.62 3.34

Max 48.52 54.12 50.59 5.65 33.00 24.00 64.00 4.47

Min 16.38 19.67 8.38 1.12 16.00 16.00 43.00 1.72

SD 6.38 7.42 9.07 1.17 4.05 1.57 5.01 0.68

CV 20.37 18.44 31.91 41.80 18.05 7.51 9.00 20.42

Tadla

n = 58

Mean 41.87 28.18 29.95 3.04 25.81 20.98 50.93 3.77

Max 63.95 50.93 58.61 6.72 33.00 25.00 61.00 4.47

Min 23.88 9.72 8.40 1.35 20.00 19.00 42.00 3.10

SD 10.18 9.50 11.27 1.08 2.89 1.64 4.39 0.35

CV 24.31 33.71 37.64 35.35 11.21 7.81 8.62 9.30

Total

n = 282

Mean 39.05 29.79 31.16 2.62 25.93 19.74 53.71 3.54

Max 85.17 71.00 86.00 8.59 38.00 25.00 68.00 4.47

Min 8.17 0.04 0.49 0.42 16.00 14.00 38.35 1.72

SD 15.03 14.78 21.53 1.16 3.92 2.06 5.21 0.48

CV 38.49 49.62 69.08 44.25 15.11 10.43 9.71 13.57

SOM: soil organic matter; SD: standard deviation; CV: coefficient of variation; n: number of samples.
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0.06335 g.g−1 to 0.12844 g.g−1, while MAE ranged from 0.05143 g.g−1to
0.09719 g g−1. Regarding, w330 RMSE varied from 0.03247 g.g−1 to
0.07639 g.g−1, while MAE ranged from 0.02668 g.g−1 to 0.05961 gg−1.

For w15000 estimation, RMSE was between 0.02596 g.g−1and
0.06172 g.g−1, and MAE varied from 0.02094 g.g−1 to 0.04794 g.g−1.
Overall, w0 is more difficult to predict compared to w330 and w15000,
showing high error. However, RMSE and MAE were higher in w0

compared to other soil moisture levels.
For w0 prediction, the lower values of RMSE and MAE were

obtained using the Model_SLR3 for simple linear regression

model with values of RMSE and MAE of 0.07613 g.g−1 and
0.05921 g.g−1, respectively. Using multiple linear regression two
models presented good performance for predicting soil water
content at saturation (w0): Model_MLR1 and Model_MLR5,
with values of RMSE of 0.06335 g g−1 for both models.

For w330 prediction, using simple linear regression the Model_
SLR3 presented the best performance with value of RMSE andMAE of
0.03449 g g−1 and 0.02874 g g−1, respectively. The model_
SLR3 corresponded to PTF developed by Dijkerman (1988) for the
prediction of soil moisture at FC.

Regarding the use of simple linear regression to develop PTFs, the
results showed that the best performance was presented by model
formed by sand as input variables, followed by the model constituted
by clay. Botula et al. (2012) found that Dijkerman (1988) and Pidgeon
(1972) performed the best result for estimating at FC and PWP. This
result indicated that sand content is the major determining variable for
predicting soil moisture in these soils for low absolute value of matric
potentials and can be explained by the mechanisms of water retention
in different fraction of the soil (sand and clay).

Water retention is controlled in soil by two mechanisms: adsorption
at surface particles and capillarity in the pores (Marshall et al., 1996). In
the sand fraction of the soil, the quartz surfaces are not reactive, and water
adsorption is limited to inferior surfaces of quartz, and water can be
drawn in the pores by capillarity, principally. For the sand fraction, at low
absolute value of matric potential the water flow is principally controlled
by capillarity through pores formed by sand particles. However, in clay
faction of soil, clay particles can adsorb water and the swelling can occur
as consequence (Marshall et al., 1996). Therefore, high absolute value of
matric potential is needed to move water in the clay fraction (Medina
et al., 2002; Wang et al., 2021).

Using multiple linear regression, the best performance to predict
soil water moisture at FC was obtained by theModel_SLR5 with values
of RMSE andMAE of 0.03247 g.g−1 and 0.02668 g.g−1, respectively. For
w15000 prediction, using the simple linear regression in Model_SLR3 as
in the case of w330 pointed out the best performance with values of
RMSE and MAE of 0.02696 g.g−1 and 0.02151 g.g−1, respectively.
Regarding the PWP prediction using multiple linear regression, the
lower error was obtained using Model_MLR5 with values of RMSE
and MAE of 0.02596 g.g−1 and 0.02.094 g.g−1, respectively. Model_
SLR5 corresponds to model developed by Pidgeon (1972).

The results of the evaluation of PTFs using iSDAsoil data are
presented in Table 8. Overall, the results presented low level of
prediction quality for all properties (w0, w330, and w15000) compared to
field data. Model performance was different for each hydraulic property.
For w0 predicting, iSDAsoil data tended to overestimate soil moisture at
saturation, FC, and PWP, mainly using simple linear regression, observed
by the positive value of BIAS. However, multiple linear regression models
tended to underestimate soil hydraulic properties. Regarding the
performance of different models for estimating different soil hydraulic
properties, the Model_MLR5 using multiple linear regression presented
the best performance, showing lower value of RMSE with values
0.08714 g.g−1, 0.03887 g.g−1, and 0.03016 g.g−1, respectively for w0, w330,
and w15000.Multiple linear regression models presented best performance
compared to simple linear regression.

For PTFs using multiple linear regression tested in the present
study, two models presented good performance. The best
performance was obtained by using clay, silt, and SOM (Model_
MLR5), followed by Model_MLR2 constituted by sand and SOM as
predictive variables.

TABLE 3 Evaluation of the performance of iSDAsoil data compared to field data
using root mean square error (RMSE), BIAS, mean absolute error (MAE).

Region Clay Silt Sand SOM

----------------------% by weight---------------------

Doukkala RMSE 11.63 9.42 16.83 1.50

BIAS 1.57 -3.83 1.41 -0.65

MAE 9.84 7.31 14.18 1.21

Gharb-Loukouss RMSE 26.99 21.98 40.43 1.81

BIAS 22.77 16.71 -39.00 -1.47

MAE 23.18 17.42 39.30 1.60

Moulouya RMSE 11.13 20.86 28.85 1.44

BIAS 8.89 19.34 -27.21 -0.55

MAE 9.41 19.49 27.21 1.17

Tadla RMSE 19.64 11.74 24.66 1.34

BIAS 16.06 7.20 -20.98 -0.73

MAE 16.38 9.56 22.16 1.14

Total RMSE 19.55 17.36 30.22 1.57

BIAS 13.12 10.05 -22.55 -0.92

MAE 15.54 13.65 26.87 1.32

SOM: soil organic matter.

TABLE 4 Evaluation of the pedotransfer functions published using root mean
square error (RMSE), BIAS, mean absolute error (MAE).

Model RMSE BIAS MAE

---------------------- g. g−1---------------

Model 1 Arruda et al. (1987) w330 0.1191 -0.0551 0.0872

w15000 0.0953 -0.0395 0.0724

Model 2 Dijkerman (1988) w330 0.0418 -0.0149 0.0340

w15000 0.0408 -0.0015 0.0338

Model 3 Lal (1978) w330 0.2610 0.2489 0.2489

w15000 0.1716 0.1597 0.1597

Model 4 Pidgeon (1972) w330 0.2571 0.2451 0.2451

w15000 0.1710 0.1591 0.1591

w0: gravimetric moisture content at saturation, w330: gravimetric moisture content at field

capacity and w15000: gravimetric moisture content at permanent wilting point.
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TABLE 5 Pedotransfer functions parameters using simple linear regression.

Intercept Clay Silt Sand Clay + Silt Clay/Silt SOM R2 p-Value

---------------------------------------------------------%-----------------------------------------------------------

Model_SLR1 w0 46.307 0.556 0.43630 <0.001

w330 10.277 0.365 0.49870 <0.001

w15000 3.081 0.327 0.60680 <0.001

Model_SLR2 w0 59.508 0.299 0.11230 <0.001

w330 16.178 0.290 0.27940 <0.001

w15000 10.521 0.187 0.17690 <0.001

Model_SLR3 w0 81.420 -0.427 0.49510 <0.001

w330 34.680 -0.324 0.75350 <0.001

w15000 23.927 -0.257 0.71760 <0.001

Model_SLR4 w0 89.401 -0.298 0.11230 <0.001

w330 45.178 -0.290 0.27940 <0.001

w15000 29.265 -0.187 0.17690 <0.001

Model_SLR5 w0 68.851 -0.546 0.00046 ns

w330 23.278 1.819 0.01359 ns

w15000 16.298 -0.244 0.00037 ns

Model_SLR6 w0 61.163 2.793 0.07007 <0.001

w330 21.331 1.339 0.04261 <0.01

w15000 13.758 0.902 0.02930 <0.01

SOM: Soil Organic Matter, w0: gravimetric moisture content at saturation, w330: gravimetric moisture content at field capacity and w15000: gravimetric moisture content at permanent wilting point.

TABLE 6 Pedotransfer functions parameters using multiple linear regression.

Intercept Clay Silt Sand SOM R2 p-Value

-----------------------------------------------%-------------------------------------------------

Model_MLR1 w0 87.342 -0.281 -0.548 2.377 0.591 <0.001

w330 35.844 -0.085 -0.359 0.947 0.785 <0.001

w15000 28.734 -0.148 -0.324 0.636 0.786 <0.001

Model_MLR2 w0 75.366 -0.417 2.219 0.539 <0.001

w330 32.227 -0.320 0.899 0.773 <0.001

w15000 22.421 -0.254 0.552 0.729 <0.001

Model_MLR3 w0 53.777 0.278 2.457 0.166 <0.001

w330 13.847 0.281 0.999 0.303 <0.001

w15000 8.929 0.182 0.683 0.194 <0.001

Model_MLR4 w0 39.432 0.553 2.699 0.502 <0.001

w330 7.023 0.364 1.278 0.537 <0.001

w15000 0.923 0.327 0.847 0.633 <0.001

Model_MLR5 w0 32.505 0.548 0.267 2.377 0.590 <0.001

w330 -0.094 0.359 0.274 0.947 0.785 <0.001

w15000 -3.623 0.324 0.175 0.636 0.786 <0.001

SOM: Soil Organic Matter, w0: gravimetric moisture content at saturation, w330: gravimetric moisture content at field capacity and w15000: gravimetric moisture content at permanent wilting point.
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Figure 5 presents the comparison between different models using
RMSE and MAE as criteria for w0, w330, and w15000 using field and
iSDAsoil data. For field data concerning the estimation of field
capacity and permanent welting point, two main groups of models

can be distinguished: first group with low value of RMSE and MAE,
constituted by the following models: Model_MLR5, Model_MLR1,
Model_MLR4,Model_MLR2,Model_SLR1, andModel_SLR3. Second
group with high value of RMSE andMAE, constituted by the following

TABLE 7 Evaluation of pedotransfer functions based on simple linear regression (Model_SLR1 to Model_SLR6) and multiple linear regression (Model_MLR1 to Model_
MLR5) using field data in four regions in Morocco, assessed by root mean square error (RMSE), BIAS, mean absolute error (MAE).

Model RMSE BIAS MAE PTF

--------------------- g. g−1-----------------

Model_SLR1 w0 0.07969 -0.00428 0.06067

w330 0.04670 -0.00472 0.03914 Lal (1978)

w15000 0.03555 0.00014 0.02856 Dijkerman (1988)/Lal (1978)

Model_SLR2 w0 0.11502 -0.01652 0.08830

w330 0.06064 -0.01339 0.04925

w15000 0.05005 -0.00719 0.04078

Model_SLR3 w0 0.07613 -0.00859 0.05921

w330 0.03449 -0.00707 0.02874 Dijkerman (1988)

w15000 0.02696 -0.00247 0.02151

Model_SLR4 w0 0.11502 -0.01650 0.08829

w330 0.06064 -0.01339 0.04925 Arruda et al. (1987)

w15000 0.05006 -0.00733 0.04081 Arruda et al. (1987)

Model_SLR5 w0 0.12884 -0.01496 0.09719

w330 0.07639 -0.01260 0.05961

w15000 0.06172 -0.00639 0.04760

Model_SLR6 w0 0.12257 -0.01000 0.09439

w330 0.07512 -0.00960 0.05946

w15000 0.06080 -0.00481 0.04794

Model_MLR1 w0 0.06335 -0.00122 0.05142

w330 0.03252 -0.00462 0.02671

w15000 0.02598 0.00031 0.02095

Model_MLR2 w0 0.07153 -0.00464 0.05728

w330 0.03396 -0.00545 0.02824

w15000 0.02728 -0.00165 0.02198

Model_MLR3 w0 0.11077 -0.01198 0.08651

w330 0.06002 -0.01140 0.04813

w15000 0.05006 -0.00619 0.04101

Model_MLR4 w0 0.07110 0.00067 0.05559

w330 0.04441 -0.00255 0.03675

w15000 0.03479 0.00134 0.02744

Model_MLR5 w0 0.06335 -0.00103 0.05143

w330 0.03247 -0.00424 0.02668 Pidgeon (1972)

w15000 0.02596 0.00018 0.02094 Pidgeon (1972)

w0: gravimetric moisture content at saturation, w330: gravimetric moisture content at field capacity and w15000: gravimetric moisture content at permanent wilting point.
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models: Model_MLR3, Model_SLR4, Model_SLR2, Model_SLR6, and
Model_SLR5. Concerning iSDAsoil data, the same structure of models
was presented in the prediction of w0, and w15000. However, for w330

prediction, three groups were constituted: first group formed by the

models presenting lower values of RMSE and MAE, Model_SLR3,
Model_MLR1, Model_MLR2, and Model_MLR5. Second group
constituted a transition between model with high and low
performance, this group is constituted by Model_SLR1, Model_

TABLE 8 Evaluation of pedotransfer functions based on simple linear regression (Model_SLR1 to Model_SLR6) and multiple linear regression (Model_MLR1 to Model_
MLR5) using iSDAsoil in four regions in Morocco, assessed by root mean square error (RMSE), BIAS, mean absolute error (MAE).

Model RMSE BIAS MAE PTF

-------------------- g. g−1-------------------

Model_SLR1 w0 0.09518 0.00797 0.07169

w330 0.05483 0.00221 0.04622 Lal (1978)

w15000 0.03890 0.00147 0.03181 Dijkerman (1988)/Lal (1978)

Model_SLR2 w0 0.12183 0.00616 0.09554

w330 0.06609 0.00067 0.05262

w15000 0.05632 0.00032 0.04439

Model_SLR3 w0 0.09139 0.00722 0.07049

w330 0.03917 0.00158 0.03036 Dijkerman (1988)

w15000 0.03300 0.00088 0.02497

Model_SLR4 w0 0.12183 0.00618 0.09554

w330 0.06609 0.00067 0.05262 Arruda et al. (1987)

w15000 0.05632 0.00018 0.04441 Arruda et al. (1987)

Model_SLR5 w0 0.12896 0.00633 0.09750

w330 0.07718 0.00201 0.06100

w15000 0.06220 0.00032 0.04740

Model_SLR6 w0 0.12619 -0.02003 0.09514

w330 0.07623 -0.01167 0.05879

w15000 0.06129 -0.00815 0.04717

Model_MLR1 w0 0.08718 -0.01502 0.06725

w330 0.03894 -0.00749 0.03178

w15000 0.03014 -0.00498 0.02330

Model_MLR2 w0 0.09161 -0.01392 0.07093

w330 0.03970 -0.00697 0.03198

w15000 0.03328 -0.00453 0.02517

Model_MLR3 w0 0.11972 -0.01731 0.09310

w330 0.06520 -0.00872 0.05218

w15000 0.05572 -0.00647 0.04468

Model_MLR4 w0 0.09564 -0.01771 0.07375

w330 0.05519 -0.01013 0.04698

w15000 0.03935 -0.00695 0.03273

Model_MLR5 w0 0.08714 -0.01482 0.06720

w330 0.03887 -0.00711 0.03168 Pidgeon (1972)

w15000 0.03016 -0.00511 0.02332 Pidgeon (1972)

w0: gravimetric moisture content at saturation, w330: gravimetric moisture content at field capacity and w15000: gravimetric moisture content at permanent wilting point.
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MLR3, and Model_MLR4. Third group constituted by the same
models that constituted the second group using the field data,
without Model_MLR3. Different group confirmed the variability of
the accuracy obtained by different models combined with different
sources of data.

3.5 Machine learning to predict soil hydraulic
properties

Table 9 shows results of calibration and validation of new
pedotransfer functions using different algorithms. Overall,
calibration dataset exhibited slight improvement compared to
validation dataset for all hydraulic properties. Nevertheless, both
variables w330 and w15000 presented the best performance compared
to w0 in all algorithms.

The results revealed better performance of random forest compared
to other algorithms for all properties (w0, w330, and w15000). Prediction of
w0 showed low performance compared tow330 andw15000with high value
of RMSE and low value of R2. Clay presented themost important variable
for the prediction of w0, w330, and w15000, with variable importance of

35.42%, 33.27% and 37.40%, respectively, followed by sand, with variable
importance of 33.16%, 32.18% and 31.48%, respectively (Figure 6).
Variable importance order presented almost the same behavior for all
predicted properties. Clay has the most important variable. Finally, SOM
was less important variable.

Regarding regression tree algorithm, the results showed R2 from
0.646 to 0.789 in the calibration dataset and ranged from 0.736 to
0.852 in the validation dataset: higher value of R2 associated with w330

prediction, medium value with w15000 prediction, and lower value with
w0 prediction. Concerning Cubist algorithm, R2 ranged from 0.626 to
0.786 in calibration dataset and from 0.782 to 832 in validation dataset.
In Cubist algorithm, w330, and w15000 presented the same performance
and low R2 values were observed in w0 prediction.

Several studies used models based on machine learning to predict
water retention properties (Lamorski et al., 2008; Al Majou et al., 2018;
Kotlar et al., 2020; Cueff et al., 2021). In general, random forest
presented the best performance compared to other models based on
machine learning or not. For example, Kotlar et al. (2020) compared
random forest with linear regression using 192 samples collected in
different land used (native forest, integrated crop livestock systems
and grazing pastures. Similar results were obtained by Cueff et al.

FIGURE 5
Comparison between RMSE (root mean square error) and MAE (Mean absolute error) for pedotransfer functions tested using simple linear regression
(Model_SLR1 to Model_SLR6) and multiple linear regression (Model_MLR1 to Model_MLR5), for dataset based on field data (A): predicting w0; (B) predicting
w330; (C) predicting w15000), and for iSDAsoil data (D): predicting w0; (E) predicting w330; (F) predicting w15000).
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TABLE 9 Evaluation of new pedotransfer functions using regression tree, Cubist algorithm, and random forest in four regions in Morocco, assessed by the following
criterion (coefficient of determination (R2), concordance correlation coefficient (CC), root-mean-square error (RMSE), BIAS, mean absolute error (MAE)).

Regression tree

Calibration Validation

R2 CC MSE RMSE BIAS R2 CC MSE RMSE Bias

w0 0.646 0.782 56.797 7.536 0.000 0.736 0.841 43.444 6.591 -0.327

w330 0.789 0.879 12.782 3.575 0.000 0.852 0.908 8.813 2.969 0.491

w15000 0.777 0.871 8.913 2.986 0.000 0.829 0.898 6.660 2.581 0.341

Cubist Algorithm

Calibration Validation

R2 CC MSE RMSE BIAS R2 CC MSE RMSE BIAS

w0 0.626 0.769 60.118 7.754 0.268 0.782 0.868 35.800 5.983 0.290

w330 0.785 0.874 13.188 3.632 -0.380 0.832 0.901 10.408 3.226 0.118

w15000 0.786 0.876 8.606 2.934 -0.159 0.832 0.900 6.807 2.609 -0.167

Random Forest

Calibration Validation

R2 CC MSE RMSE BIAS R2 CC MSE RMSE BIAS

w0 0.922 0.942 14.897 3.860 -0.015 0.930 0.944 12.821 3.581 0.037

w330 0.950 0.964 3.454 1.859 -0.025 0.955 0.962 2.862 1.692 0.385

w15000 0.950 0.963 2.335 1.528 -0.024 0.954 0.962 1.804 1.343 0.196

CC: concordance correlation coefficient, w0: gravimetric moisture content at saturation, w330: gravimetric moisture content at field capacity and w15000: gravimetric moisture content at permanent

wilting point.

FIGURE 6
Variable importance of the predictor used in random forest models to predict soil water content: (A) at saturation (w0), (B) at field capacity point (w330),
and (C) at permanent wilting point (w15000) using the following variables: Clay, Sand, Clay_Silt (clay content + silt content), silt and soil organic matter (SOM).
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(2021) regarding the performance of random forest compared to other
algorithms. In the present study, random forest showed the best
performance compared with regression tree and Cubist algorithm.

Performance variability and low-quality prediction of published
PTFs, could be explained by different reasons: 1) lack of
harmonization of the protocol used in the determination of soil
moisture at field capacity and wilting point, 2) difference in
sampling, quantity and representativity of soil used, 3) difference in
sample size and number of replicates to perform the analysis (Román
Dobarco et al., 2019; Cueff et al., 2021), and 4) difference in selected
soil properties (chemical, physical and mineralogical properties) used
to develop these PTFs.

3.6 PTFs development for sustainable water
management

PTFs developed is this study can estimate soil hydraulic properties
from soil particle size distribution, and soil organic matter, and to
understand soil hydraulic pattern in Moroccan conditions. This is
particularly the case in the current context of climate change impact
and the increasing demand for agricultural production. Sustainable
water management is still a challenge to reconcile the increasing
demand for irrigation water and the optimization of the use of
resources. Therefore, sustainable water management can be
performed using crop water productivity models (e.g., AquaCrop),
to define the net irrigation and water requirements of the crops. The
estimation of soil hydraulic properties using regional PTFs could
improve the accuracy and precision of these type of models, increase
water use efficiency, avoid waste of water by evaporation or deep
percolation. In addition, crop water productivity models request a
large databases and soil information as inputs for to give good results.
Soil properties estimated by PTFs could be an alternative to fill the
information gap, and to run these models with low cost.

3.7 Future directions and perspectives

The present research allowed to develop PTFs for Moroccan soils,
and to constitute the first database of soil hydraulic properties in the
region. However, further studies are needed to improve and to
upgrade the models developed in the present study to integrate
other soil properties, pedological information and soil management
systems, using a whole approach from the modeler to field user of soil
information. In addition, there is a need to harmonize methodologies,
and to develop an easily accessible database of soil information in the
region. This database that could be integrated to regional or
continental geographic information system, including databases of
soils information, natural and climatic variables, which could be easily
updated to respond to various requests from users at different levels
(famers, agronomists, researchers, and decision makers).

4 Conclusion

This study aimed to evaluate a database of soil physical properties in
Morocco based on field sampling. In addition, we evaluated the
performance of two sources of soil information: iSDAsoil data and field
data. The results showed that iSDAsoil data tended to underestimate clay,

sand and silt content and overestimate SOM in studied regions. In addition,
soil hydraulic properties estimated using iSDAsoil data presented an
overestimation. The evaluation of selected PTFs to predict soil water
content using gravimetric soil moisture at field capacity and wilting
point showed that the PTFs developed by Dijkerman (1988) presented
the best performance showing lower RMSE, Bias and MAE compared to
other PTFs. Using multiple linear regression to develop PTFs, model based
on clay, silt, and SOM as input variables showed the best performance.

In addition, new models were tested to estimate soil hydraulic
properties such as random forest, regression tree and Cubist
algorithm. Random forest showed the best performance compared
with other algorithms. PTFs based on random forest showed that clay
and sand were the predictor variable most important in the prediction,
and higher value of R2 associated with w330 prediction, medium value
with w15000 prediction, and lower value with w0 prediction. The use of
PTFs represents a useful tool, a low-cost method, and an easy
technique to estimate soil hydraulic properties, to evaluate soil
water retention capacity, and to optimize water management for
farmers Hounkpatin et al., 2022.
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