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1 Dear Prof. He, 

2 Thanks a lot for your helpful advice and the reviewers' useful comments and suggestions on our 

3 manuscript. We modified and revised the manuscript accordingly and details of the corrections 

4 are described below point by point. One of the co-authors is a native English speaker and he has 

5 thoroughly checked and corrected spelling and grammatical errors. Then two versions of the 

6 manuscript were resubmitted to your journal: a version of the revised manuscript showing the 

7 new/changed text using track changes and a clean version of the revised manuscript. It would be 

8 appreciated if you could please kindly let me know if there is any other deficiency with our 
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24 Comments from the editors and reviewers:

25 -Reviewer 1

26 -The authors replied to only partially to my comments. In fact, they replied to those comments 

27 for Author but not to those for Editor. Did they not receive the comments for Editor? My 

28 decision is still Major revision since many points raised before did not receive answers. I put 

29 them again below. Page and line numbers refer to the original version of the manuscript, 

30 not the revised one.

31 Ans:

32 We apologize for the inconvenience, but unfortunately we did not receive the comments in the 

33 first round of Review. Now, we have modified and revised the manuscript according to your 

34 comments and details of the corrections are described below point by point. The authors are 

35 grateful for your comments in improving the content and structure of the manuscript. 

36 First of all, the use of random forest to PTF is not completely new as may be deduced from the 

37 manuscript (page 5, lines 88 and 89); in contrast, there are published papers that dealt with random 

38 forest like Toth et al (2014), Araya et al (2019), Gunarathna et al (2019), and Szabo et al (2019). 

39 Also, the authors gave few examples of the use of statistical and data mining techniques but only 

40 one example for the nearest neighbor (page 4, line 75) as if it is the only published work whereas 

41 there are many other examples like Botula et al (2013), Haghverdi et al (2015), Nguyen et al 

42 (2017), Gunarathna et al (2019), etc.

43 Ans: 

44 Thank you so much. A review of literatures (Toth et al. (2014), Araya et al. (2019), Gunarathna 

45 et al. (2019), and Szabo et al. (2019)) revealed that the RF data mining technique has only been 

46 applied to predict point-based PTFs of the SWRC including field capacity and permanent wilting 
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47 point or saturated hydraulic conductivity, but it has not been used for developing parametric-

48 based PTFs of the van Genuchten model parameters, so far. Finally, the review of literatures has 

49 been modified completely as follows:

50 "So far, few studies have been carried out on the application of the RF method in soil science. 

51 Tóth et al. (2014) applied the RF method to analyze the relationship between soil water content 

52 at four matric suctions (0.1, 33, and 1500 kPa, and 150 MPa) and Hungarian soil map 

53 information. They found that the importance of soil properties in the prediction of the soil water 

54 content varied according to soil type and matric suction. Recently Szabó et al. (2019) have 

55 developed PTFs based on RF and geostatistics methods to map soil hydraulic properties, such as 

56 water contents at saturation, field capacity and wilting point, for the Balaton catchment area in 

57 Hungary. Araya and Ghezzehei (2019) compared the performances of four machine-learning 

58 algorithms including the k‐nearest neighbors (kNNs), support vector regression (SVR), RF, and 

59 boosted regression tree (BRT) for prediction of saturated hydraulic conductivity. They found that 

60 the BRT model outperformed the other algorithms closely followed by the RF model. 

61 Gunarathna et al. (2019a) tested three machine-learning algorithms including ANN, kNN, and 

62 RF to estimate volumetric water content at matric suctions of 10, 33 and 1500 kPa for soils in Sri 

63 Lanka. They recommended that the PTFs to be developed using the RF algorithm. Ließ et al. 

64 (2012) studied uncertainty in the spatial prediction of soil texture by comparison of the RF and 

65 regression tree techniques for 56 soil profiles and found that the former method provided a better 

66 result. Also, Wiesmeier et al. (2011) utilized the RF technique to develop digital mapping of the 

67 soil organic matter content in 120 soil profiles. They found that the prediction accuracy of the RF 

68 modeling was acceptable. A review of literatures therefore revealed that the RF data mining 

69 technique has been applied to develop PTFs to predict specific points of the SWRC, such as field 
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70 capacity and permanent wilting point, or particular properties such as saturated hydraulic 

71 conductivity, but it has not been used to develop parametric-based PTFs of the van Genuchten 

72 model parameters, so far  (Pages 5-6, lines 84-109). 

73 Also, we have added new literatures, in which statistical and data mining techniques have been 

74 used, to the introduction section of the manuscript, as follows:

75 Botula et al. (2013): Page 4, line 77.

76 Haghverdi et al. (2015): Page 4, line 77.

77 Nguyen et al. (2017): Page 4, line 78.

78 Gunarathna et al. (2019a): Page 4, line 74.

79 Gunarathna et al. (2019a): Page 4, line 77.

80 Gunarathna et al. (2019b): Page 4, line 72.

81 Khlosi et al. (2016): Page 4, line 78.

82 At page 6, lines 115-122 (section 2.2.), authors are presenting results in the Material and Methods 

83 section. Therefore, this section should be moved to Results and Discussion section. By the way 

84 the maximum clay content is 48% (Table 1), so the sentence should be rewritten accordingly.

85 Ans:

86 Following your suggestion, section 2.2 was moved and is now section 3.1 in the ”Results and 

87 discussion” section (Page 15, lines 283-293). Also, the sentence has been rewritten as follows: 

88 "It can be seen that the average and maximum of clay content were 21.4 and 48%, respectively" 

89 (Page 15, lines 285-286).

90 The same remark as above applies to page 7, lines 135-144 (section 2.4.): to move to Results and 

91 Discussion section.

92 Ans:
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93 Following your suggestion, section 2.4 was moved and is now section 3.2 in the ”Results and 

94 discussion” section (Pages 15-16, lines 294-331). 

95 In addition, at line 138, authors are listing the soil properties that have high correlation with van 

96 Genuchten parameters. They did not mention thetapPWP even it had high correlation coefficients! 

97 Ans:

98 Thank you so much. It is a good point. This point has been mentioned in the manuscript. 

99 Therefore, the sentence has been modified as follows:

100 "Clay and sand contents, θFC, θPWP, dg and OM had the greatest significant correlations with the 

101 parameters of the van Genuchten model (Fig. 4), which are consistent with other studies (Dexter 

102 et al., 2008; Nemes et al., 2006). For example, the correlation coefficients between clay content 

103 and θs (r = 0.323) is close to that between the OM and θs (r = 0.268). Also, the results showed that 

104 there were significant correlations between θPWP and input variables of clay content (+), sand 

105 content (–), BD (–), OM (+) and Ks (–), and also between θPWP and θs (+) and n (–) parameters of 

106 the van Genuchten model (Fig. 4) (Fig. 4). Botula et al. (2012) also found the same observation 

107 for the correlation of θPWP with sand and clay contents and BD of tropical Lower Congo soils (Page 

108 16, lines 299-307). 

109 Also, at lines 143 and 144, the authors stated that there was no correlation between van Genuchten 

110 parameters and Ks whereas they used this soil property in PTF14 and PTF15. Could they explain 

111 why they considered Ks even if it not correlated to van Genuchten parameters?

112 Ans:

113 There are many cases, where two variables might not show a strong simple correlation, but may 

114 show a strong association in the regression, along with other predictors. In other words, the simple 

115 correlation coefficient is a way to show the relationship between independent and dependent 
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116 variables, but it cannot show a model for the relationship between these two variables, when other 

117 independent variables have been used in a multiple regression (Simmons et al., 2011). The result 

118 of multiple regression analysis with backward selection method showed that the Ks variable 

119 remained in the PTF14 and PTF15 for all the van Genuchten model parameters. Some of the 

120 regression equations with backward selection method are shown in the following as examples:

121  θr=-0.69+0.22×Clay+0.278×Sand+0.20×Ks, R=0.31**

122 α=-3.72+0.23×Clay+0.17×BD+0.282×Ks, R=0.33** and 

123 n=-1.76+0.24×Sand+0.164×Ks, R=0.30**. 

124 On the other hand, the non-linear correlations between variables are very important in this study. 

125 Both the multiple NLR approach and RF data mining technique are non-linear prediction methods. 

126 Fig. 4 only shows simple linear correlation between variables, but there may be non-linear 

127 correlations between variables, which may affect the estimation of the dependent variables. For 

128 example, the results of non-linear correlations showed that Ks had strong correlations with θs and 

129 α of the van Genuchten model parameters by logarithmic (θs=0.652-0.027×lnKs, R=0.62**) and 

130 power (α=0.007×Ks
0.283, R=0.57**) equations, respectively, which were greater than their simple 

131 correlations (Pages 16-17, lines 310-328). In support of this claim, the results showed that by 

132 adding OM and/or Ks as predictors in the PTFs 13, 14 and 15, the accuracy (Fig. 5B) and reliability 

133 (Fig. 6B) of the prediction of the SWRC improved by 16, 13, 17 and 7.1, 6.3, 6.9%, respectively, 

134 compared to the PTF3 in terms of the IRMSE criterion in the RF method (Pages 25-26, lines 517-

135 520). 

136 At page 8, line 152, the authors assessed multicollinearity using the variance inflation factor (VIF) 

137 in the Material and Methods section but they reported nothing about this in the Results and 
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138 Discussion section; although they mentioned that silt content was eliminated to avoid 

139 multicollinearity (line 164).

140 Ans:

141 You are completely right. The values of variance inflation factor (VIF) for all PTFs have been 

142 added to the manuscript. Therefore, the text has been modified as follows:

143 "Before developing PTFs, all variables were evaluated by Kolmogorov-Smirnov normality and 

144 multicollinearity tests by the SPSS 24 software (IBM, 2016). The degree of multicollinearity in 

145 the PTFs was tested by the variance inflation factor (VIF=1/1-R2
j, where R2

j  is the R2 value 

146 obtained by regressing the jth predictor on the remaining predictors) (Hocking, 2013). Also, to 

147 avoid multicollinearity between textural contents, the silt fraction was not used as a predictor" 

148 (Page 9, lines 157-161). Results of the multicollinearity analysis (VIF) are shown in Table 3. The 

149 VIF values showed low levels of multicollinearity among the independent variables (VIF<10) 

150 (Khodaverdiloo et al., 2011) (Page 17, lines 334-336).

151 Table 3- The variance inflation factor (VIF) values for normalized form of input variables.
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PTF2 1.42 1.42

PTF3 1.43 1.52 1.10

PTF4 1.45 1.56 1.25 1.31

PTF5 1.79 1.58 1.27 2.48 2.56

PTF6 1.00 1.00

PTF7 1.11 1.11 1.01

PTF8 1.25 1.33 1.01 1.22

PTF9 1.28 2.50 2.73 1.34 1.22
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PTF10 1.55 1.43 1.11

PTF11 1.58 1.46 1.32 1.26

PTF12 1.60 1.79 2.49 2.56 1.28

PTF13 1.48 1.65 1.25 1.14

PTF14 1.55 1.64 1.14 1.06

PTF15 1.55 1.65 1.25 1.15 1.06

152 * Normalized form of input variables is available in Table 2.

153 $. A list of abbreviations is available in the notation box. 

154 Page 10, lines 198-203, the authors used 20-fold cross validation: the question why the authors 

155 used this specific k value and not, for example, 10 which is the most commonly used one in cross 

156 validation? 

157 Ans: 

158 In the present study, the k-fold cross validation approach (Efron and Tibshirani, 1994) was 

159 utilized to obtain training and testing datasets for each PTF. The number of folds (i. e., k) was 

160 obtained by trial and error. To do so, some PTFs, selected randomly, were developed with 10, 15 

161 and 20-fold cross-validation. Then, the k value which resulted in the best performance of the 

162 PTFs, was selected to develop all PTFs in this study. The results showed that 20-fold cross 

163 validation performed better than the other folds in most of the PTFs (Table 1). Therefore, 20-fold 

164 cross validation was selected to develop PTFs in this study (page 11, lines 201-207). 

165 Table 1- The results of 10, 15 and 20-fold cross-validation (k) for van Genuchten model 

166 parameters of the soil water retention curve derived from nonlinear regression (NLR) and 
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167 random forest (RF) techniques based on root mean square error (RMSE) for pedotransfer 

168 functions PTF 3, 5 and 11 in the train and test datasets.

θr θs α n

RMSE RMSE RMSE RMSE

Train Test Mean Train Test Mean Train Test Mean Train Test Mean

PTF3 k=10 NLR 0.058 0.060 0.059 0.063 0.065 0.064 1.017 1.037 1.027 0.426 0.436 0.431

RF 0.052 0.061 0.056 0.058 0.073 0.066 0.893 1.084 0.989 0.374 0.442 0.408

k=15 NLR 0.058 0.060 0.059 0.064 0.064 0.064 1.017 1.030 1.024 0.426 0.434 0.430

RF 0.052 0.061 0.057 0.058 0.070 0.064 0.894 1.033 0.964 0.374 0.441 0.408

k=20 NLR 0.058 0.060 0.059 0.064 0.064 0.064 0.064 0.064 0.064 0.426 0.437 0.432

RF 0.051 0.060 0.056 0.057 0.071 0.064 0.057 0.071 0.064 0.368 0.442 0.405

PTF5 k=10 NLR 0.051 0.053 0.052 0.053 0.054 0.054 0.764 0.796 0.780 0.380 0.397 0.389

RF 0.043 0.056 0.050 0.046 0.056 0.051 0.675 0.869 0.772 0.327 0.411 0.369

k=15 NLR 0.051 0.053 0.052 0.053 0.055 0.054 0.764 0.790 0.777 0.381 0.399 0.390

RF 0.044 0.054 0.049 0.046 0.055 0.050 0.679 0.848 0.763 0.329 0.421 0.375

k=20 NLR 0.051 0.053 0.052 0.053 0.055 0.054 0.765 0.789 0.777 0.381 0.399 0.390

RF 0.042 0.054 0.048 0.044 0.054 0.049 0.654 0.842 0.748 0.316 0.412 0.364

PTF11 k=10 NLR 0.058 0.061 0.060 0.065 0.067 0.066 1.018 1.052 1.035 0.431 0.448 0.440

RF 0.050 0.061 0.056 0.047 0.057 0.052 0.770 0.978 0.874 0.370 0.443 0.406

k=15 NLR 0.058 0.061 0.060 0.065 0.067 0.066 1.019 1.037 1.028 0.432 0.447 0.439

RF 0.050 0.060 0.055 0.047 0.057 0.052 0.770 1.009 0.889 0.369 0.450 0.410

k=20 NLR 0.058 0.060 0.059 0.065 0.065 0.065 1.020 1.024 1.022 0.432 0.439 0.435

RF 0.049 0.061 0.055 0.046 0.056 0.051 0.745 0.964 0.855 0.361 0.443 0.402

169

170 Also, the authors used data from 6 different provinces and 2 soil depths. I wonder if they took 

171 into consideration these two distinguishing factors when they split their data during k-fold cross 

172 validation into training and testing subsets.

173 Ans:

174 All soil samples, which have been collected from 6 different provinces and 2 soil depths, have 

175 been assumed as one database and training and testing data have been selected randomly from the 

176 database (which have been included all soil samples). In other words, we have not taken into 

177 consideration these two distinguishing factors (province or depth of sampling) when we split all 

178 data during k-fold cross validation into training and testing subsets.
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179 Page 10, line 208 and equation (2): the authors noted the number of input variables by n; there 

180 may be confusion with the fourth parameter of van Genuchten model (page 7, equation (1) and 

181 line 131)! Here n may be replaced by p (the number of input variables like in the AIC definition 

182 at page 13, equation (6). By the way the authors should use the same letter: p and not P (line 256)!

183 Ans:

184 Thank you so much. The required correction has been done (Page 11, line 216).

185 Page 13, lines 258-260: the average values can be compared using the analysis of variance 

186 (ANOVA) method and, once they are significantly different, we can use some posthoc tests like 

187 the Duncan test. However, it is not clear what was compared: all the 15 PTFs for both RF and 

188 NLR, and even from Rosetta for the testing datasets (Figures 6 and 7, graphs B) or the 2 or 3 

189 methods (NLR, RF, and Rosetta) separately for each of the 15 PTFs (page 14, lines 270-273). If it 

190 is the former case, Duncan test is useless since it compares 30 mean values (and even 35 if we 

191 consider Rosetta in addition to NLR and RF) and consequently some PTFs are belonging to 2 or 3 

192 different groups (like PTF4 RF, PTF5 NLR, etc. with abc letters) for training data sets (Figure 6) 

193 and even more for the testing dataset (4 letters like h-k or i-l on Figure 7). Moreover, this statistical 

194 comparison was done only for IRMSE but not for the 3 other cross validation criteria (IME, R², 

195 and AIC). Is there any explanation?

196 Ans:

197 Due to the fact that the performance of both methods was evaluated for all samples, therefore the 

198 mean comparison test can be used to compare the predicting accuracy and reliability of the RF and 

199 NLR methods. In other words, to determine whether the differences in the accuracy and reliability 

200 of the RF and NLR methods are random or real, the mean comparison test could be performed. 

201 One of the aims of the present study was to investigate the performance of each method in different 
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202 PTFs. In other words, the performance of each method in each PTF was important to the users. 

203 "To evaluate the performance of each method in different PTFs, the effect of method as the first 

204 factor at two levels in the training step (i.e., NLR and RF methods) and at three levels in the testing 

205 step (i.e., NLR, RF and Rosetta methods), and the different PTFs as the second factor at 15 levels 

206 (PTF1 to PTF15), were investigated using a two-way analysis of variance (ANOVA) with a 

207 randomized complete block design, based on the IRMSE of prediction of the SWRC" (Pages 14-

208 15, lines 270-275). Table 4 shows the results of the ANOVA of the IRMSE of prediction of the 

209 SWRC by different methods and PTFs. The effect of methods and PTFs, and their interaction, on 

210 the IRMSE was significant at P<0.01, 0.01 and 0.05, respectively, in the training step, and at 

211 P<0.01, 0.01 and 0.01, respectively, in the testing step. Therefore, we focus on the results and 

212 discussion of the comparison of the method × PTF interaction effects (Page 18, lines 340-346).

213 The IRMSE criterion calculates the total error, including bias and random errors, and is a more 

214 appropriate criterion for evaluating the accuracy and reliability of the RF and NLR methods 

215 compared to other criteria (Chai and Draxler, 2014). Therefore, to compare the predicting accuracy 

216 and reliability of the RF and NLR methods, the average values of the IRMSE was compared with 

217 Duncan’s test by MathWorks (2018) software (Page 15, lines 275-280).

218 Table 4- Analysis of variance of the integral root mean square error (IRMSE) of the prediction of 

219 the soil water retention curve by different methods (nonlinear regression and random forest) and 

220 pedotransfer functions (PTFs 1-15) for both the train and test datasets.

Source Degree freedom Mean square F-value P-value
Train Repeat (Block) 222 0.007 19.09 <0.0001

PTFs 14 0.062 180.68 <0.0001
Methods 1 0.038 109.69 <0.0001

PTFs × Methods 14 0.001 1.78 0.0356
Error 6288 0.0003

Test Repeat (Block) 222 0.010 16.04 <0.0001
PTFs 14 0.073 117.22 <0.0001

Methods 2 0.656 1056.43 <0.0001
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PTFs × Methods 18 0.002 3.68 <0.0001
Error 7398 0.0006

221

222 At page 19, lines 385-387: the authors are discussing the correlation between thetar and referring 

223 to Figure 2 whereas correlation coefficients between thetar and soil proprieties were not included 

224 in this figure!

225 Ans:

226 The correlation test was not performed for the θr variable, because its value was zero in 138 out of 

227 223 soil samples, as has been reported in other studies (Campbell and Horton Jr, 2002; Rawls et 

228 al., 1991; Tomasella et al., 2000) for θr variable (Pages 15-16, lines 296-299). Therefore, the 

229 sentence has been rewritten as follows: "Therefore, input variables of the textural contents or 

230 statistics can influence the residual saturation region of the SWRC. However, soil water content at 

231 the dry end (high matric suctions) of the SWRC is primarily determined by textural contents 

232 (Hillel, 1998) " (Pages 23-24, lines 470-473).

233 In addition, the whole subsection 3.1.2.2. is about the importance of the introduction of Ks into 

234 PTF 14 and 15 whereas there was no correlation between van Genuchten parameters and Ks. 

235 How the authors can explain the added value of Ks to the last 2 PTFs even in the absence of 

236 significant correlation? 

237 Ans:

238 It has been answered in pages 5-6, lines 113-135 of this file.

239 Furthermore, at page 21, lines 442 and 443, the authors said that Ks is correlated to soil texture 

240 and TP variables whereas it is correlated only to clay content (Figure 2) but not to sand nor to TP.

241 Ans:

242  Thank you so much. The sentence has been rewritten as follows:
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243 "The correlation results showed (Fig. 4) that Ks can be strongly influenced by clay content and 

244 textural statistics (dg and δg)" (Page 26, lines 524-525).

245

246 -Reviewer 2

247 -I thank the authors for their through addressing my queries and completing the recommended 

248 revisions. The authors should address following points. 

249 Ans:

250 Thank you so much. Your comments helped us a lot to improve the manuscript.

251 1. Revise L45-46 as follows: “These findings could provide the scientific basis for further 

252 research on the RF method.”

253 Ans:

254 It has been done (page 2, lines 45-46). 

255 2. I could not find the following revision in the revised manuscript, please recheck for its 

256 existence. 

257 L104-105: What do you mean by “topsoil” and “subsoil”? Do you mean A and B horizons or 

258 tillage depth?  Be specific.  Also, what do you mean with layer in “depending on thickness of 

259 layers”?

260 Ans:

261 ”topsoil” and ”subsoil” refer to A and B horizons, respectively. It was corrected in the 

262 manuscript. Since the sampling was done from different locations of the various provinces, the 

263 topsoil and subsoil layers of soil at different locations had different depths and thicknesses, and 

264 samples were taken from the center of each layer. Therefore, the samples were taken from different 

265 depths, depending on thickness of the A and B layers.
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266

267 Ans:

268 Thank you so much. It has been arranged as follows:

269 Since the sampling was done from different locations of the various provinces, the topsoil and 

270 subsoil layers of soil at different locations had different depths and thicknesses. We collected 

271 samples from the center of the topsoil and subsoil layers, which represented the pedological A and 

272 B horizons, respectively. The sampling depths varied from 10 to 35 cm for topsoil (208 samples) 

273 and from 20 to 45 cm for subsoil (15 samples), reflecting the variation in the soil profiles (pages 

274 6-7, lines 123-130).

275 3. I do recommend the authors go over the manuscript for mistakes of grammar, typos, sentence 

276 structure, and so on before sending their final copy to the editor.  

277 Ans:

278 We thank the reviewer for this point. The co-author for whom English is their first language has 

279 been through the manuscript thoroughly and corrected all errors in spelling and grammar.

280

281 Eventually; 
282 As it was described point by point, the manuscript was revised significantly.
283
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24 Estimating the soil water retention curve: comparison of multiple nonlinear regression 

25 approach and random forest data mining technique

26 Abstract

27 This study evaluates the performance of the random forest (RF) method on the prediction of the 

28 soil water retention curve (SWRC) and compares its performance with those of non-linear 

29 regression (NLR) and Rosetta-based pedotransfer functions (PTFs), which has not been reported 

30 so far. Fifteen RF and NLR-based PTFs were constructed using readily-available soil properties 

31 for 223 soil samples from Iran. The general performance of RF and NLR-based PTFs was 

32 quantified by the integral root mean square error (IRMSE), Akaike’s information criterion (AIC) 

33 and coefficient of determination (R2). The results showed that the accuracy of the RF-based PTFs 

34 was significantly (P<0.05) better than the NLR-based PTFs, and also,that the reliability of the 

35 NLR-based PTFs was significantly (P<0.01) better than the RF-based PTFs and all of the 

36 Rosetta-based PTFs. The average values of the IRMSE, AIC and R2 of the RF method were 0.041 

37 cm3 cm-3, -16997.7, and 0.987, and 0.053 cm3 cm-3, -15547.5, and 0.981 for the training and 

38 testing steps of all PTFs, respectively, whereas these values for the NLR method were 0.046 cm3 

39 cm-3, -16616.4, and 0.984, and 0.048 cm3 cm-3, -16355.6, and 0.983 for the training and testing 

40 steps, respectively. The PTF5 of the RF and NLR methods, with the inputs of sand and clay 

41 contents, bulk density, and the water content at field capacity and permanent wilting point, had 

42 the greatest R2 values (0.987 and 0.989, respectively), and the lowest IRMSE values (0.039 and 

43 0.032 cm3 cm-3, respectively), respectively, compared to other PTFs for the testing step. Overall, 

44 the RF method had less reliability for the prediction of the SWRC compared to the NLR method 

45 due to overprediction, uncertainty of determination of forest scale and instability in the testing 
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46 step. It seems that tThese findings could provide the scientific basis for further research on the 

47 RF method.

48 Keywords: pedotransfer functions; soil water retention curve; soil texture; soil structure; van 

49 Genuchten.

50

Notation

Sand content (%) S

Clay content (%) C

Geometric mean diameter (mm) dg

Geometric standard deviation (-) δg

Bulk density (g cm-3) BD

Total porosity (cm3 cm-3) TP

Water content at field capacity, 33 kPa (cm3 cm-3) θFC

Water content at 1500 kPa (cm3 cm-3) θPWP

Organic matter content (%) OM

Saturated hydraulic conductivity (cm day-1) Ks

Saturated water content (cm3 cm-3) θs

Residual water content (cm3 cm-3) θr

Random forest RF

Nonlinear regression NLR

Soil water retention curve SWRC

51

52 1 Introduction 

53 Soil hydraulic properties are principle factors that control the movement of water and solutes in 

54 the soil. Determination of the soil hydraulic properties is required for many distinct applications 

55 linked with irrigation, land use planning, drainage and drought risk assessment (Dobarco et al., 

56 2019). The soil water retention curve (SWRC) is one of the most important soil hydraulic 
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57 properties. It defines the relationship between soil matric potential and soil water content (Hillel, 

58 1998). The SWRC is a crucial parameter in soil and water management for sustainable and 

59 improved agricultural production (Shwetha and Varija, 2015). The SWRC depends principally 

60 on texture, structure and bulk density (BD) of soils (Wassar et al., 2016). Many methods have 

61 been introduced for the direct measurement of the SWRC in the laboratory (e.g., the hanging 

62 water column and pressure plate methods) (Klute, 1986) and in the field (e.g., tensiometric) 

63 (Bruce and Luxmoore, 1986). Measurements of the SWRC at several matric potentials can be 

64 expensive, difficult and time-consuming, hence it is common to predict it by modelling (Dobarco 

65 et al., 2019). Modelling of soil water is an essential tool in evaluating the effects of different 

66 managements on crop yield and environmental quality (Verhagen, 1997).

67 Pedotransfer functions (PTFs) translate easy-to-measure data that we have (e.g., texture class, 

68 particle size distribution (PSD) and BD) into difficult-to-measure data that we need (soil 

69 hydraulic data) (Bouma, 1989). Estimates of the SWRC by the PTFs are valuable in many 

70 studies, such as hydrology, soil mapping and hydrogeology (Børgesen and Schaap, 2005). The 

71 point- and parametric-based PTFs are generally developed to predict water content at certain 

72 specific matric potential values and the entire SWRC, respectively, by multiple linear (MLR) and 

73 nonlinear regression (NLR) methods (Gunarathna et al., 2019b; Merdun et al., 2006; Minasny et 

74 al., 1999; Rajkai et al., 2004; Tomasella et al., 2000). Data mining techniques including artificial 

75 neural networks (ANNs) (Bayat et al., 2013a; Bayat et al., 2013b; Gunarathna et al., 2019a; 

76 Koekkoek and Booltink, 1999; Pachepsky et al., 1996), group method of data handling (GMDH) 

77 (Bayat et al., 2011; Neyshaburi et al., 2015; Pachepsky and Rawls, 1999), nonparametric nearest 

78 neighbor technique (Botula et al., 2013; Gunarathna et al., 2019a; Haghverdi et al., 2015; Nemes 

79 et al., 2006; Nguyen et al., 2017) and support vector machine (SVM) (Khlosi et al., 2016; 
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80 Lamorski et al., 2008; Lamorski et al., 2014; Twarakavi et al., 2009), have been applied 

81 successfully applied for PTF development.  

82 Random forest (RF), or random decision forests, has become a popular approach as an ensemble 

83 learning method for prediction and classification (Verikas et al., 2011). The RF method has been 

84 developed by Breiman (2001) as an expansion of the classification and regression trees (CART) 

85 technique to provide better performance of prediction results (Wiesmeier et al., 2011). So far, 

86 few studies have been carried out on the application of the RF method in soil science. For 

87 example, Tóth et al. (2014) applied the RF method to analyze the relationship between soil water 

88 content at four matric suctions of (0.1, 33, and 1500 kPa, and 150000 kMPa) and Hungarian soil 

89 map information. They found that the importance of soil properties in the prediction of the soil 

90 water content varieds, according to soil type and matric suctions. Recently Szabó et al. (2019) 

91 have developed PTFs based on RF and geostatistics methods to map soil hydraulic properties, 

92 such as water contents at saturation, field capacity and wilting point, for the Balaton catchment 

93 area in Hungary. Araya and Ghezzehei (2019) compared the performances of four machine- 

94 learning algorithms including  the k‐nearest neighbors (kNNs), support vector regression (SVR), 

95 RF, and boosted regression tree (BRT) for prediction of the saturated hydraulic conductivity. 

96 They found that the BRT models outperformed the other algorithms closely followed by the RF 

97 models. Gunarathna et al. (2019a) tested three machine -learning algorithms including artificial 

98 neural networks (ANN), kNN, and RF to estimate volumetric water content at the matric suctions 

99 of 10, 33 and 1500 kPa for soils in Sri Lankan soils. They recommended that the PTFs to be 

100 developed using the RF algorithm. Ließ et al. (2012) studied uncertainty in the spatial prediction 

101 of soil texture by comparison of the RF and regression tree techniques for 56 soil profiles. Those 

102 authors indicated and found that the RFformer method provided a better results better than the 
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103 regression tree. Also, Wiesmeier et al. (2011) utilized the RF technique to develop digital 

104 mapping of the soil organic matter content in 120 soil profiles. They pointed outfound that the 

105 prediction accuracy of the RF modeling was acceptable. A review of literatures therefore 

106 revealed that the RF data mining technique has been only applied to develop PTFs to predict 

107 specific points-based PTFs of the SWRC, such as including field capacity and permanent wilting 

108 point, or particular properties such as saturated hydraulic conductivity, but it has not been used 

109 forto developing parametric-based PTFs of the van Genuchten model parameters, so farThe RF 

110 data mining technique has not been applied to predict the SWRC, so far. Therefore, the objective 

111 of the present study was to develop simple parametric-PTFs to predict the SWRC with greater 

112 accuracy and reliability using a novel approach with the RF data mining technique. We and 

113 compare its performance with those of the multiple non-linear regression (NLR) approach and 

114 with Rosetta software (Schaap et al., 2001) on the prediction of the SWRC through finding the 

115 best input variables and PTFs for the SWRC. 

116

117 2 Materials and methods

118 2.1 Sample collection and determination

119 In the present study 223 undisturbed and disturbed soil samples were taken from six provinces of 

120 Iran including west Azarbaijan (35°∘ 8ˊ − 39°∘ 46ˊ N, 44°∘ 3ˊ − 47°∘ 23ˊ E; 60 data), Hamedan 

121 (33°∘ 59ˊ − 35°∘ 48ˊ N, 47°∘ 34ˊ − 49°∘ 36ˊ E; 55 data), Kermanshah (33°∘ 41ˊ − 35°∘ 17ˊ N, 

122 45°∘ 24ˊ − 48°∘ 6ˊ E; 26 data), Kurdistan (34°∘ 45ˊ − 36°∘ 31ˊ N, 45°∘ 31ˊ − 48°∘ 13ˊ E; 22 

123 data), Mazandaran (35°∘ 46ˊ − 36°∘ 58ˊ N, 50°∘ 21ˊ − 58°∘ 08ˊ E; 30 data)  and Fars (27°∘ 2ˊ − 

124 31°∘ 42ˊ N, 50°∘ 42ˊ − 55°∘ 38ˊ E; 30 data). Steel cylinders, measuring 5.1 cm in diameter and 

125 3.5 cm in height, were used to collect the undisturbed samples. Since the sampling was done 
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126 from different locations of the various provinces, the topsoil and subsoil layers of soil at different 

127 locations had different depths and thicknesses. We collected , and samples were taken from the 

128 center of the topsoil and subsoil each layers, which represented (”topsoil” and ”subsoil” refer 

129 tothe pedological A and B horizons, respectively). Therefore, the samples were taken from 

130 different depths, depending on the thickness of the A and B layers. The sampling depths varied 

131 from 10 to 35 cm for topsoil (A horizon, 208 samples) and from 20 to 45 cm for subsoil (B 

132 horizon, 15 samples), reflecting the variation in the soil profiles. 

133 Soil PSD was analyzed by the hydrometer method (Gee and Or, 2002), and the geometric mean 

134 and standard deviation of particles diameter (dg and δg, respectively) were calculated  by 

135 equations from Shirazi and Boersma (1984). Organic matter (OM) content was determined by 

136 the Walkley and Black (1934) method and BD by the core method (Blake and Hartge, 1986). 

137 Total porosity (TP) was calculated from BD and particle density, and the saturated hydraulic 

138 conductivity (Ks) was measured with a constant head permeameter (Klute and Dirksen, 1986). 

139 The SWRC was conbstructedconstructed by measuring the volumetric water content at the 

140 matric suctions of 0 (saturation status of soil samples), 1, 2 and 5  kPa5 kPa with a sandbox 

141 apparatus, and at 10, 25, 50, 100, 200, 500, 1000 and 1500 kPa with a pressure plate apparatus. 

142 Undisturbed samples were used for measurement of the matric suctions from 0 to 100 kPa and 

143 disturbed samples were used for matric suctions from 200 to 1500 kPa. Two key points in the 

144 SWRC are the water contents at field capacity (30 kPa suction; θFC) and permanent wilting point 

145 (1500 kPa suction; θPWP).

146  
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147 2.2 Soil-water retention equation

148 The van Genuchten–Mualem (Eq. (1)) model (Mualem, 1976; van Genuchten, 1980) was utilized 

149 to describe the SWRC data. 
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(1)

150 where θr and θs are residual and saturated water contents (cm3 cm-3), respectively, and h is the 

151 soil water suction (kPa). The parameter α is related to the inverse of the air entry pressure (>0, 

152 kPa-1) and n (>1, dimensionless parameter) is related to the pore size distribution of the soil (van 

153 Genuchten, 1980). In the present study, van Genuchten model parameters θr, θs, α and n were 

154 obtained using the MATLAB software (MathWorks, 2018).

155
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156 2.3 Data pre-processing

157 Data pre-processing and regression assumptions, including detection of outliers, normality test of 

158 the residuals, multicollinearity and independence of the residuals, were applied for all variables 

159 (Berry, 1993). The outliers in the data were identified by the inter-quartile range (IQR) method 

160 (Seo, 2006) and were replaced by the lower and upper threshold values (MathWorks, 2018). 

161 Before developing PTFs, all variables were evaluated by Kolmogorov-Smirnov normality and 

162 multicollinearity tests by the SPSS 24 software (IBM, 2016). The degree of multicollinearity in 

163 the PTFs was tested by the variance inflation factor (VIF=1/1-R2
j, where R2

j  is the R2 value 

164 obtained by regressing the jth predictor on the remaining predictors) (Hocking, 2013) (Table 1). 

165 The VIF values in Table 1 showed low levels of multicollinearity among the independent 

166 variables (VIF<10) (Khodaverdiloo et al., 2011). Also, tTo avoid multicollinearity between 

167 textural contents, the silt fraction was eliminatednot used as a predictor. The variables clay 

168 content, sand content, dg, δg, OM, Ks, α and n had non-normal distributions, therefore, 

169 transformations were applied to normalize them. 

170

171 2.4 Developing PTFs

172 The PTF inputs were arranged in four steps (Fig. 21). The first step (PTFs 1-5) was based on 

173 basic soil properties (i.e., sand content (%), clay content (%), BD (g cm-3), θFC (cm3 cm-3) and 

174 θPWP (cm3 cm-3)) according to Rosetta-based PTFs (Schaap et al., 2001) for comparison of 

175 SWRC estimates by other methods. To avoid multicollinearity between textural contents, the silt 

176 fraction was eliminated. The parameters of the van Genuchten model were predicted in all steps. 

177 In the second step (PTFs 6-9), dg (mm) and δg were used as new inputs instead of sand and clay 

178 contents in the previous step to evaluate the efficiency of using statistical descriptors of PSD to 
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179 predict the parameters of the van Genuchten model. To build the third step (PTFs 10-12), TP 

180 (cm3 cm-3) replaced BD from PTFs 3-5 to evaluate the effect of using TP instead of BD on the 

181 prediction of the parameters of the van Genuchten model. In other words, the purpose of the 

182 second and third steps was to evaluate whether the use of another form of descriptors of the soil 

183 structure (TP instead of the BD) and soil texture (dg and δg instead of the sand and clay contents) 

184 would improve the accuracy of the estimates or not. In the last step, PTFs 13-15 were developed 

185 by including OM (%) and Ks (cm day-1) as new variables to evaluate the efficiency of these 

186 instead of the water content at specific matric suctions on the prediction of the van Genuchten 

187 model parameters. The input variables of the 15 PTFs are shown in Fig. 21. 

188 To compare the results of PTFs 1-5 of the RF and NLR methods with those of the Rosetta 

189 models, the parameters of the van Genuchten model (θr, θs, α and n) were estimated by the PTFs 

190 built in the Rosetta software (PTFs 1-5), using the measured values of input variables based on 

191 PTFs 1-5 as predictors in the Rosetta program. The estimated coefficients of  theof the van 

192 Genuchten model were used to calculate the estimated water content at matric suctions from 0 to 

193 1500 kPa (estimated SWRCs). Then curve-by-curve comparison of the measured and estimated 

194 SWRCs was performed with different evaluation statistics. Since there is no training step in the 

195 Rosetta software, the results of the Rosetta model was only compared with the results of the 

196 testing step. To evaluate the effect of using different descriptors of PSD on the prediction of the 

197 SWRC, PTFs 6, 7, 8 and 9 from the second step were compared with PTFs 2, 3, 4 and 5 from the 

198 first step, respectively (Fig. 21). In the same way, to evaluate effect of using different descriptors 

199 of soil structure on the prediction of the SWRC, PTFs 10, 11 and 12 from the third step were 

200 compared with PTFs 3, 4 and -5 from the first step, respectively. Also, the PTFs 13-15 were 
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201 compared with the PTFs 4 and 5 to find out the efficiency of OM and Ks variables as predictors 

202 (Fig. 21).

203 Fig 21.

204

205 In the present study, the k-fold cross validation approach (Efron and Tibshirani, 1994) was 

206 utilized to obtain training and testing datasets for each PTF. The number of folds (i. e., k) hwas 

207 been obtained by trial and error. To do so, some PTFs, which were selected randomly, have 

208 beenwere developed with 10, 15 and 20-fold cross-validation. Then, the k value which was 

209 resulted in the best performance of the PTFs, was selected to develop all PTFs in this study. The 

210 results showed that 20-fold cross validation performed better than the other folds, in most of the 

211 PTFs (Table 1). Therefore, 20-fold cross validation was selected to develop PTFs in this study. 

212 Based on this approach, the 223 samples were randomly divided into 20 subsets and 20 models 

213 were developed by each predicting technique for each PTF. In each model, training and testing 

214 datasets were based on a ratio of 19:1. Finally, the average of the results of 20 models was 

215 calculated for each PTF. Therefore, all data were used for the training and testing steps of the 

216 PTFs.

217 Table 1-

218 2.5 Description of modeling techniques

219 2.5.1 Multiple nonlinear regression

220 A nonlinear regressionNLR model based on a second-order polynomial for the prediction of the 

221 response variable y from a number of n p predictors can be written as (Rawls and Brakensiek, 

222 1985):
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   (2)

223 where a is the intercept, and two regression coefficients bi and ci are determined for every input 

224 variable xi. 

225

226 2.5.2 Random forest: an ensemble of regression trees

227 RF has become a popular tool for regression and classification problems. The RF is an ensemble 

228 method based on the regression tree methodology (i.e., classification and regression trees 

229 (CART)) that was introduced for better performance (Breiman, 2001). The model building 

230 process in the RF is the same as that in the CART method but without pruning (Breiman, 1984). 

231 Also, whereas a regression tree only grows by a single tree, but the RF grows by forest of trees. 

232 In other words, unlike a regression tree, in the RF for each tree only a subset of the input 

233 variables is applied. The number of inputs in each tree and also the number of trees in the forest 

234 can be distinct and it depends on the dataset. Least-squares boosting (LSBoost) fits regression 

235 ensembles. At every step, the ensemble fits a new learner to the difference between the observed 

236 response and the aggregated prediction of all learners grown previously. The ensemble fits to 

237 minimize the mean-squared error (MathWorks, 2018). The number of trees used here was 16 

238 which was established by trial and error. An architecture of the RF algorithm is shown in Fig. 3 2 

239 where input matrix X consists of N samples and M input variables (sample set S = [(xi, yi), i = 1, 

240 2, …, N], (X, Y)∈) ∈RM×R). The bootstrap method is utilized to construct n tree sample sets 

241 from the sample set S. At each bootstrap sample, about one-third of the dataset S was utilized as 

242 out of the bootstrap data or out-of-bag (OOB) data; whereas the rest is called in-bag data 

243 (Ibrahim and Khatib, 2017) (Fig. 32). Modeling of the regression tree is done for each sample 

244 set. In the RF algorithm, all individual trees give a predictive result. The final prediction value is 
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245 calculated based on an average result of all individual trees (Wiesmeier et al., 2011). The 

246 prediction error is defined as follows (Liaw and Wiener, 2002):
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247 where MSEOOB is the mean square error of the OOB data prediction, ntree is the number of trees, 

248 and  yi and  are the actual value of the OOB data and the average of all OOB predictions, ˆ OOB
iy

249 respectively.  Among all the ensemble methods, the RF method has high capability in solving 

250 classification and regression problems, because the RF method combines several simple 

251 regression trees to better optimize prediction (Zaklouta and Stanciulescu, 2012). The RF method 

252 increases differences for each single tree through random selection of the training samples and 

253 different variables at each splitting node. In the present study, the NLR and RF algorithms were 

254 implemented by fitnlm and fitensemble functions in the MATLAB software, respectively. 

255 (MathWorks, 2018). 

256 Fig. 32. 

257

258 2.6 Evaluation criteria

259 The estimated water content was computed by estimated parameters of the van Genuchten model 

260 for each PTF at matric suctions from 0 to 1500 kPa. For curve-by-curve comparison of the 

261 measured and predicted SWRCs, different evaluation statistics were used. Various statistical 

262 criteria including integral root mean square error (IRMSE), integral mean error (IME) (Tietje and 

263 Tapkenhinrichs, 1993), Akaike’s information criterion (AIC) (Akaike, 1974) and coefficient of 

264 determination (R2) (Wösten et al., 2001), were utilized to assess the predictive ability of the RF 

265 and NLR algorithms, which are defined as:
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266

267 where h is the matric suction (kPa), , ,  and  are the measured, predicted and average of iy ˆ iy iy

268 the measured values of the water content, respectively, a and b values define the matric suction 

269 range over which the experimental curve is measured, i.e., 0 and 1500 kPa, respectively, and P 

270 and N are the number of parameters and the number of points that were considered in the SWRC, 

271 respectively. In calculating the AIC, N is the total number of points that were considered in the 

272 SWRC of all soil samples (i. e., N= number of soil samples × number of paired points of the 

273 suction-water content for each soil sample), and i is  paired points of the suctions-water content 

274 of the SWRC of each soil sample. 

275 To evaluate the performance of each method in different PTFs, the effect of methods as the first 

276 factor at two levels, in the training step (i.e., NLR and RF methods) in the training step and at 

277 three levels, in the testing step (i.e., NLR, RF and Rosetta methods) in the testing step, and the 

278 different PTFs as the second factor at 15 levels (PTF1 to PTF15), were investigated using a two-

279 way analysis of variance (ANOVA) with a randomized complete block design as a factorial test, 
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280 based on the IRMSE of prediction of the SWRC. On the other hand, tThe IRMSE criterion 

281 calculates the total error, including bias and random errors, and is a more appropriate criterion 

282 for evaluating the accuracy and reliability of the RF and NLR methods compared to other criteria 

283 (Chai and Draxler, 2014). Therefore, tTo compare the predicting accuracy and reliability of the 

284 RF and NLR methods, the average values of the IRMSE was compared with Duncan’s test by 

285 MathWorks (2018) software. 

286

287 3 Results and discussion

288 3.1 Descriptive statistics of the soil properties

289 Table 1 2 summarizes some basic descriptive statistics for soil variables of the entire dataset used 

290 for the development of the PTFs. It can be seen that the average and maximum of clay content 

291 were 21.4 and 48%, respectively.It can be seen that the average clay content was 21.4 %, and 

292 exceeded 50%. The OM ranged from 0.17 to 4.41% with a mean of 1.84%, which iwas low due 

293 to the arid and semi-arid climates of Iran. The variation of thein soil texture is shown graphically 

294 in the United States Department of Agriculture (USDA) textural triangle (Fig. 43). Considering 

295 the distribution and range of the variables (Fig. 4 3 and Table 12), the dataset can be considered 

296 as representative of soils in arid and semi-arid regions of Iran.

297 Table 12

298 Fig. 43.

299 3.2 Correlation of input and output variables

300 The simple correlation coefficients between all variables are depicted by matrix plot in Fig. 14. 

301 Correlation analysis was done between normalized input and output variables. The correlation test 

302 was not performed for the θr variable, because its value was zero in 138 out of 223 soil samples,. 
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303 Also the zero value as hasve been reported in some other studies (Campbell and Horton Jr, 2002; 

304 Rawls et al., 1991; Tomasella et al., 2000) for θr variable. Clay and sand contents, θFC, θPWP, dg 

305 and OM had the greatest significant correlations with the parameters of the van Genuchten model 

306 (Fig. 14), which are was consistent with other studies (Dexter et al., 2008; Nemes et al., 2006). For 

307 example, the correlation coefficients between clay content and θs (r = 0.323) is close to that 

308 between the OM and θs (r = 0.268). Also, the results showed that there were significant correlations 

309 between θPWP and input variables of clay content (+), sand content (-–), BD (–-), OM (+) and Ks 

310 (-–), and also between θPWP and θs (+) and n (-–) parameters of the van Genuchten model (Fig. 4). 

311 Botula et al. (2012) also found the same observation for the correlation of θPWP with sand and clay 

312 contents and BD of tropical Lower Congo soils. Nevertheless, with regard to these correlation 

313 coefficients, clay and sand contents, θFC, dg and OM can be used for developing PTFs to estimate 

314 the SWRC. On the contrary, there was no correlation between Ks and the van Genuchten model 

315 parameters. There are many cases, where two variables might not show a strong simple correlation, 

316 but may show a strong association in the regression, along with other predictors. In other words, 

317 the simple correlation coefficient is a way to show the relationship between two independent and 

318 dependent variables, but it cannot show a model for the relationship between these two variables, 

319 when other independent variables have been used in a multiple regression (Simmons et al., 2011). 

320 The results of multiple regression analysis with backward selection method showed that the Ks 

321 variable remained in the PTF14 and PTF15 for all the van Genuchten model parameters. Some of 

322 the regression equations with backward selection method are shown in the following as examples:

θr=-0.69+0.22×Clay+0.278×Sand+0.20×Ks, R=0.31** (8)

α=-3.72+0.23×Clay+0.17×BD+0.282×Ks, R=0.33**  
(9)
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n=-1.76+0.24×Sand+0.164×Ks, R=0.30** (10)

323

324  

325 On the other hand, the non-linear correlations between variables are very important in this study. 

326 Because, both the multiple nonlinear regressionNLR approach and random forestRF data mining 

327 technique, which were used, are non-linear prediction methods. Fig. 4 only shows simple linear 

328 correlation between variables, but there may be non-linear correlations between variables, which 

329 may affect the estimation of the dependent variables. For example, the results of non-linear 

330 correlations showed that Ks had strong correlations with θs and α of the van Genuchten model 

331 parameters by logarithmic (θs=0.652-0.027×lnKs, R=0.62**) and power (α=0.007×Ks
0.283, 

332 R=0.57**) equations, respectively, and these non-linear correlationswhich were increased mostly 

333 in comparison withgreater than their simple correlations, indicating nonlinear relationships of the 

334 Ks with θs and α. Therefore, regression method can discover and apply the law that exists 

335 between these two variables.

336 Fig. 41.

337

338 3.3 Development of the PTFs using the RF and NLR methods

339 Results of the multicollinearity analysis (VIF) are shown in Table 23. The VIF values in Table 2 

340 showed low levels of multicollinearity among the independent variables (VIF<10) (Khodaverdiloo 

341 et al., 2011).

342 Table 23-

343
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344 3.3.1 Comparing the accuracy and reliability of the RF and NLR methods

345 Table 34 shows the results of analysis of variancethe ANOVA of the IRMSE of prediction of the 

346 SWRC by different methods and PTFs. The analysis of variance showed that the effect of type of 

347 methods and PTFs, and their interaction, on the IRMSE was significant at P < 0.01, 0.01 and 

348 0.05, respectively, in the training step, and alsoat P < 0.01, 0.01 and 0.01, respectively, in the 

349 testing step. Therefore, we focus on the results and discussion of themean comparison was 

350 performed and results and discussion were written according toof the method × PTF interaction 

351 effects.

352 Table 34-

353 Results of the prediction of the SWRC through the van Genuchten model using the NLR and RF- 

354 based PTFs are depicted in Figs. 5 and 6  for6 for the training and testing steps, respectively. The 

355 accuracy and reliability are used to express  theexpress the performance of the PTFs in the 

356 training and testing steps, respectively.

357 The results of the first to fourth steps of the training dataset (Fig. 5) showed that the RF method 

358 had better performance compared to the NLR method for the prediction of the SWRC in all PTFs 

359 in terms of the IRMSE and R2 criteria and the differences were significant (P < 0.05) for PTFs 2, 

360 3, 6, 7, 10, 13, 14 and 15 in terms of the IRMSE criterion. Also, the accuracy of the RF method 

361 was better than that of the NLR method in 80% of the PTFs (with the exception of the PTFs 5, 9 

362 and 12) in terms of the AIC criterion. In the training step, the values of the IRMSE of the first to 

363 fourth steps for the NLR model varied from 0.030 to 0.063 cm3 cm-3 and these were larger than 

364 those in the RF model, which ranged from 0.028 to 0.061 cm3 cm-3, respectively. Also, the 

365 values of the R2 of the first to fourth steps for the RF model varied from 0.981 to 0.992, and this 

366 was larger than those in the NLR model, which ranged from 0.979 to 0.991 (Fig. 5).
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367 The results of the first to fourth steps of the testing dataset (Fig. 6) showed that the NLR method 

368 had a better performance compared to the RF method on the prediction of the SWRC for PTFs 5, 

369 8, 9 and 15 only in terms of the IRMSE criterion (significant at P < 0.05).  In the other PTFs 

370 there were no significant differences between the IRMSE of the two methods and the R2 and AIC 

371 criteria were comparable. In the testing step, the values of the IRMSE and AIC of the first to 

372 fourth steps for the RF models varied from 0.038 to 0.065 cm3 cm-3 and from -13476.2 to -

373 17646.8, respectively, and these were comparable to those of the NLR models (with the 

374 exception of the PTF1), which ranged from 0.032 to 0.064 cm3 cm-3 and from -14096.1 to -

375 19234.1, respectively (Fig. 6). Also, the values of the R2 of the first to fourth steps for the NLR 

376 models varied from 0.979 to 0.989, and this was comparable to those of the RF models for all 

377 PTFs, which ranged from 0.977 to 0.987 (Fig. 6). 

378 In each of the PTFs 1 to 5, the NLR and RF methods performed better (P<0.05) than the Rosetta 

379 PTFs. Fig. 6(A) shows that the Rosetta-based PTFs have had greater values of the IME criterion 

380 compared to the NLR and RF-based PTFs. The reason can be attributed to the various methods 

381 of optimizing parameters. The Rosetta method has only one artificial neural network (ANN) type 

382 with particular structure. In other words, the number of hidden layers (one) and neurons (six) and 

383 also the activation function (tangent hyperbolic) are constant for prediction of the SWRC in the 

384 Rosetta software. Therefore, the Rosetta method is not a dynamic approach for optimization, 

385 whereas the parameters of the RF method, such as number of splits and trees, and learning rate 

386 continuously and dynamically, change to achieve the best result of the objective function. The 

387 Rosetta method was developed from a quite large dataset, while the soils used in the present 

388 study were collected from a completely different climate area that was not represented in the 

389 Rosetta's database. Also, presented RF and NLR models were trained using this particular dataset 



20

390 while Rosetta had been trained using a different dataset. In other words, the results of the PTFs 

391 in the testing step are were based on a soil dataset used for training. This could be a reason for 

392 Rosetta's poor performance compared with the RF and NLR methods. As a result, it seems that 

393 the universal portability of the Rosetta method can be limited.  The testing results are in 

394 agreement with Touil et al. (2016) who found that the parametric-based PTFs of nonlinear 

395 models, gave a better prediction than the Rosetta PTFs. The Figs. 5(A) and 6(A) showed that all 

396 of the IME values were negative for all PTFs at the training and testing steps. There are regular 

397 errors (bias) in the prediction of the SWRC that can be corrected by finding a correction 

398 coefficient, which would improve the accuracy and reliability of the estimations (Bayat et al., 

399 2015).

400 Fig. 5.

401 Fig. 6.

402

403 The RF method in the training section gave better predictions of the SWRC compared to the 

404 NLR method for the prediction of the SWRC (Fig. 5). The RF method produces low- bias and 

405 variation results in the data by majority voting compared to a single regression tree (Cheng et al., 

406 2019; Matin and Chelgani, 2016). In this connection, the results of the standard deviations (SD) 

407 of evaluation criteria in each PTF for the training step (Fig. 5) showed that the RF method had a 

408 lower SD variation than the NLR method. Accordingly, the values of SD for the IRMSE and R2 

409 criteria were 0.024 and 0.022, respectively, for the NLR model, and these were larger than those 

410 in the RF model, which were 0.020 and 0.017, respectively, for the training step. On the other 

411 hand, the RF method can be applied to high dimensional datasets in regressions (Janitza et al., 

412 2016; Zhao et al., 2016). 
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413 As depicted in Fig. 6, unlike in the training section, the NLR method gave better predictions in 

414 the testing section, compared to the RF method for the prediction of the SWRC. In other words, 

415 the reliability of the NLR method was better than that of the RF method in all the PTFs. The 

416 nonlinear regressionNLR equations can be more useful than the MLR method for the prediction 

417 of the SWRC due to their high flexibility (Williams et al., 1992). In other words, the NLR 

418 models have capacity to capture nonlinear relationships in the dataset. Tomasella et al. (2000) 

419 successfully developed parametric- PTFs for soils of the humid tropics using polynomials of nth 

420 order. Medrado and Lima (2014) successfully developed NLR-based PTFs to predict the four 

421 parameters of the van Genuchten model for Brazilian soils. Also, Touil et al. (2016) developed 

422 parametric-PTFs to predict the SWRC using the NLR method from more readily-available 

423 properties such as soil texture, OM content, and BD for 242 soil samples of Algeria. They 

424 reported that the parametric-PTFs had better performance compared to thethan Rosetta-based 

425 PTFs. 

426 In the present study, in contrast to the NLR method, which had less differences between the error 

427 values of the training and testing steps,  the, the error values of the RF method in the testing 

428 dataset was were much greater than those in the training dataset. These results can be due to 

429 overprediction phenomenon in the RF method. Gupta et al. (2017) expressed that one of the 

430 disadvantages of the RF method is the overprediction. In other words, the RF method is a 

431 ‘greedy’ method that easily leads to overprediction and instability in the testing step and solving 

432 this problem can be of great significance for improving the reliability of the RF method (Liu, 

433 2014). Also, Ma et al. (2005) reported the instability in results of the RF method. The forest size 

434 developed by the RF has not been clearly defined (Liu, 2014). Therefore, oversized scale can 

435 decrease the reliability and efficiency of the SWRC prediction. Hong et al. (2016) evaluated 
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436 landslide susceptibility maps produced using the RF method and compared these maps with 

437 those from statistical-based methods, such as logistic regression, and their study revealed that the 

438 performance of the statistical-based methods was better than that of the RF method. Also, aA 

439 similar result was reported by Esposito et al. (2014). Generally, RFs are best suited for problems 

440 with many input variables and a reasonable sample size. According to the our results (Figs. 5 and 

441 6), performance of the PTFs was improved by increasing the number of input variables.

442 3.3.2 Evaluation of the effect of the basic soil properties on prediction performance of the 

443 SWRC

444 A significant improvement was achieved in the accuracy of PTF5 (with the inputs of Sand 

445 content+Clay content+BD+θFC+θPWP) compared to other PTFs (with the exception of PTFs 4, 8, 

446 9, 11 and 12) by both NLR and RF methods in terms of the IRMSE criterion (Fig. 5). Among the 

447 PTFs of each method (RF or NLR), PTF5 had the greatest R2 (0.992 and 0.991, respectively) and 

448 the smallest IRMSE (0.028 and 0.03, respectively) and AIC (-19432 and -19571.1, respectively) 

449 values, in the training step of the prediction of the SWRC. In connection with the importance of 

450 input variables, an improvement was achieved in the reliability of the prediction of the SWRC by 

451 PTFs 9 (with the inputs of dg+δg+BD+θFC+θPWP) and 12 (with the inputs of Sand content+Clay 

452 content+TP+θFC+ θPWP) from the second and third steps, using the NLR (IRMSE=0.032 cm3 cm-

453 3, AIC=-19234.1 and R2=0.989) and RF (IRMSE=0.038 cm3 cm-3, AIC=-17646.8 and R2=0.987) 

454 methods, respectively, in comparison with the other PTFs of each method (Fig 6). However, the 

455 differences of the PTFs 9 and 12 were not significant (P<0.05) with PTFs 4, 5, 8, 11 and 12 in 

456 the NLR method and also with PTFs 4, 5, 8, 9 and 11 in the RF method, respectively, in terms of 

457 the IRMSE criterion. 

458
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459 3.3.2.1 Effect of using different input variables of PSD and soil structure as predictors on the 

460 SWRC prediction

461 Input variables such as textural contents (clay and sand contents) and statistics (dg and δg) as 

462 different descriptors of the PSD, and also the TP and BD as different descriptors of the soil 

463 structure, were used for prediction of the SWRC. Thus, tTo evaluate the effect of using different 

464 descriptors of the PSD on the prediction of the SWRC, PTFs 2, 3, 4 and 5 (clay and sand 

465 contents) from the first step were compared with PTFs 6, 7, 8 and 9 (dg and δg) from the second 

466 step, respectively. In the same way, to evaluate the effect of using different descriptors of the soil 

467 structure on the prediction of the SWRC, PTFs 3, 4 and 5 (BD) were compared with PTFs 10, 11 

468 and 12 (TP) from the third step, respectively. The accuracy and reliability of the prediction of the 

469 SWRC by both NLR and RF methods were not significantly different (P<0.05) (Figs. 5B and 

470 6B). For descriptors of soil structure, the accuracy and reliability of the prediction of the SWRC 

471 by both NLR and RF methods decreased in terms of the IRMSE criterion for PTFs 10 to 12 from 

472 the third step compared to PTFs 3 to 5 (with the exception of PTFs 11 and 12 in the testing step 

473 for the RF method), respectively, when TP was used instead of BD in the list of input variables 

474 (Figs. 5B and 6B). However, the differences were not significant (P<0.05).

475 The lack of significant differences between textural contents (clay and sand contents) and 

476 statistics (dg and δg),  and also between TP and BD on the SWRC prediction can be due to 

477 correlation of these parameters with the parameters of the van Genuchten model (Fig. 14). The 

478 SWRC can beis strongly influenced by the soil structure or pore-size distribution and soil texture 

479 at small and great matric suctions, respectively (Pachepsky et al., 2006). Therefore, input 

480 variables of the textural contents or statistics can influence the residual saturation region of the 

481 SWRC., However, soil water content at the dry end (high matric suctions) of the SWRC is 
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482 primarily determined by textural contents (Hillel, 1998)which had significant correlations with θr 

483 parameter (with the exception of the clay content) (Fig. 1). Also, TP and BD are indicators of 

484 soil structure and had significant correlations with θs (Fig. 14). Indeed, TP was calculated by BD 

485 and particle density (Rab et al., 2011).On the other hand, tThe dg and δg predictors were derived 

486 from soil textural contents (Shirazi and Boersma, 1984). In other words,  textural contents data 

487 can be converted to dg and δg by equations of Shirazi and Boersma (1984). Also, TP was 

488 calculated by BD and particle density (Rab et al., 2011). Therefore, these could be reasons for 

489 similar effects of textural contents and statistics and also TP and BD predictors on the prediction 

490 of the SWRC.  

491 Many researchers used textural contents (Adhikary et al., 2008; Chakraborty et al., 2011; 

492 Minasny et al., 1999; Tomasella and Hodnett, 1998), dg and δg (Rab et al., 2011; Scheinost et al., 

493 1997; Ungaro et al., 2005), BD (Bayat et al., 2011; Pachepsky et al., 1998) and TP (Bayat et al., 

494 2011; Pachepsky et al., 1998; Schaap et al., 1998) as effective predictors to derive point- and 

495 parametric-PTFs. Nemes et al. (2003), Schaap et al. (2001) and Schaap et al. (1998) reported that 

496 the variables of PTF5 have better capability on predicting the parameters of the van Genuchten 

497 (1980) model with an average RMSE of 0.026, 0.044 and 0.058 cm3cm-3, respectively. 

498 According to the results of the accuracy (Fig. 5) and reliability (Fig. 6) of PTFs 5, 9 and 12, it 

499 seems that certain points of the SWRC (e.g., θFC) can help to improve the prediction of the 

500 SWRC and this is in agreement with Schaap et al. (2001). These results indicate that the presence 

501 of at least one moisture points (e.g., θFC) can improve the prediction of the SWRC. In other 

502 words, according to the results of the accuracy (Fig. 5) and reliability (Fig. 6) of the NLR and RF 

503 methods for different PTFs, at least one moisture point is necessary to predict the SWRC. For 

504 example, in the first step, PTF5 with two moisture points (θFC+θPWP) and PTF4 with one 



25

505 moisture point (θFC) improved the prediction of the SWRC by 55, 48, 42% and 51, 44, 38% in 

506 terms of the IRMSE criterion compared to the PTFs 1, 2 and 3, respectively, in the RF method in 

507 the training step. In the testing section of the second step, PTF9 with two moisture points 

508 (θFC+θPWP) and PTF8 with one moisture point (θFC) decreased the IRMSE by 49, 44% and 44, 

509 39% compared to PTFs 6 and 7, respectively, in the NLR method. The points above are also true 

510 for the RF-based PTF12 in the third step of the testing section. Many researchers successfully 

511 applied θFC and θPWP as effective predictors to derive point- and parametric-PTFs (Børgesen and 

512 Schaap, 2005; Nemes et al., 2003; Schaap et al., 2001; Touil et al., 2016; Twarakavi et al., 2009). 

513

514 3.3.2.2 Effect of using OM and Ks as predictors on the SWRC prediction

515 To evaluate the effect of using OM and/or Ks and points of the SWRC on the prediction of the 

516 SWRC, the performances of PTFs 13, 14 and 15 were compared with those of PTFs 4 and 5. The 

517 accuracy and reliability of the prediction of the SWRC by both NLR and RF methods, 

518 significantly (P<0.05) decreased in terms of the IRMSE, for the PTFs 13, 14 and 15 from the 

519 fourth step, when OM and/or Ks were used with textural contents and BD as inputs instead of θFC 

520 or both θFC and θPWP in the list of input variables, compared to PTFs 4 and 5 at the first step 

521 (Figs. 5B and 6B). Therefore OM and Ks were not as effective predictors as θFC and θPWP in the 

522 prediction of the SWRC, because θFC and θPWP are two points of the SWRC and enter direct 

523 information of the SWRC into the PTFs, whereas OM and Ks enter indirect information, and 

524 therefore had less effect in the improvement of the estimation of the SWRC. These results agreed 

525 well with results obtained by Børgesen and Schaap (2005). They reported that PTFs with the 

526 inputs of θFC and θPWP had smaller RMSE values than a PTF with the input of OM (0.038 versus 

527 0.042) in the prediction of the SWRC. On the other hand, the results showed that by adding OM 
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528 and/or Ks as predictors in the PTFs 13, 14 and 15, the accuracy (Fig. 5B) and reliability (Fig. 6B) 

529 of the prediction of the SWRC improved by 16, 13, 17 and 7.1, 6.3, 6.9%, respectively, 

530 compared to the PTF3 in terms of the IRMSE criterion in the RF method.

531 The SWRC depends mainly on the soil texture and structure (Hillel, 1998), with OM affecting 

532 the SWRC through development of soil structure (Nemes et al., 2005), important at low suctions. 

533 However, the OM retains water itself. Similarly, Ks can be a descriptive index of soil texture and 

534 porosity (Hillel, 1998). The correlation results showed (Fig. 14) that Ks can be strongly 

535 influenced by clay content and textural statistics (dg and δg) soil texture and TP(Fig. 4). Bayat et 

536 al. (2013b) applied OM and Ks to estimate water content at the measured matric suctions. They 

537 found that the OM and Ks can be most appropriately used in point-based PTFs to estimate water 

538 content at the matric suctions of 25 and 50 kPa. Also, the result of the present study agreed well 

539 to thewith results obtained by Hollis et al. (1977) and Rawls et al. (1983). In this study, the OM 

540 and Ks in the PTFs 13, 14 and 15 were not effective predictors compared to θFC and θPWP in the 

541 PTFs 4 and 5, otherwise they had better results than PTF3. 

542

543 4 Conclusion

544 Machine-learning tools have been widely applied for the prediction of the SWRC. The present 

545 study evaluated the capability and performance of the RF method as a novel machine learning 

546 tool and compared its performance with that of the nonlinear regression (NLR) method on the 

547 prediction of the SWRC, using different combinations of easily-available soil properties. It was 

548 found that the RF method had a better performance (P<0.05) than the NLR method in the 

549 training step of the prediction of the SWRC in term of the IRMSE, AIC and R2 criteria. However, 

550 in the testing step, NLR had a better performance than RF. The poor performance of the RF 
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551 compared to the NLR method could be due to overprediction in the former, resulting in 

552 instability in the testing step. The RF method can be sensitive to sparse areas on the prediction 

553 space. In other words, the performance and, sensitivity of predictions, and the computational 

554 intensity of the RF method depends on the distribution and number of observations and input 

555 variables. Therefore, this the method should be tested further with different datasets to evaluate 

556 its performance through soil and water investigations. An improvement was achieved in the 

557 accuracy of the prediction of the SWRC in the training step of the PTF5 (with the inputs of Sand 

558 content+Clay content+BD+θFC +θPWP) by both NLR and RF methods and also an improvement 

559 was achieved in the reliability of the PTF9 (with the inputs of dg+δg+BD+θFC+θPWP) and PTF12 

560 (with the inputs of Sand content +Clay content+TP+ θFC+θPWP) by the NLR and RF methods 

561 compared to other PTFs, respectively. Considering that the PTFs 5, 9, and 12 had no significant 

562 difference from PTF4 (with the inputs of Sand content+Clay content+BD+θFC) and PTF8 (with 

563 the inputs of dg+δg+BD+θFC+θPWP), these latter PTFs, with less and more-easily measured input 

564 variables, are suggested to be the best PTFs for the prediction of the SWRC. Also, PTFs without 

565 predictors of θFC and θPWP, such as the PTF3 (with the inputs of Sand content+Clay content+BD) 

566 and PTF7 (with the inputs of dg+ δg+BD), can be effective models for the prediction of the 

567 SWRC. 
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802 Figure captions

803 Fig. 1. Correlation matrix plot between input and output variables.

804 ** Correlation is significant at the P<0.01 level.

805 * Correlation is significant at the P<0.05 level.

806  A list of abbreviations is available in the notation box.

807 Fig 21. Input variables of the 15 pedotransfer functions (PTFs) for predicting the van Genuchten 

808 model parameters (θr, θs, α and n) of the soil water retention curve (SWRC). A list of 

809 abbreviations is available in the notation box.

810 Fig. 32. An architecture of a random forest. 

811 Fig. 43. Variation of soil texture classes for the dataset (n = 223) on the United States 

812 Department of Agriculture (USDA) textural triangle.

813 Fig. 14. Correlation matrix plot between input and output variables.

814 ** Correlation is significant at the P<0.01 level.

815 * Correlation is significant at the P<0.05 level.

816  A list of abbreviations is available in the notation box.

817 Fig. 5. Results of the prediction of the soil water retention curve (SWRC) through the van 

818 Genuchten model by the non-linear regression (NLR) and random forests (RF) techniques for the 

819 training step as reflected in the integral mean error (IME), integral root mean square error 

820 (IRMSE), coefficient of determination (R2), and Akaike’s information criterion (AIC). Vertical 

821 lines indicate the standard deviations. Means with the same letter are not significantly different at 

822 the significance level of P<0.05 (IRMSE only).

823 Fig. 6. Results of the prediction of the soil water retention curve (SWRC) through the van 

824 Genuchten model by the Rosetta software, non-linear regression (NLR) and random forests (RF) 



40

825 techniques for the testing step as reflected in the integral mean error (IME), integral root mean 

826 square error (IRMSE), coefficient of determination (R2), and Akaike’s information criterion 

827 (AIC). Vertical lines indicate the standard deviations. Means with the same letter are not 

828 significantly different at the significance level of P<0.05 (IRMSE only).

829
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830

831
832 Fig. 1. Correlation matrix plot between input and output variables.

833 ** Correlation is significant at the 0.01 level.

834 * Correlation is significant at the 0.05 level.

835  A list of abbreviations is available in the notation box.
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839 Fig 21. Input variables of the 15 pedotransfer functions (PTFs) for predicting the van Genuchten 

840 model parameters (θr, θs, α and n) of the soil water retention curve (SWRC). A list of 

841 abbreviations is available in the notation box.
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846 Fig. 32. An architecture of a random forest. 
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848

849
850 Fig. 43. Variation of soil texture classes for the dataset (n = 223) on the United States 

851 Department of Agriculture (USDA) textural triangle.
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858
859 Fig. 14. Correlation matrix plot between input and output variables.

860 ** Correlation is significant at the P<0.01 level.

861 * Correlation is significant at the P<0.05 level.

862  A list of abbreviations is available in the notation box.
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872  
873 Fig. 5. Results of the prediction of the soil water retention curve (SWRC) through the van 

874 Genuchten model by the non-linear regression (NLR) and random forests (RF) techniques for the 

875 training step as reflected in the integral mean error (IME), integral root mean square error 

876 (IRMSE), coefficient of determination (R2), and Akaike’s information criterion (AIC). Vertical 

877 lines indicate the standard deviations. Means with the same letter are not significantly different at 

878 the significance level of P<0.05 (IRMSE only).

879
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885 Fig. 6. Results of the prediction of the soil water retention curve (SWRC) through the van 

886 Genuchten model by the Rosetta software, non-linear regression (NLR) and random forests (RF) 

887 techniques for the testing step as reflected in the integral mean error (IME), integral root mean 

888 square error (IRMSE), coefficient of determination (R2), and Akaike’s information criterion 

889 (AIC). Vertical lines indicate the standard deviations. Means with the same letter are not 

890 significantly different at the significance level of P<0.05 (IRMSE only). 

891
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892 Table 1- The results of 10, 15 and 20-fold cross-validation (k) for van Genuchten model 

893 parameters of the soil water retention curve derived from nonlinear regression (NLR) and 

894 random forest (RF) techniques based on root mean square error (RMSE) for pedotransfer 

895 functions PTF 3, 5 and 11 in the train and test datasets.

θr θs α n

RMSE RMSE RMSE RMSE

Train Test Mean Train Test Mean Train Test Mean Train Test Mean

PTF3 k=10 NLR 0.058 0.060 0.059 0.063 0.065 0.064 1.017 1.037 1.027 0.426 0.436 0.431

RF 0.052 0.061 0.056 0.058 0.073 0.066 0.893 1.084 0.989 0.374 0.442 0.408

k=15 NLR 0.058 0.060 0.059 0.064 0.064 0.064 1.017 1.030 1.024 0.426 0.434 0.430

RF 0.052 0.061 0.057 0.058 0.070 0.064 0.894 1.033 0.964 0.374 0.441 0.408

k=20 NLR 0.058 0.060 0.059 0.064 0.064 0.064 0.064 0.064 0.064 0.426 0.437 0.432

RF 0.051 0.060 0.056 0.057 0.071 0.064 0.057 0.071 0.064 0.368 0.442 0.405

PTF5 k=10 NLR 0.051 0.053 0.052 0.053 0.054 0.054 0.764 0.796 0.780 0.380 0.397 0.389

RF 0.043 0.056 0.050 0.046 0.056 0.051 0.675 0.869 0.772 0.327 0.411 0.369

k=15 NLR 0.051 0.053 0.052 0.053 0.055 0.054 0.764 0.790 0.777 0.381 0.399 0.390

RF 0.044 0.054 0.049 0.046 0.055 0.050 0.679 0.848 0.763 0.329 0.421 0.375

k=20 NLR 0.051 0.053 0.052 0.053 0.055 0.054 0.765 0.789 0.777 0.381 0.399 0.390

RF 0.042 0.054 0.048 0.044 0.054 0.049 0.654 0.842 0.748 0.316 0.412 0.364

PTF11 k=10 NLR 0.058 0.061 0.060 0.065 0.067 0.066 1.018 1.052 1.035 0.431 0.448 0.440

RF 0.050 0.061 0.056 0.047 0.057 0.052 0.770 0.978 0.874 0.370 0.443 0.406

k=15 NLR 0.058 0.061 0.060 0.065 0.067 0.066 1.019 1.037 1.028 0.432 0.447 0.439

RF 0.050 0.060 0.055 0.047 0.057 0.052 0.770 1.009 0.889 0.369 0.450 0.410

k=20 NLR 0.058 0.060 0.059 0.065 0.065 0.065 1.020 1.024 1.022 0.432 0.439 0.435

RF 0.049 0.061 0.055 0.046 0.056 0.051 0.745 0.964 0.855 0.361 0.443 0.402

896
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897 Table 12- Some descriptive statistics of the measured soil variables and parameters of the van 

898 Genuchten model of the soil water retention curve for the entire dataset (223 soil samples).

Variablesa Mean CV (%) Minimum Maximum P-value
Clay content (%) 21.39 54.05 3.47 48.00 0.00

Log (clay content) 1.27 19.08 0.54 1.68 0.66
Sand content (%) 35.45 48.40 5.90 89.80 0.00

Sand content* -0.01 -14350.94 -3.40 3.14 0.90
Bulk density (g cm-3) 1.43 10.97 1.03 1.84 0.83

θFC (cm3 cm-3)$ 0.33 20.44 0.15 0.55 0.45

θPWP (cm3 cm-3) 0.18 26.21 0.04 0.31 0.90
dg (mm) 0.07 86.62 0.00 0.21 0.00
Log (dg) -1.33 -27.91 -2.34 -0.67 0.77

δg (-) 11.57 29.39 4.54 19.97 0.00
δg

* -0.01 -9872.87 -2.53 1.80 0.96
Total porosity (cm3 cm-3) 0.46 13.26 0.31 0.61 0.67

Organic matter content (%) 1.84 53.68 0.17 4.41 0.00
(Organic matter content)(1/4) 1.13 14.83 0.64 1.45 0.86

Ks (cm day-1) 169.10 96.58 0.06 530 0.00
(Ks)(1/4) 3.23 30.37 0.50 4.80 0.59

θr (cm3 cm-3) 0.04 158.05 0.00 0.17 0.00
θs (cm3 cm-3) 0.52 16.26 0.35 0.70 0.56

α (kPa-1) 0.06 115.62 0.00 0.29 0.00
α* 0.01 8889.14 -2.93 2.19 0.93
n 1.24 9.80 1.08 1.48 0.00

Ln (n-1) -1.55 -30.92 -2.52 -0.74 0.05
899 a CV, coefficient of variation. 

900 $. A list of abbreviations is available in the notation box. 

901 * Normalized form of sand content: 0.91+1.06×Ln((sand content- 4.3)/(100.2-sand content)); 

902 normalized form of δg: -1.04657+1.39359×Asinh((δg- 8.4)/3.04); and normalized form of α: 

903 3.6+0.92×Ln((α- 8.2×10-6)/(1.6-α)). P-value is a significance value for normality test.

904
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905 Table 23- The variance inflation factor (VIF) values for normalized form of the input variables.
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PTF2 1.42 1.42

PTF3 1.43 1.52 1.10

PTF4 1.45 1.56 1.25 1.31

PTF5 1.79 1.58 1.27 2.48 2.56

PTF6 1.00 1.00

PTF7 1.11 1.11 1.01

PTF8 1.25 1.33 1.01 1.22

PTF9 1.28 2.50 2.73 1.34 1.22

PTF10 1.55 1.43 1.11

PTF11 1.58 1.46 1.32 1.26

PTF12 1.60 1.79 2.49 2.56 1.28

PTF13 1.48 1.65 1.25 1.14

PTF14 1.55 1.64 1.14 1.06

PTF15 1.55 1.65 1.25 1.15 1.06

906 * Normalized form of the input variables is available in Table 2.

907 $. A list of abbreviations is available in the notation box. 

908
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909 Table 34- Analysis of variance of the integral root mean square error (IRMSE) of the prediction 

910 of the soil water retention curveSWRC by different methods (nonlinear regression and random 

911 forest) and pedotransfer functions (PTFs 1-15) for both the train and test datasets.

Source Degree freedom Mean square F-value P-value
Train Repeat (Block) 222 0.007 19.09 <0.0001

PTFs 14 0.062 180.68 <0.0001
Methods 1 0.038 109.69 <0.0001

PTFs × Methods 14 0.001 1.78 0.0356
Error 6288 0.0003

Test Repeat (Block) 222 0.010 16.04 <0.0001
PTFs 14 0.073 117.22 <0.0001

Methods 2 0.656 1056.43 <0.0001
PTFs × Methods 18 0.002 3.68 <0.0001

Error 7398 0.0006

912

913



 The RF was compared to NLR method and Rosetta-based PTFs to predict the SWRC 

  The NLR method had better performance due to higher reliability in the testing step

 The RF and NLR-based PTFs performed better than the Rosetta-based PTFs 

 In the absence of moisture points, OM and Ks can be suitable predictors for SWRC

 dg and δg can be suitable alternatives for textural fractions in predicting SWRC

 Total porosity and bulk density have the same effect in predicting the SWRC
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24 Estimating the soil water retention curve: comparison of multiple nonlinear regression 

25 approach and random forest data mining technique

26 Abstract

27 This study evaluates the performance of the random forest (RF) method on the prediction of the 

28 soil water retention curve (SWRC) and compares its performance with those of nonlinear 

29 regression (NLR) and Rosetta-based pedotransfer functions (PTFs), which has not been reported 

30 so far. Fifteen RF and NLR-based PTFs were constructed using readily-available soil properties 

31 for 223 soil samples from Iran. The general performance of RF and NLR-based PTFs was 

32 quantified by the integral root mean square error (IRMSE), Akaike’s information criterion (AIC) 

33 and coefficient of determination (R2). The results showed that the accuracy of the RF-based PTFs 

34 was significantly (P<0.05) better than the NLR-based PTFs, and that the reliability of the NLR-

35 based PTFs was significantly (P<0.01) better than the RF-based PTFs and all of the Rosetta-

36 based PTFs. The average values of the IRMSE, AIC and R2 of the RF method were 0.041 cm3 

37 cm-3, -16997.7, and 0.987, and 0.053 cm3 cm-3, -15547.5, and 0.981 for the training and testing 

38 steps of all PTFs, respectively, whereas the values for the NLR method were 0.046 cm3 cm-3, -

39 16616.4, and 0.984, and 0.048 cm3 cm-3, -16355.6, and 0.983 for the training and testing steps, 

40 respectively. The PTF5 of the RF and NLR methods, with inputs of sand and clay contents, bulk 

41 density, and the water content at field capacity and permanent wilting point, had the greatest R2 

42 values (0.987 and 0.989, respectively), and the lowest IRMSE values (0.039 and 0.032 cm3 cm-3, 

43 respectively) compared to other PTFs for the testing step. Overall, the RF method had less 

44 reliability for the prediction of the SWRC compared to the NLR method due to overprediction, 

45 uncertainty of determination of forest scale and instability in the testing step. These findings 

46 could provide the scientific basis for further research on the RF method.
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47 Keywords: pedotransfer functions; soil water retention curve; soil texture; soil structure; van 

48 Genuchten.

49

Notation

Sand content (%) S

Clay content (%) C

Geometric mean diameter (mm) dg

Geometric standard deviation (-) δg

Bulk density (g cm-3) BD

Total porosity (cm3 cm-3) TP

Water content at field capacity, 33 kPa (cm3 cm-3) θFC

Water content at 1500 kPa (cm3 cm-3) θPWP

Organic matter content (%) OM

Saturated hydraulic conductivity (cm day-1) Ks

Saturated water content (cm3 cm-3) θs

Residual water content (cm3 cm-3) θr

Random forest RF

Nonlinear regression NLR

Soil water retention curve SWRC

50

51 1 Introduction 

52 Soil hydraulic properties are principle factors that control the movement of water and solutes in 

53 the soil. Determination of the soil hydraulic properties is required for many distinct applications 

54 linked with irrigation, land use planning, drainage and drought risk assessment (Dobarco et al., 

55 2019). The soil water retention curve (SWRC) is one of the most important soil hydraulic 

56 properties. It defines the relationship between soil matric potential and soil water content (Hillel, 

57 1998). The SWRC is a crucial parameter in soil and water management for sustainable and 
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58 improved agricultural production (Shwetha and Varija, 2015). The SWRC depends principally 

59 on texture, structure and bulk density (BD) of soils (Wassar et al., 2016). Many methods have 

60 been introduced for the direct measurement of the SWRC in the laboratory (e.g., the hanging 

61 water column and pressure plate methods) (Klute, 1986) and in the field (e.g., tensiometric) 

62 (Bruce and Luxmoore, 1986). Measurements of the SWRC at several matric potentials can be 

63 expensive, difficult and time-consuming, hence it is common to predict it by modelling (Dobarco 

64 et al., 2019). Modelling of soil water is an essential tool in evaluating the effects of different 

65 managements on crop yield and environmental quality (Verhagen, 1997).

66 Pedotransfer functions (PTFs) translate easy-to-measure data that we have (e.g., texture class, 

67 particle size distribution (PSD) and BD) into difficult-to-measure data that we need (soil 

68 hydraulic data) (Bouma, 1989). Estimates of the SWRC by PTFs are valuable in many studies, 

69 such as hydrology, soil mapping and hydrogeology (Børgesen and Schaap, 2005). The point- and 

70 parametric-based PTFs are generally developed to predict water content at specific matric 

71 potential values and the entire SWRC, respectively, by multiple linear (MLR) and nonlinear 

72 regression (NLR) methods (Gunarathna et al., 2019b; Merdun et al., 2006; Minasny et al., 1999; 

73 Rajkai et al., 2004; Tomasella et al., 2000). Data mining techniques including artificial neural 

74 networks (ANNs) (Bayat et al., 2013a; Bayat et al., 2013b; Gunarathna et al., 2019a; Koekkoek 

75 and Booltink, 1999; Pachepsky et al., 1996), group method of data handling (GMDH) (Bayat et 

76 al., 2011; Neyshaburi et al., 2015; Pachepsky and Rawls, 1999), nonparametric nearest neighbor 

77 technique (Botula et al., 2013; Gunarathna et al., 2019a; Haghverdi et al., 2015; Nemes et al., 

78 2006; Nguyen et al., 2017) and support vector machine (SVM) (Khlosi et al., 2016; Lamorski et 

79 al., 2008; Lamorski et al., 2014; Twarakavi et al., 2009), have been applied successfully for PTF 

80 development.  
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81 Random forest (RF), or random decision forests, has become a popular approach as an ensemble 

82 learning method for prediction and classification (Verikas et al., 2011). The RF method has been 

83 developed by Breiman (2001) as an expansion of the classification and regression trees (CART) 

84 technique to provide better performance of prediction results (Wiesmeier et al., 2011). So far, 

85 few studies have been carried out on the application of the RF method in soil science. Tóth et al. 

86 (2014) applied the RF method to analyze the relationship between soil water content at four 

87 matric suctions (0.1, 33, and 1500 kPa, and 150 MPa) and Hungarian soil map information. They 

88 found that the importance of soil properties in the prediction of the soil water content varied 

89 according to soil type and matric suction. Recently Szabó et al. (2019) have developed PTFs 

90 based on RF and geostatistics methods to map soil hydraulic properties, such as water contents at 

91 saturation, field capacity and wilting point, for the Balaton catchment area in Hungary. Araya 

92 and Ghezzehei (2019) compared the performances of four machine-learning algorithms including 

93 the k‐nearest neighbors (kNNs), support vector regression (SVR), RF, and boosted regression 

94 tree (BRT) for prediction of saturated hydraulic conductivity. They found that the BRT model 

95 outperformed the other algorithms closely followed by the RF model. Gunarathna et al. (2019a) 

96 tested three machine-learning algorithms including ANN, kNN, and RF to estimate volumetric 

97 water content at matric suctions of 10, 33 and 1500 kPa for soils in Sri Lanka. They 

98 recommended that the PTFs to be developed using the RF algorithm. Ließ et al. (2012) studied 

99 uncertainty in the spatial prediction of soil texture by comparison of the RF and regression tree 

100 techniques for 56 soil profiles and found that the former method provided a better result. Also, 

101 Wiesmeier et al. (2011) utilized the RF technique to develop digital mapping of the soil organic 

102 matter content in 120 soil profiles. They found that the prediction accuracy of the RF modeling 

103 was acceptable. A review of literatures therefore revealed that the RF data mining technique has 
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104 been applied to develop PTFs to predict specific points of the SWRC, such as field capacity and 

105 permanent wilting point, or particular properties such as saturated hydraulic conductivity, but it 

106 has not been used to develop parametric-based PTFs of the van Genuchten model parameters, so 

107 far. Therefore, the objective of the present study was to develop simple parametric-PTFs to 

108 predict the SWRC with greater accuracy and reliability using a novel approach with the RF data 

109 mining technique. We compare its performance with those of the multiple NLR approach and 

110 with Rosetta software (Schaap et al., 2001) on the prediction of the SWRC through finding the 

111 best input variables and PTFs for the SWRC. 

112

113 2 Materials and methods

114 2.1 Sample collection and determination

115 In the present study 223 undisturbed and disturbed soil samples were taken from six provinces of 

116 Iran including west Azarbaijan (35° 8ˊ − 39° 46ˊ N, 44° 3ˊ − 47° 23ˊ E; 60 data), Hamedan 

117 (33° 59ˊ − 35° 48ˊ N, 47° 34ˊ − 49° 36ˊ E; 55 data), Kermanshah (33° 41ˊ − 35° 17ˊ N, 45° 

118 24ˊ − 48° 6ˊ E; 26 data), Kurdistan (34° 45ˊ − 36° 31ˊ N, 45° 31ˊ − 48° 13ˊ E; 22 data), 

119 Mazandaran (35° 46ˊ − 36° 58ˊ N, 50° 21ˊ − 58° 08ˊ E; 30 data)  and Fars (27° 2ˊ − 31° 42ˊ 

120 N, 50° 42ˊ − 55° 38ˊ E; 30 data). Steel cylinders, measuring 5.1 cm in diameter and 3.5 cm in 

121 height, were used to collect the undisturbed samples. Since the sampling was done from different 

122 locations of the various provinces, the topsoil and subsoil layers of soil at different locations had 

123 different depths and thicknesses. We collected samples from the center of the topsoil and subsoil 

124 layers, which represented the pedological A and B horizons, respectively. The sampling depths 

125 varied from 10 to 35 cm for topsoil (208 samples) and from 20 to 45 cm for subsoil (15 samples), 

126 reflecting the variation in the soil profiles. 
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127 Soil PSD was analyzed by the hydrometer method (Gee and Or, 2002), and the geometric mean 

128 and standard deviation of particle diameter (dg and δg, respectively) were calculated  by 

129 equations from Shirazi and Boersma (1984). Organic matter (OM) content was determined by 

130 the Walkley and Black (1934) method and BD by the core method (Blake and Hartge, 1986). 

131 Total porosity (TP) was calculated from BD and particle density, and the saturated hydraulic 

132 conductivity (Ks) was measured with a constant head permeameter (Klute and Dirksen, 1986). 

133 The SWRC was constructed by measuring the volumetric water content at matric suctions of 0 

134 (saturation status of soil samples), 1, 2 and 5 kPa with a sandbox apparatus, and at 10, 25, 50, 

135 100, 200, 500, 1000 and 1500 kPa with a pressure plate apparatus. Undisturbed samples were 

136 used for measurement of the matric suctions from 0 to 100 kPa and disturbed samples were used 

137 for matric suctions from 200 to 1500 kPa. Two key points in the SWRC are the water contents at 

138 field capacity (30 kPa suction; θFC) and permanent wilting point (1500 kPa suction; θPWP).

139  

140 2.2 Soil-water retention equation

141 The van Genuchten–Mualem (Eq. (1)) model (Mualem, 1976; van Genuchten, 1980) was utilized 

142 to describe the SWRC data. 
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143 where θr and θs are residual and saturated water contents (cm3 cm-3), respectively, and h is the 

144 soil water suction (kPa). The parameter α is related to the inverse of the air entry pressure (>0, 

145 kPa-1) and n (>1, dimensionless parameter) is related to the pore size distribution of the soil (van 

146 Genuchten, 1980). In the present study, van Genuchten model parameters θr, θs, α and n were 

147 obtained using the MATLAB software (MathWorks, 2018).
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149 2.3 Data pre-processing

150 Data pre-processing and regression assumptions, including detection of outliers, normality test of 

151 the residuals, multicollinearity and independence of the residuals, were applied for all variables 

152 (Berry, 1993). The outliers in the data were identified by the inter-quartile range (IQR) method 

153 (Seo, 2006) and were replaced by the lower and upper threshold values (MathWorks, 2018). 

154 Before developing PTFs, all variables were evaluated by Kolmogorov-Smirnov normality and 

155 multicollinearity tests by the SPSS 24 software (IBM, 2016). The degree of multicollinearity in 

156 the PTFs was tested by the variance inflation factor (VIF=1/1-R2
j, where R2

j  is the R2 value 

157 obtained by regressing the jth predictor on the remaining predictors) (Hocking, 2013). Also, to 

158 avoid multicollinearity between textural contents, the silt fraction was not used as a predictor. 

159 The variables clay content, sand content, dg, δg, OM, Ks, α and n had non-normal distributions, 

160 therefore, transformations were applied to normalize them. 

161

162 2.4 Developing PTFs

163 The PTF inputs were arranged in four steps (Fig. 1). The first step (PTFs 1-5) was based on basic 

164 soil properties (i.e., sand content (%), clay content (%), BD (g cm-3), θFC (cm3 cm-3) and θPWP 

165 (cm3 cm-3)) according to Rosetta-based PTFs (Schaap et al., 2001) for comparison of SWRC 

166 estimates by other methods. The parameters of the van Genuchten model were predicted in all 

167 steps. In the second step (PTFs 6-9), dg (mm) and δg were used as new inputs instead of sand and 

168 clay contents in the previous step to evaluate the efficiency of using statistical descriptors of PSD 

169 to predict the parameters of the van Genuchten model. To build the third step (PTFs 10-12), TP 

170 (cm3 cm-3) replaced BD from PTFs 3-5 to evaluate the effect of using TP instead of BD on the 

171 prediction of the parameters of the van Genuchten model. In other words, the purpose of the 



10

172 second and third steps was to evaluate whether the use of another form of descriptors of soil 

173 structure (TP instead of the BD) and soil texture (dg and δg instead of the sand and clay contents) 

174 would improve the accuracy of the estimates or not. In the last step, PTFs 13-15 were developed 

175 by including OM (%) and Ks (cm day-1) as new variables to evaluate the efficiency of these 

176 instead of the water content at specific matric suctions on the prediction of the van Genuchten 

177 model parameters. The input variables of the 15 PTFs are shown in Fig. 1. 

178 To compare the results of PTFs 1-5 of the RF and NLR methods with those of the Rosetta 

179 models, the parameters of the van Genuchten model (θr, θs, α and n) were estimated by the PTFs 

180 built in the Rosetta software (PTFs 1-5), using the measured values of input variables based on 

181 PTFs 1-5 as predictors in the Rosetta program. The estimated coefficients of the van Genuchten 

182 model were used to calculate the estimated water content at matric suctions from 0 to 1500 kPa 

183 (estimated SWRCs). Then curve-by-curve comparison of the measured and estimated SWRCs 

184 was performed with different evaluation statistics. Since there is no training step in the Rosetta 

185 software, the results of the Rosetta model was only compared with the results of the testing step. 

186 To evaluate the effect of using different descriptors of PSD on the prediction of the SWRC, PTFs 

187 6, 7, 8 and 9 from the second step were compared with PTFs 2, 3, 4 and 5 from the first step, 

188 respectively (Fig. 1). In the same way, to evaluate effect of using different descriptors of soil 

189 structure on the prediction of the SWRC, PTFs 10, 11 and 12 from the third step were compared 

190 with PTFs 3, 4 and 5 from the first step, respectively. Also, the PTFs 13-15 were compared with 

191 the PTFs 4 and 5 to find out the efficiency of OM and Ks variables as predictors (Fig. 1).

192 Fig 1.

193
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194 In the present study, the k-fold cross validation approach (Efron and Tibshirani, 1994) was 

195 utilized to obtain training and testing datasets for each PTF. The number of folds (i. e., k) was 

196 obtained by trial and error. To do so, some PTFs, selected randomly, were developed with 10, 15 

197 and 20-fold cross-validation. Then, the k value which resulted in the best performance of the 

198 PTFs, was selected to develop all PTFs in this study. The results showed that 20-fold cross 

199 validation performed better than the other folds in most of the PTFs (Table 1). Therefore, 20-fold 

200 cross validation was selected to develop PTFs in this study. Based on this approach, the 223 

201 samples were randomly divided into 20 subsets and 20 models were developed by each 

202 predicting technique for each PTF. In each model, training and testing datasets were based on a 

203 ratio of 19:1. Finally, the average of the results of 20 models was calculated for each PTF. 

204 Therefore, all data were used for the training and testing steps of the PTFs.

205 Table 1-

206 2.5 Description of modeling techniques

207 2.5.1 Multiple nonlinear regression

208 A NLR model based on a second-order polynomial for the prediction of the response variable y 

209 from a number of p predictors can be written as (Rawls and Brakensiek, 1985):

 2

1

p

i i i i
i

y a b x c x


   (2)

210 where a is the intercept, and two regression coefficients bi and ci are determined for every input 

211 variable xi. 

212

213 2.5.2 Random forest: an ensemble of regression trees

214 RF has become a popular tool for regression and classification problems. The RF is an ensemble 

215 method based on the regression tree methodology (i.e., CART) that was introduced for better 
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216 performance (Breiman, 2001). The model building process in the RF is the same as that in the 

217 CART method but without pruning (Breiman, 1984). Also, whereas a regression tree only grows 

218 by a single tree the RF grows by forest of trees. In other words, unlike a regression tree, in the 

219 RF for each tree only a subset of the input variables is applied. The number of inputs in each tree 

220 and also the number of trees in the forest can be distinct and it depends on the dataset. Least-

221 squares boosting (LSBoost) fits regression ensembles. At every step, the ensemble fits a new 

222 learner to the difference between the observed response and the aggregated prediction of all 

223 learners grown previously. The ensemble fits to minimize the mean-squared error (MathWorks, 

224 2018). The number of trees used here was 16 which was established by trial and error. An 

225 architecture of the RF algorithm is shown in Fig. 2 where input matrix X consists of N samples 

226 and M input variables (sample set S = [(xi, yi), i = 1, 2, …, N], (X, Y) ∈RM×R). The bootstrap 

227 method is utilized to construct n tree sample sets from the sample set S. At each bootstrap 

228 sample, about one-third of the dataset S was utilized as out of the bootstrap data or out-of-bag 

229 (OOB) data; whereas the rest is called in-bag data (Ibrahim and Khatib, 2017) (Fig. 2). Modeling 

230 of the regression tree is done for each sample set. In the RF algorithm, all individual trees give a 

231 predictive result. The final prediction value is calculated based on an average result of all 

232 individual trees (Wiesmeier et al., 2011). The prediction error is defined as follows (Liaw and 

233 Wiener, 2002):

 
2

1

ˆ
treen

OOB
i i

i
OOB

tree

y y
MSE

n





 (3)

234 where MSEOOB is the mean square error of the OOB data prediction, ntree is the number of trees, 

235 and  yi and  are the actual value of the OOB data and the average of all OOB predictions, ˆ OOB
iy

236 respectively.  Among all the ensemble methods, the RF method has high capability in solving 



13

237 classification and regression problems, because the RF method combines several simple 

238 regression trees to better optimize prediction (Zaklouta and Stanciulescu, 2012). The RF method 

239 increases differences for each single tree through random selection of the training samples and 

240 different variables at each splitting node. In the present study, the NLR and RF algorithms were 

241 implemented by fitnlm and fitensemble functions in the MATLAB software, respectively. 

242 (MathWorks, 2018). 

243 Fig. 2. 

244

245 2.6 Evaluation criteria

246 The estimated water content was computed by estimated parameters of the van Genuchten model 

247 for each PTF at matric suctions from 0 to 1500 kPa. For curve-by-curve comparison of the 

248 measured and predicted SWRCs, different evaluation statistics were used. Various statistical 

249 criteria including integral root mean square error (IRMSE), integral mean error (IME) (Tietje and 

250 Tapkenhinrichs, 1993), Akaike’s information criterion (AIC) (Akaike, 1974) and coefficient of 

251 determination (R2) (Wösten et al., 2001), were utilized to assess the predictive ability of the RF 

252 and NLR algorithms, which are defined as:
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253

254 where h is the matric suction (kPa), ,  and  are the measured, predicted and average of iy ˆ iy iy

255 the measured values of the water content, respectively, a and b values define the matric suction 

256 range over which the experimental curve is measured, i.e., 0 and 1500 kPa, respectively, and P 

257 and N are the number of parameters and the number of points that were considered in the SWRC, 

258 respectively. In calculating the AIC, N is the total number of points that were considered in the 

259 SWRC of all soil samples (i. e., N= number of soil samples × number of paired points of the 

260 suction-water content for each soil sample), and i is  paired points of the suctions-water content 

261 of the SWRC of each soil sample. 

262 To evaluate the performance of each method in different PTFs, the effect of method as the first 

263 factor at two levels in the training step (i.e., NLR and RF methods) and at three levels in the 

264 testing step (i.e., NLR, RF and Rosetta methods), and the different PTFs as the second factor at 

265 15 levels (PTF1 to PTF15), were investigated using a two-way analysis of variance (ANOVA) 

266 with a randomized complete block design, based on the IRMSE of prediction of the SWRC. The 

267 IRMSE criterion calculates the total error, including bias and random errors, and is a more 

268 appropriate criterion for evaluating the accuracy and reliability of the RF and NLR methods 

269 compared to other criteria (Chai and Draxler, 2014). Therefore, to compare the predicting 

270 accuracy and reliability of the RF and NLR methods, the average values of the IRMSE was 

271 compared with Duncan’s test by MathWorks (2018) software. 

272
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273 3 Results and discussion

274 3.1 Descriptive statistics of the soil properties

275 Table 2 summarizes some basic descriptive statistics for soil variables of the entire dataset used 

276 for the development of the PTFs. It can be seen that the average and maximum of clay content 

277 were 21.4 and 48%, respectively. The OM ranged from 0.17 to 4.41% with a mean of 1.84%, 

278 which was low due to the arid and semi-arid climates of Iran. The variation in soil texture is 

279 shown graphically in the United States Department of Agriculture (USDA) textural triangle (Fig. 

280 3). Considering the distribution and range of the variables (Fig. 3 and Table 2), the dataset can be 

281 considered as representative of soils in arid and semi-arid regions of Iran.

282 Table 2

283 Fig. 3.

284 3.2 Correlation of input and output variables

285 The simple correlation coefficients between all variables are depicted by matrix plot in Fig. 4. 

286 Correlation analysis was done between normalized input and output variables. The correlation test 

287 was not performed for the θr variable, because its value was zero in 138 out of 223 soil samples, 

288 as has been reported in other studies (Campbell and Horton Jr, 2002; Rawls et al., 1991; Tomasella 

289 et al., 2000) for θr variable. Clay and sand contents, θFC, θPWP, dg and OM had the greatest 

290 significant correlations with the parameters of the van Genuchten model (Fig. 4), which was 

291 consistent with other studies (Dexter et al., 2008; Nemes et al., 2006). For example, the correlation 

292 coefficient between clay content and θs (r = 0.323) is close to that between OM and θs (r = 0.268). 

293 Also, the results showed that there were significant correlations between θPWP and input variables 

294 of clay content (+), sand content (–), BD (–), OM (+) and Ks (–), and also between θPWP and θs (+) 

295 and n (–) parameters of the van Genuchten model (Fig. 4). Botula et al. (2012) also found the same 
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296 observation for the correlation of θPWP with sand and clay contents and BD of tropical Lower 

297 Congo soils. Nevertheless, with regard to these correlation coefficients, clay and sand contents, 

298 θFC, dg and OM can be used for developing PTFs to estimate the SWRC. On the contrary, there 

299 was no correlation between Ks and the van Genuchten model parameters. There are many cases, 

300 where two variables might not show a strong simple correlation, but may show a strong association 

301 in the regression, along with other predictors. In other words, the simple correlation coefficient is 

302 a way to show the relationship between independent and dependent variables, but it cannot show 

303 a model for the relationship between these two variables, when other independent variables have 

304 been used in a multiple regression (Simmons et al., 2011). The result of multiple regression 

305 analysis with backward selection method showed that the Ks variable remained in the PTF14 and 

306 PTF15 for all the van Genuchten model parameters. Some of the regression equations with 

307 backward selection method are shown in the following as examples:

θr=-0.69+0.22×Clay+0.278×Sand+0.20×Ks, R=0.31** (8)

α=-3.72+0.23×Clay+0.17×BD+0.282×Ks, R=0.33**  (9)

n=-1.76+0.24×Sand+0.164×Ks, R=0.30** (10)

308 On the other hand, the non-linear correlations between variables are very important in this study. 

309 Both the multiple NLR approach and RF data mining technique are non-linear prediction 

310 methods. Fig. 4 only shows simple linear correlation between variables, but there may be non-

311 linear correlations between variables, which may affect the estimation of the dependent 

312 variables. For example, the results of non-linear correlations showed that Ks had strong 

313 correlations with θs and α of the van Genuchten model parameters by logarithmic (θs=0.652-

314 0.027×lnKs, R=0.62**) and power (α=0.007×Ks
0.283, R=0.57**) equations, respectively, which 

315 were greater than their simple correlations
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316 Fig. 4.

317

318 3.3 Development of the PTFs using the RF and NLR methods

319 Results of the multicollinearity analysis (VIF) are shown in Table 3. The VIF values showed low 

320 levels of multicollinearity among the independent variables (VIF<10) (Khodaverdiloo et al., 2011).

321 Table 3-

322
323 3.3.1 Comparing the accuracy and reliability of the RF and NLR methods

324 Table 4 shows the results of the ANOVA of the IRMSE of prediction of the SWRC by different 

325 methods and PTFs. The effect of methods and PTFs, and their interaction, on the IRMSE was 

326 significant at P<0.01, 0.01 and 0.05, respectively, in the training step, and at P<0.01, 0.01 and 

327 0.01, respectively, in the testing step. Therefore, we focus on the results and discussion of the 

328 comparison of the method × PTF interaction effects.

329 Table 4-

330 Results of the prediction of the SWRC through the van Genuchten model using the NLR and RF- 

331 based PTFs are depicted in Figs. 5 and 6 for the training and testing steps, respectively. The 

332 accuracy and reliability are used to express the performance of the PTFs in the training and 

333 testing steps, respectively.

334 The results of the first to fourth steps of the training dataset (Fig. 5) showed that the RF method 

335 had better performance compared to the NLR method for the prediction of the SWRC in all PTFs 

336 in terms of the IRMSE and R2 criteria and the differences were significant (P<0.05) for PTFs 2, 

337 3, 6, 7, 10, 13, 14 and 15 in terms of the IRMSE criterion. Also, the accuracy of the RF method 

338 was better than that of the NLR method in 80% of the PTFs (with the exception of the PTFs 5, 9 

339 and 12) in terms of the AIC criterion. In the training step, the values of the IRMSE of the first to 



18

340 fourth steps for the NLR model varied from 0.030 to 0.063 cm3 cm-3 and these were larger than 

341 those in the RF model, which ranged from 0.028 to 0.061 cm3 cm-3, respectively. Also, the 

342 values of the R2 of the first to fourth steps for the RF model varied from 0.981 to 0.992, and this 

343 was larger than those in the NLR model, which ranged from 0.979 to 0.991 (Fig. 5).

344 The results of the first to fourth steps of the testing dataset (Fig. 6) showed that the NLR method 

345 had a better performance compared to the RF method on the prediction of the SWRC for PTFs 5, 

346 8, 9 and 15 only in terms of the IRMSE criterion (significant at P<0.05).  In the other PTFs there 

347 were no significant differences between the IRMSE of the two methods and the R2 and AIC 

348 criteria were comparable. In the testing step, the values of the IRMSE and AIC of the first to 

349 fourth steps for the RF models varied from 0.038 to 0.065 cm3 cm-3 and from -13476.2 to -

350 17646.8, respectively, and these were comparable to those of the NLR models (with the 

351 exception of PTF1), which ranged from 0.032 to 0.064 cm3 cm-3 and from -14096.1 to -19234.1, 

352 respectively (Fig. 6). Also, the values of the R2 of the first to fourth steps for the NLR models 

353 varied from 0.979 to 0.989, and this was comparable to those of the RF models for all PTFs, 

354 which ranged from 0.977 to 0.987 (Fig. 6). 

355 In each of the PTFs 1 to 5, the NLR and RF methods performed better (P<0.05) than the Rosetta 

356 PTFs. Fig. 6(A) shows that the Rosetta-based PTFs had greater values of the IME criterion 

357 compared to the NLR and RF-based PTFs. The reason can be attributed to the various methods 

358 of optimizing parameters. The Rosetta method has only one ANN type with particular structure. 

359 In other words, the number of hidden layers (one) and neurons (six) and also the activation 

360 function (tangent hyperbolic) are constant for prediction of the SWRC in the Rosetta software. 

361 Therefore, the Rosetta method is not a dynamic approach for optimization, whereas the 

362 parameters of the RF method, such as number of splits and trees, and learning rate continuously 
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363 and dynamically, change to achieve the best result of the objective function. The Rosetta method 

364 was developed from a large dataset, while the soils used in the present study were collected from 

365 a completely different climate area that was not represented in the Rosetta's database. Also, 

366 presented RF and NLR models were trained using this particular dataset while Rosetta had been 

367 trained using a different dataset. In other words, the results of the PTFs in the testing step were 

368 based on a soil dataset used for training. This could be a reason for Rosetta's poor performance 

369 compared with the RF and NLR methods. As a result, it seems that the universal portability of 

370 the Rosetta method can be limited.  The testing results are in agreement with Touil et al. (2016) 

371 who found that the parametric-based PTFs of nonlinear models gave a better prediction than the 

372 Rosetta PTFs. The Figs. 5(A) and 6(A) showed that all of the IME values were negative for all 

373 PTFs at the training and testing steps. There are regular errors (bias) in the prediction of the 

374 SWRC that can be corrected by finding a correction coefficient, which would improve the 

375 accuracy and reliability of the estimations (Bayat et al., 2015).

376 Fig. 5.

377 Fig. 6.

378

379 The RF method in the training section gave better predictions of the SWRC compared to the 

380 NLR method (Fig. 5). The RF method produces low bias and variation in the data by majority 

381 voting compared to a single regression tree (Cheng et al., 2019; Matin and Chelgani, 2016). In 

382 this connection, the results of the standard deviations (SD) of evaluation criteria in each PTF for 

383 the training step (Fig. 5) showed that the RF method had a lower variation than the NLR method. 

384 Accordingly, the values of SD for the IRMSE and R2 criteria were 0.024 and 0.022, respectively, 

385 for the NLR model and these were larger than those in the RF model, which were 0.020 and 
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386 0.017, respectively, for the training step. On the other hand, the RF method can be applied to 

387 high dimensional datasets in regressions (Janitza et al., 2016; Zhao et al., 2016). 

388 As depicted in Fig. 6, unlike in the training section, the NLR method gave better predictions in 

389 the testing section compared to the RF method for the prediction of the SWRC. In other words, 

390 the reliability of the NLR method was better than that of the RF method in all the PTFs. The 

391 NLR equations can be more useful than the MLR method for the prediction of the SWRC due to 

392 their high flexibility (Williams et al., 1992). In other words, the NLR models have capacity to 

393 capture nonlinear relationships in the dataset. Tomasella et al. (2000) successfully developed 

394 parametric PTFs for soils of the humid tropics using polynomials of nth order. Medrado and Lima 

395 (2014) successfully developed NLR-based PTFs to predict the four parameters of the van 

396 Genuchten model for Brazilian soils. Also, Touil et al. (2016) developed parametric-PTFs to 

397 predict the SWRC using the NLR method from more readily-available properties such as soil 

398 texture, OM content, and BD for 242 soil samples of Algeria. They reported that the parametric-

399 PTFs had better performance than Rosetta-based PTFs. 

400 In the present study, in contrast to the NLR method which had less differences between the error 

401 values of the training and testing steps, the error values of the RF method in the testing dataset 

402 were much greater than those in the training dataset. These results can be due to overprediction 

403 phenomenon in the RF method. Gupta et al. (2017) expressed that one of the disadvantages of 

404 the RF method is the overprediction. In other words, the RF method is a ‘greedy’ method that 

405 easily leads to overprediction and instability in the testing step and solving this problem can be 

406 of great significance for improving the reliability of the RF method (Liu, 2014). Also, Ma et al. 

407 (2005) reported instability in results of the RF method. The forest size developed by the RF has 

408 not been clearly defined (Liu, 2014). Therefore, oversized scale can decrease the reliability and 
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409 efficiency of the SWRC prediction. Hong et al. (2016) evaluated landslide susceptibility maps 

410 produced using the RF method and compared these maps with those from statistical-based 

411 methods, such as logistic regression, and their study revealed that the performance of the 

412 statistical-based methods was better than that of the RF method. A similar result was reported by 

413 Esposito et al. (2014). Generally, RFs are best suited for problems with many input variables and 

414 a reasonable sample size. According to our results (Figs. 5 and 6), performance of the PTFs was 

415 improved by increasing the number of input variables.

416 3.3.2 Evaluation of the effect of the basic soil properties on prediction performance of the 

417 SWRC

418 A significant improvement was achieved in the accuracy of PTF5 (with the inputs of Sand 

419 content+Clay content+BD+θFC+θPWP) compared to other PTFs (with the exception of PTFs 4, 8, 

420 9, 11 and 12) by both NLR and RF methods in terms of the IRMSE criterion (Fig. 5). Among the 

421 PTFs of each method (RF or NLR), PTF5 had the greatest R2 (0.992 and 0.991, respectively) and 

422 the smallest IRMSE (0.028 and 0.03, respectively) and AIC (-19432 and -19571.1, respectively) 

423 in the training step of the prediction of the SWRC. In connection with the importance of input 

424 variables, an improvement was achieved in the reliability of the prediction of the SWRC by PTFs 

425 9 (with the inputs of dg+δg+BD+θFC+θPWP) and 12 (with the inputs of Sand content+Clay 

426 content+TP+θFC+ θPWP) from the second and third steps, using the NLR (IRMSE=0.032 cm3 cm-

427 3, AIC=-19234.1 and R2=0.989) and RF (IRMSE=0.038 cm3 cm-3, AIC=-17646.8 and R2=0.987) 

428 methods, respectively, in comparison with the other PTFs of each method (Fig 6). However, the 

429 differences of PTFs 9 and 12 were not significant (P<0.05) with PTFs 4, 5, 8, 11 and 12 in the 

430 NLR method and with PTFs 4, 5, 8, 9 and 11 in the RF method, respectively, in terms of the 

431 IRMSE criterion. 
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432

433 3.3.2.1 Effect of using different input variables of PSD and soil structure as predictors on the 

434 SWRC prediction

435 To evaluate the effect of using different descriptors of the PSD on the prediction of the SWRC, 

436 PTFs 2, 3, 4 and 5 (clay and sand contents) from the first step were compared with PTFs 6, 7, 8 

437 and 9 (dg and δg) from the second step, respectively. In the same way, to evaluate the effect of 

438 using different descriptors of soil structure on the prediction of the SWRC, PTFs 3, 4 and 5 (BD) 

439 were compared with PTFs 10, 11 and 12 (TP) from the third step, respectively. The accuracy and 

440 reliability of the prediction of the SWRC by both NLR and RF methods were not significantly 

441 different (P<0.05) (Figs. 5B and 6B). For descriptors of soil structure, the accuracy and 

442 reliability of the prediction of the SWRC by both NLR and RF methods decreased in terms of the 

443 IRMSE criterion for PTFs 10 to 12 from the third step compared to PTFs 3 to 5 (with the 

444 exception of PTFs 11 and 12 in the testing step for the RF method), respectively, when TP was 

445 used instead of BD in the list of input variables (Figs. 5B and 6B). However, the differences 

446 were not significant (P<0.05).

447 The lack of significant differences between textural contents (clay and sand contents) and 

448 statistics (dg and δg),  and also between TP and BD on the SWRC prediction can be due to 

449 correlation of these parameters with the parameters of the van Genuchten model (Fig. 4). The 

450 SWRC is strongly influenced by the soil structure or pore-size distribution and soil texture at 

451 small and great matric suctions, respectively (Pachepsky et al., 2006). Therefore, input variables 

452 of the textural contents or statistics can influence the residual saturation region of the SWRC. 

453 However, soil water content at the dry end (high matric suctions) of the SWRC is primarily 

454 determined by textural contents (Hillel, 1998). Also, TP and BD are indicators of soil structure 
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455 and had significant correlations with θs (Fig. 4). Indeed, TP was calculated by BD and particle 

456 density (Rab et al., 2011).The dg and δg predictors were derived from soil textural contents 

457 (Shirazi and Boersma, 1984). Therefore, these could be reasons for similar effects of textural 

458 contents and statistics and also TP and BD predictors on the prediction of the SWRC.  

459 Many researchers used textural contents (Adhikary et al., 2008; Chakraborty et al., 2011; 

460 Minasny et al., 1999; Tomasella and Hodnett, 1998), dg and δg (Rab et al., 2011; Scheinost et al., 

461 1997; Ungaro et al., 2005), BD (Bayat et al., 2011; Pachepsky et al., 1998) and TP (Bayat et al., 

462 2011; Pachepsky et al., 1998; Schaap et al., 1998) as effective predictors to derive point- and 

463 parametric-PTFs. Nemes et al. (2003), Schaap et al. (2001) and Schaap et al. (1998) reported that 

464 the variables of PTF5 have better capability on predicting the parameters of the van Genuchten 

465 (1980) model with an average RMSE of 0.026, 0.044 and 0.058 cm3cm-3, respectively. 

466 According to the results of the accuracy (Fig. 5) and reliability (Fig. 6) of PTFs 5, 9 and 12, it 

467 seems that certain points of the SWRC (e.g., θFC) can help to improve the prediction of the 

468 SWRC and this is in agreement with Schaap et al. (2001). These results indicate that the presence 

469 of at least one moisture point (e.g., θFC) can improve the prediction of the SWRC. In the first 

470 step, PTF5 with two moisture points (θFC+θPWP) and PTF4 with one moisture point (θFC) 

471 improved the prediction of the SWRC by 55, 48, 42% and 51, 44, 38% in terms of the IRMSE 

472 criterion compared to the PTFs 1, 2 and 3, respectively, in the RF method in the training step. In 

473 the testing section of the second step, PTF9 with two moisture points (θFC+θPWP) and PTF8 with 

474 one moisture point (θFC) decreased the IRMSE by 49, 44% and 44, 39% compared to PTFs 6 and 

475 7, respectively, in the NLR method. The points above are also true for the RF-based PTF12 in 

476 the third step of the testing section. Many researchers successfully applied θFC and θPWP as 
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477 effective predictors to derive point- and parametric-PTFs (Børgesen and Schaap, 2005; Nemes et 

478 al., 2003; Schaap et al., 2001; Touil et al., 2016; Twarakavi et al., 2009). 

479

480 3.3.2.2 Effect of using OM and Ks as predictors on the SWRC prediction

481 To evaluate the effect of using OM and/or Ks and points of the SWRC on the prediction of the 

482 SWRC, the performances of PTFs 13, 14 and 15 were compared with those of PTFs 4 and 5. The 

483 accuracy and reliability of the prediction of the SWRC by both NLR and RF methods, 

484 significantly (P<0.05) decreased in terms of the IRMSE, for the PTFs 13, 14 and 15 from the 

485 fourth step, when OM and/or Ks were used with textural contents and BD as inputs instead of θFC 

486 or both θFC and θPWP in the list of input variables, compared to PTFs 4 and 5 at the first step 

487 (Figs. 5B and 6B). Therefore OM and Ks were not as effective predictors as θFC and θPWP in the 

488 prediction of the SWRC, because θFC and θPWP are two points of the SWRC and enter direct 

489 information of the SWRC into the PTFs, whereas OM and Ks enter indirect information, and 

490 therefore had less effect in the improvement of the estimation of the SWRC. These results agreed 

491 well with results obtained by Børgesen and Schaap (2005). They reported that PTFs with the 

492 inputs of θFC and θPWP had smaller RMSE values than a PTF with the input of OM (0.038 versus 

493 0.042) in the prediction of the SWRC. On the other hand, the results showed that by adding OM 

494 and/or Ks as predictors in the PTFs 13, 14 and 15, the accuracy (Fig. 5B) and reliability (Fig. 6B) 

495 of the prediction of the SWRC improved by 16, 13, 17 and 7.1, 6.3, 6.9%, respectively, 

496 compared to the PTF3 in terms of the IRMSE criterion in the RF method.

497 The SWRC depends mainly on the soil texture and structure (Hillel, 1998), with OM affecting 

498 the SWRC through development of soil structure (Nemes et al., 2005), important at low suctions. 

499 However, the OM retains water itself. Similarly, Ks can be a descriptive index of soil texture and 
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500 porosity (Hillel, 1998). The correlation results showed  that Ks can be strongly influenced by clay 

501 content and textural statistics (dg and δg) (Fig. 4). Bayat et al. (2013b) applied OM and Ks to 

502 estimate water content at the measured matric suctions. They found that the OM and Ks can be 

503 most appropriately used in point-based PTFs to estimate water content at the matric suctions of 

504 25 and 50 kPa. Also, the result of the present study agreed well with results obtained by Hollis et 

505 al. (1977) and Rawls et al. (1983). In this study, the OM and Ks in the PTFs 13, 14 and 15 were 

506 not effective predictors compared to θFC and θPWP in the PTFs 4 and 5, otherwise they had better 

507 results than PTF3. 

508

509 4 Conclusion

510 Machine-learning tools have been widely applied for the prediction of the SWRC. The present 

511 study evaluated the capability and performance of the RF method as a novel machine learning 

512 tool and compared its performance with that of the NLR method on the prediction of the SWRC, 

513 using different combinations of easily-available soil properties. It was found that the RF method 

514 had a better performance (P<0.05) than the NLR method in the training step of the prediction of 

515 the SWRC in term of the IRMSE, AIC and R2 criteria. However, in the testing step, NLR had a 

516 better performance than RF. The poor performance of the RF compared to the NLR method 

517 could be due to overprediction in the former, resulting in instability in the testing step. The RF 

518 method can be sensitive to sparse areas on the prediction space. In other words, the performance 

519 and sensitivity of predictions, and the computational intensity of the RF method depends on the 

520 distribution and number of observations and input variables. Therefore, the method should be 

521 tested further with different datasets to evaluate its performance through soil and water 

522 investigations. An improvement was achieved in the accuracy of the prediction of the SWRC in 
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523 the training step of the PTF5 (with the inputs of Sand content+Clay content+BD+θFC +θPWP) by 

524 both NLR and RF methods and also an improvement was achieved in the reliability of the PTF9 

525 (with the inputs of dg+δg+BD+θFC+θPWP) and PTF12 (with the inputs of Sand content +Clay 

526 content+TP+ θFC+θPWP) by the NLR and RF methods compared to other PTFs, respectively. 

527 Considering that the PTFs 5, 9, and 12 had no significant difference from PTF4 (with the inputs 

528 of Sand content+Clay content+BD+θFC) and PTF8 (with the inputs of dg+δg+BD+θFC+θPWP), 

529 these latter PTFs, with less and more-easily measured input variables, are suggested to be the 

530 best PTFs for the prediction of the SWRC. Also, PTFs without predictors of θFC and θPWP, such 

531 as the PTF3 (with the inputs of Sand content+Clay content+BD) and PTF7 (with the inputs of 

532 dg+ δg+BD), can be effective models for the prediction of the SWRC. 

533
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764 Figure captions

765 Fig 1. Input variables of the 15 pedotransfer functions (PTFs) for predicting the van Genuchten 

766 model parameters (θr, θs, α and n) of the soil water retention curve (SWRC). A list of 

767 abbreviations is available in the notation box.

768 Fig. 2. An architecture of a random forest. 

769 Fig. 3. Variation of soil texture classes for the dataset (n = 223) on the United States Department 

770 of Agriculture (USDA) textural triangle.

771 Fig. 4. Correlation matrix plot between input and output variables.

772 ** Correlation is significant at the P<0.01 level.

773 * Correlation is significant at the P<0.05 level.

774  A list of abbreviations is available in the notation box.

775 Fig. 5. Results of the prediction of the soil water retention curve (SWRC) through the van 

776 Genuchten model by the nonlinear regression (NLR) and random forests (RF) techniques for the 

777 training step as reflected in the integral mean error (IME), integral root mean square error 

778 (IRMSE), coefficient of determination (R2), and Akaike’s information criterion (AIC). Vertical 

779 lines indicate the standard deviations. Means with the same letter are not significantly different at 

780 the significance level of P<0.05 (IRMSE only).

781 Fig. 6. Results of the prediction of the soil water retention curve (SWRC) through the van 

782 Genuchten model by the Rosetta software, nonlinear regression (NLR) and random forests (RF) 

783 techniques for the testing step as reflected in the integral mean error (IME), integral root mean 

784 square error (IRMSE), coefficient of determination (R2), and Akaike’s information criterion 

785 (AIC). Vertical lines indicate the standard deviations. Means with the same letter are not 

786 significantly different at the significance level of P<0.05 (IRMSE only).
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791 Fig 1. Input variables of the 15 pedotransfer functions (PTFs) for predicting the van Genuchten 

792 model parameters (θr, θs, α and n) of the soil water retention curve (SWRC). A list of 
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813
814 Fig. 3. Variation of soil texture classes for the dataset (n = 223) on the United States Department 

815 of Agriculture (USDA) textural triangle.
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823
824 Fig. 4. Correlation matrix plot between input and output variables.

825 ** Correlation is significant at the P<0.01 level.

826 * Correlation is significant at the P<0.05 level.

827  A list of abbreviations is available in the notation box.
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837  
838 Fig. 5. Results of the prediction of the soil water retention curve (SWRC) through the van 

839 Genuchten model by the nonlinear regression (NLR) and random forests (RF) techniques for the 

840 training step as reflected in the integral mean error (IME), integral root mean square error 

841 (IRMSE), coefficient of determination (R2), and Akaike’s information criterion (AIC). Vertical 

842 lines indicate the standard deviations. Means with the same letter are not significantly different at 

843 the significance level of P<0.05 (IRMSE only).

844
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850 Fig. 6. Results of the prediction of the soil water retention curve (SWRC) through the van 

851 Genuchten model by the Rosetta software, nonlinear regression (NLR) and random forests (RF) 

852 techniques for the testing step as reflected in the integral mean error (IME), integral root mean 

853 square error (IRMSE), coefficient of determination (R2), and Akaike’s information criterion 

854 (AIC). Vertical lines indicate the standard deviations. Means with the same letter are not 

855 significantly different at the significance level of P<0.05 (IRMSE only).
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856

857 Table 1- The results of 10, 15 and 20-fold cross-validation (k) for van Genuchten model 

858 parameters of the soil water retention curve derived from nonlinear regression (NLR) and 

859 random forest (RF) techniques based on root mean square error (RMSE) for pedotransfer 

860 functions PTF 3, 5 and 11 in the train and test datasets.

θr θs α n

RMSE RMSE RMSE RMSE

Train Test Mean Train Test Mean Train Test Mean Train Test Mean

PTF3 k=10 NLR 0.058 0.060 0.059 0.063 0.065 0.064 1.017 1.037 1.027 0.426 0.436 0.431

RF 0.052 0.061 0.056 0.058 0.073 0.066 0.893 1.084 0.989 0.374 0.442 0.408

k=15 NLR 0.058 0.060 0.059 0.064 0.064 0.064 1.017 1.030 1.024 0.426 0.434 0.430

RF 0.052 0.061 0.057 0.058 0.070 0.064 0.894 1.033 0.964 0.374 0.441 0.408

k=20 NLR 0.058 0.060 0.059 0.064 0.064 0.064 0.064 0.064 0.064 0.426 0.437 0.432

RF 0.051 0.060 0.056 0.057 0.071 0.064 0.057 0.071 0.064 0.368 0.442 0.405

PTF5 k=10 NLR 0.051 0.053 0.052 0.053 0.054 0.054 0.764 0.796 0.780 0.380 0.397 0.389

RF 0.043 0.056 0.050 0.046 0.056 0.051 0.675 0.869 0.772 0.327 0.411 0.369

k=15 NLR 0.051 0.053 0.052 0.053 0.055 0.054 0.764 0.790 0.777 0.381 0.399 0.390

RF 0.044 0.054 0.049 0.046 0.055 0.050 0.679 0.848 0.763 0.329 0.421 0.375

k=20 NLR 0.051 0.053 0.052 0.053 0.055 0.054 0.765 0.789 0.777 0.381 0.399 0.390

RF 0.042 0.054 0.048 0.044 0.054 0.049 0.654 0.842 0.748 0.316 0.412 0.364

PTF11 k=10 NLR 0.058 0.061 0.060 0.065 0.067 0.066 1.018 1.052 1.035 0.431 0.448 0.440

RF 0.050 0.061 0.056 0.047 0.057 0.052 0.770 0.978 0.874 0.370 0.443 0.406

k=15 NLR 0.058 0.061 0.060 0.065 0.067 0.066 1.019 1.037 1.028 0.432 0.447 0.439

RF 0.050 0.060 0.055 0.047 0.057 0.052 0.770 1.009 0.889 0.369 0.450 0.410

k=20 NLR 0.058 0.060 0.059 0.065 0.065 0.065 1.020 1.024 1.022 0.432 0.439 0.435

RF 0.049 0.061 0.055 0.046 0.056 0.051 0.745 0.964 0.855 0.361 0.443 0.402
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864

865

866

867
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868

869 Table 2- Some descriptive statistics of the measured soil variables and parameters of the van 

870 Genuchten model of the soil water retention curve for the entire dataset (223 soil samples).

Variablesa Mean CV (%) Minimum Maximum P-value
Clay content (%) 21.39 54.05 3.47 48.00 0.00

Log (clay content) 1.27 19.08 0.54 1.68 0.66
Sand content (%) 35.45 48.40 5.90 89.80 0.00

Sand content* -0.01 -14350.94 -3.40 3.14 0.90
Bulk density (g cm-3) 1.43 10.97 1.03 1.84 0.83

θFC (cm3 cm-3)$ 0.33 20.44 0.15 0.55 0.45

θPWP (cm3 cm-3) 0.18 26.21 0.04 0.31 0.90
dg (mm) 0.07 86.62 0.00 0.21 0.00
Log (dg) -1.33 -27.91 -2.34 -0.67 0.77

δg (-) 11.57 29.39 4.54 19.97 0.00
δg

* -0.01 -9872.87 -2.53 1.80 0.96
Total porosity (cm3 cm-3) 0.46 13.26 0.31 0.61 0.67

Organic matter content (%) 1.84 53.68 0.17 4.41 0.00
(Organic matter content)(1/4) 1.13 14.83 0.64 1.45 0.86

Ks (cm day-1) 169.10 96.58 0.06 530 0.00
(Ks)(1/4) 3.23 30.37 0.50 4.80 0.59

θr (cm3 cm-3) 0.04 158.05 0.00 0.17 0.00
θs (cm3 cm-3) 0.52 16.26 0.35 0.70 0.56

α (kPa-1) 0.06 115.62 0.00 0.29 0.00
α* 0.01 8889.14 -2.93 2.19 0.93
n 1.24 9.80 1.08 1.48 0.00

Ln (n-1) -1.55 -30.92 -2.52 -0.74 0.05
871 a CV, coefficient of variation. 

872 $. A list of abbreviations is available in the notation box. 

873 * Normalized form of sand content: 0.91+1.06×Ln((sand content- 4.3)/(100.2-sand content)); 

874 normalized form of δg: -1.04657+1.39359×Asinh((δg- 8.4)/3.04); and normalized form of α: 

875 3.6+0.92×Ln((α- 8.2×10-6)/(1.6-α)). P-value is a significance value for normality test.

876
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877 Table 3- The variance inflation factor (VIF) values for normalized form of the input variables.
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PTF2 1.42 1.42

PTF3 1.43 1.52 1.10

PTF4 1.45 1.56 1.25 1.31

PTF5 1.79 1.58 1.27 2.48 2.56

PTF6 1.00 1.00

PTF7 1.11 1.11 1.01

PTF8 1.25 1.33 1.01 1.22

PTF9 1.28 2.50 2.73 1.34 1.22

PTF10 1.55 1.43 1.11

PTF11 1.58 1.46 1.32 1.26

PTF12 1.60 1.79 2.49 2.56 1.28

PTF13 1.48 1.65 1.25 1.14

PTF14 1.55 1.64 1.14 1.06

PTF15 1.55 1.65 1.25 1.15 1.06

878 * Normalized form of the input variables is available in Table 2.

879 $. A list of abbreviations is available in the notation box. 

880
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881 Table 4- Analysis of variance of the integral root mean square error (IRMSE) of the prediction of 

882 the soil water retention curve by different methods (nonlinear regression and random forest) and 

883 pedotransfer functions (PTFs 1-15) for both the train and test datasets.

Source Degree freedom Mean square F-value P-value
Train Repeat (Block) 222 0.007 19.09 <0.0001

PTFs 14 0.062 180.68 <0.0001
Methods 1 0.038 109.69 <0.0001

PTFs × Methods 14 0.001 1.78 0.0356
Error 6288 0.0003

Test Repeat (Block) 222 0.010 16.04 <0.0001
PTFs 14 0.073 117.22 <0.0001

Methods 2 0.656 1056.43 <0.0001
PTFs × Methods 18 0.002 3.68 <0.0001

Error 7398 0.0006
884



Declaration of interests

☒ The authors declare that they have no known competing financial interests or personal relationships 
that could have appeared to influence the work reported in this paper.

☐The authors declare the following financial interests/personal relationships which may be considered 
as potential competing interests: 



Author statement:

Mostafa Rastgou:

Data curation, Writing- Original draft preparation, Visualization, Investigation, Formal analysis.

Hossein Bayat:

Conceptualization, Methodology, Writing, Supervision, Project administration, Funding 
acquisition.

Muharram Mansoorizadeh: 

Software, Validation.

Andrew S. Gregory:

Writing- Reviewing and Editing


