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A B S T R A C T

Spatial modelling of storm dust provenance is essential to mitigate its on-site and off-site effects in the arid and
semi-arid environments of the world. Therefore, the main aim of this study was to apply eight data mining
algorithms including random forest (RF), support vector machine (SVM), bayesian additive regression trees
(BART), radial basis function (RBF), extreme gradient boosting (XGBoost), regression tree analysis (RTA), Cubist
model and boosted regression trees (BRT) and an ensemble modelling (EM) approach for generating spatial maps
of dust provenance in the Khuzestan province, a main region with active sources for producing dust in south-
western Iran. This study is the first attempt at predicting storm dust provenance by applying individual data
mining models and ensemble modelling. We identified and mapped in a geographic information system (GIS), 12
potential effective factors for dust emissions comprising two for climate (wind speed, precipitation), five soil
characteristics (texture, bulk density, Ec, organic matter (OM), available water capacity (AWC)), a normalized
difference vegetation index (NDVI), land use, geology, a digital elevation model (DEM) and land type, and used a
mean decrease accuracy measure (MDAM) to determine the corresponding importance scores (IS). A multi-
collinearity test (including the variance inflation factor (VIF) and tolerance coefficient (TC)) was applied to
assess relationships between the effective factors, and an existing map of dust provenance was randomly cate-
gorized into two groups consisting of training (70%) and validation (30%) data. The individual data mining
models were validated using the area under the curve (AUC). Based on the TC and VIF results, no collinearity
was detected among the 12 effective factors for dust emissions. The prediction accuracies of the eight data
mining models and an EM assessed by the AUC were as follows: EM (with
AUC=99.8%) > XGBoost>RBF > Cubist> RF > BART>SVM > BRT > RTA (with AUC=79.1%).
Among all models, the EM was found to provide the highest accuracy for predicting storm dust provenance.
Using the EM, areas classified as being low, moderate, high and very high susceptibility for storm dust prove-
nance comprised 36, 13, 23 and 28% of the total mapped area, respectively. Based on MDAM results, the highest
and lowest IS were obtained for the wind speed (IS=23) and geology (IS= 6.5) factors, respectively. Overall,
the modelling techniques used in this research are helpful for predicting storm dust provenance and thereby
targeting mitigation. Therefore, we recommend applying data mining EM approaches to the spatial mapping of
storm dust provenance worldwide.

1. Introduction

Dust storms are one consequence of wind erosion that are a me-
teorological phenomenon with negative impacts for economic activities
and human health (Barbulescu and Nazzal, 2020) or the dispersal of
allergens (Almasi et al., 2014) as well as environment impacts (Goudie
and Middleton, 2006). Therefore, identifying and mapping the prove-
nance of the dust redistributed by wind storms is necessary to target
mitigation.

Different techniques and tools such as conventional sediment source
fingerprinting (Gholami et al., 2017; Dahmardeh Behrooz et al., 2019;
Gholami et al., 2019a,b), geochemical characteristics (Zarasvandi et al.,
2011), remote sensing (Schepanski et al., 2012; Nabavi et al., 2017),
Lidar monitoring and forecast models (Fernández et al., 2019), nu-
merical modelling (Beegum et al., 2018; Péré et al., 2018) and me-
teorological data (Li et al., 2019; Yang et al., 2019) have been employed
for studying atmospheric dust.

Since dust as an environmental problem is one of the most
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important challenges of our world today, there remains a need to ex-
plore the utility of new methods for using data to improve our capacity
to manage the problem (Gibert et al., 2018). Data Science (DS) is a
research field for better understanding of the complex mechanisms
driving environmental phenomena (Gibert et al., 2018). Data mining, a
component of DS, is a generic term for a wide range of models for
providing predictions (Witten et al., 2011).

In the specific case of prediction, available machine learning algo-
rithms include: support vector machine (SVM) (Shadman Roodposhti
et al., 2017; Sachindra et al., 2018); ensemble-ANFIS (Ali et al., 2018);
cubist (Houborg and McCabe, 2018); random forest (RF) (Nashwan and
Shahid, 2019); radial basis function (RBF) (Frank, 2014); neural net-
works (NN)(Meyer et al., 2016); multivariate adaptive regression spline
(MARS)(Gomez-Gutierrez et al., 2009; Pourghasem and Rossi, 2016);
extreme gradient boosting (XGBoost) (Chen and Guestrin (2016);
bayesian additive regression trees (BART) (Kapelner and Bleich, 2014),
and Bayesian networks (BNs) (Bui et al., 2018). Some works has in-
tegrated data mining methods into ensemble models (Lazri and Ameur,
2018; Arabameri et al., 2019).

Spatial modelling using machine learning has been applied to dif-
ferent environmental fields and problems including: digital soil map-
ping (Heung et al., 2014); statistical downscaling of precipitation
(Sachindra et al., 2018); forecasting multi-scalar standardized pre-
cipitation index (Ali et al., 2018); gully erosion mapping (Pourghasemi
et al., 2017); soil pollution (Boente et al., 2019); prediction of aerosol
optical depth (Nabavi et al., 2018); digital mapping of soil carbon
fractions (Keskin et al., 2019); quantifying suspended sediment loads
(Khosravi et al., 2018); mapping of drought (Shadman Roodposhti
et al., 2017); land subsidence (Rahmati et al., 2019); forecasting of
wind power (Demolli et al., 2019), and landslide risk mapping (Dickson
and Perry, 2016). However, to date, data mining has not been applied
to the spatial modelling of storm dust provenance.

In west Asia, several regions including Iraq, Kuwait, the western
parts of Khuzestan in southwestern Iran and some parts of the Arabian
Peninsula are affected by the Shamal dust storm (Middleton, 1986).
During recent decades, Khuzestan province has suffered severely from
the environmental problems, especially air pollution, resulting from
dust storms (Zarasvandi et al., 2011). Ahvaz, the capital of Khuzestan
province, is one of the dustiest cities in the world and, consequently,
has been the focus of numerous previous investigations (e.g., Maleki
et al., 2016; Karimi et al., 2019; Heidari Farsani et al., 2018;
Hashemimanesh and Matinfar, 2012; Naimabadi et al., 2016). These
studies focused on different aspects of the wind erosion such as PM10

variability in Ahvaz, but, to date, no work has examined spatial mod-
elling of dust provenance using data mining algorithms. Accordingly,
here we apply and compare the performance of eight data mining
techniques (RF, SVM, BART, RBF, XGBoost, RTA, cubist model and
BRT) individually, and in an ensemble model (EM) approach, for the
spatial modelling of dust provenance in Khuzestan province in south-
western Iran.

2. Study area

Khuzestan province (48 to 49.5°E and 31 to 32°N; Fig. 1), between
Iran and Iraq, has a population of ~4,274,979 and occupies an area of
64,016 km2. The climate the Khuzestan province is arid to humid
(Zarasvandi et al., 2011). The dominant directions of wind in the study
area are west to east and northwestern to southeastern. Annual mean
temperature varies from 9 °C (in March) to 50 °C (in July) and annual
mean rainfall varies from 150 to 256mm in southern areas to
995–1100mm in the northern parts of the province (Zarasvandi et al.,
2011). Desertification is a major environmental threat in Khuzestan
province, where sandy landscapes cover> 20.2% (about 13,000 km2)
of the study area (Hashemimanesh and Matinfar, 2012). The capital of
Khuzestan province, Ahvaz, with a population of ~1.112 million, is the
most polluted city on the basis of reporting for PM10 annual averages

(Goudie, 2014).

3. Materials and methods

3.1. Effective factors driving dust emissions

Dust emission as one consequence of wind erosion is affected by
several key physical factors including climate, soil, vegetation cover
and landform (Goudie and Middleton, 2006). Here, we used 12 factors
including two for climate (wind speed and precipitation), five soil
characteristics (texture, bulk density, Ec, organic matter (OM) and
available water capacity (AWC)), a normalized difference vegetation
index (NDVI), land use, geology, a digital elevation model (DEM) and
land type. The sections below provide further detail on the data sources
for each of these factors.

3.1.1. Climatic factors
Wind speed and precipitation are two effective climatic factors af-

fecting wind erosion. These parameters were used as a local wind
erosion climatic factor (C) in the Chepil wind erosion equation (WEQ;
Chepil et al., 1962 and McTainsh et al., 1990). More specifically, we
assembled data for daily average wind speed and average annual pre-
cipitation totals for the period 1998–2018 from 21 meteorological
stations located across Khuzestan province (Fig. 2).

3.1.2. Soil factors
Soil characteristics such as AWC, bulk density, organic carbon

content (OC), Ec and texture are important controls on a soil erodibility
(Saadoud et al., 2018). In this study, all soil factors were extracted from
the soil world map produced by the IUSS-WRB (2015). For the mapping
of soil factors, 586 points (Fig. 3) in the study area were randomly
selected and then, overlain with the soil world map. Finally, values of
the five soil factors mentioned above were extracted from the soil world
map. For generating maps of soil factors, the inverse distance weighting
(IDW) interpolation method (Golla et al., 2019), a commonly used
technique for interpolation in environmental sciences (Li and Heap,
2011), was applied in ArcGIS using the extracted values for the in-
dividual 586 points.

3.1.3. Vegetation cover
Vegetation cover (V) as one of main controls on wind erosion is used

in the WEQ (Goudie and Middleton, 2006). Here, the normalized dif-
ference vegetation index (NDVI) for the study area was extracted from
Landsat 1 satellite images. After downloading four Landsat image
frames, these were processed into mosaic using ENVI5.3/LLC. Radio-
metric and atmospheric corrections on the images used the Fast Line-of-
sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) algo-
rithm. The NDVI (Eq. (1)) was calculated from the red (R) and near
infrared (NIR) bands (Wessels et al., 2007):

= −
+

NDVI NIR R
NIR R (1)

3.1.4. Topography
The shuttle radar topography mission (SRTM) images with 30*30m

resolution was used for preparing the digital elevation model (DEM).
The DEM data was downloaded from https://earthexplorer.usgs.gov.
The lowest and highest elevations in the study area ranged between
−35 and 3715m.

3.1.5. Other environmental factors
Land use and landform type maps were generated by the Iran Forest,

Rangeland and Watershed Management Organization (IFRWMO). In
some cases, land cover and land use and land type maps provided by
IFRWMO contain errors (e.g., a land use was classified incorrectly). To
remove such errors and correct the map, we used Google Earth images
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Fig. 1. The location of Khuzestan province in Iran and the distribution of geological sources for storm dust in the study area. MuPlaj, Plbk and Qft2 respectively
indicate: brown to grey, calcareous, feature-forming sandstone and low weathering, gypsum-veined, red marl and siltstone (Aghajari formation); alternating hard
consolidated, massive, feature forming conglomerate and low-weathering cross-bedded sandstone (Bakhtyari formation), and; Low level piedmont fan and valley
terrace deposits. MuPlaj, Plbk and Qft2 represent 2.2, 0.3 and 97.5% of the mapped sources of storm dust, respectively. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)

Fig. 2. Location of meteorological stations in the study area.
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and the ArcBruTile plugin. A geology map (1:100,000 scale) produced
by the Geological Survey of Iran was used for this factor. Tables 1–3
describe lithology, land uses and types in the study area, respectively.

3.1.6. Spatial mapping of the dust emission controlling factors
Figs. 4 and 5 present spatial maps for each of the potential con-

trolling factors affecting dust emissions in the study area.

3.2. Dust emission effective factors importance scores

For determining importance scores (IS) of the effective factors
(Figs. 4 and 5) influencing dust emissions, we applied a mean decrease
accuracy measure (MDAM) (Pourghasemi et al., 2017) in the R Rattle
software package.

3.3. Dust provenance inventory mapping

Mapping of existing understanding of dust sources is required to
assess the relationship between the distribution of source regions and
the effective factors (Figs. 4 and 5). Here, we used a map (Fig. 6) of dust
provenance for Khuzestan province produced by Heydarian et al.
(2018). Based on this inventory map of dust provenance, seven sources
of dust cover are identified with an area of ~699,231 ha. Ahvaz County
is identified as having 76,372 ha (about 21.8%) and is therefore the
most expansive dust source in the study area. The seven sources of dust
(Fig. 6) in the Khuzestan province include the south west of Hoveyzeh,
the north and east sides of Khorramshahr, eastern Ahvaz, the south and
south eastern parts of Ahvaz, Bandar Imam Khomeini-Omidiyeh,
Bandar Mahshahr-Hendijan and the east and south eastern sides of

Fig. 3. Sampling points used to extract data from the soil world map for the mapping of soil factors across the study area.

Table 1
Descriptions and corresponding areas of the geological units in the study area.

Geology unit Description Area (Km2) Area (%)

Ekn Tine-bedded argillaceous limestone and calcareous shale (Kandavan Shale) 102 0.2
EMas-sb Undivided Asmari and Shahbazan Formation 519 0.8
JKkgp Undivided Khami Group, consist of massive thin - bedded limestone comprising the following formations: Surmeh, Hith Anhydrite,

Fahlian, Gadvan and Dariyan
1174 2

K1 l Massive to thick - bedded Orbitolina limestone 10 0.02
Kbgp Undivided Bangestan Group, mainly limestone and shale, Albian to Companian, comprising the following formations: Kazhdumi, Sarvak,

Surgah and Ilam
2096 3

KEpd-gu Grey and brown, medium - bedded to massive fossiliferous limestone (Kazhdumi formation) 1461 2.29
Kgu Bluish grey marl and shale with subordinate thin - bedded argillaceous -limestone (Gurpi formation) 492 0.77
Klsol Grey thick - bedded to massive Orbitolina limestone 29 0.05
Ktb Massive, shelly, cliff - forming partly anhydrite limestone (Tarbur formation) 0.94 0.001
Mgs Anhydrite, salt, grey and red marl alternating with anhydrite, argillaceous limestone and limestone

(Gachsaran formation)
3084 4.8

Mmn Low weathering grey marls alternating with bands of more resistant shelly limestone (Mishan formation) 1081 1.7
MuPlaj Brown to grey, calcareous, feature-forming sandstone and low weathering, gypsum- veined, red marl and siltstone (Aghajari formation) 9239 14.5
OMas Cream to brown - weathering, feature - forming, well - jointed limestone with intercalations of shale (Asmari formation) 2470 3.9
PeEpd Blue and purple shale and marl interbedded with the argillaceous limestone (Pabdeh formation) 380.5 0.6
Plbk Alternating hard of consolidated, massive, feature forming conglomerate and low -weathering cross -bedded sandstone (Bakhtyari

formation)
3848 6.1

Qft1 High level piedmont fan and valley terrace deposits 91 0.14
Qft2 Low level piedmont fan and valley terrace deposits 37,514 59
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Hendijan (Heydarian et al., 2018). For building models from the 787
pixels marked as being the location of a source of storm dust, 551 (70%)
and 236 (30%) were randomly selected for the training and validation
of the EM, respectively (Fig. 7) (Phillips et al., 2006).

3.4. Multicollinearity test on the effective factors for dust emissions

Two statistical indicators comprising the tolerance coefficient (TC)
and variance inflation factor (VIF) (Pourghasemi et al., 2017) were
applied to examine the relationship between the effective factors (in-
dependent variables) for dust emissions. The TC (Eq. (2)) and VIF (Eq.
(3)) are defined as follows:

=TC 1 R J– 2 (2)

= ⎡
⎣

⎤
⎦

VIF
TC
1

(3)

where, R2J indicates the regression coefficient of determination of
variable J. If the TC is< 0.1 and the VIF is> 10, both coefficients show
a collinearity problem (Bui et al., 2012). These tests were performed in
SPSS22.

3.5. Spatial modelling of dust provenance using data mining algorithms

3.5.1. Random forest (RF)
RF as an effective tool for the analysis of large datasets (Lawrence

et al., 2006), builds a number K of regression trees (Rodriguez-Galiano
et al., 2015) and based on these classification trees provides a predic-
tion with high accuracy, without over-fitting, for spatial modelling of
environmental phenomena (Breiman, 2001). The number of trees (K)
and factors (x) are taken as input variables for the RF (Pourghasemi and
Rahmati, 2018). After K such trees {T(x)}1K are grown, the RF

regression predictor is expressed as (Rodriguez-Galiano et al., 2015):

∑=
=

f x
K

T x( ) 1 ( )rf
K

K

K

1 (4)

3.5.2. Support vector machine (SVM)
SVM proposed by Vladimir and Vapnik (1995), a classifier based on

statistical learning theory, is designed to construct an optimal separ-
ating hyper-plane between various classes (Hastie et al., 2009). Dif-
ferent types of classification functions including exponential kernel
(Chen et al., 2014); radial basis function (RBF) kernel (Gayen et al.,
2019) and linear kernel, polynomial kernel or sigmoid kernel (Amiri
et al., 2019) were used can be used. Here, we applied a SVM with an
exponential kernel function proposed by Chen et al. (2014). This
function is expressed as (Kandola et al., 2003):

=K λ K λK( ) exp( )0 0 (5)

where K0indicates the kernel matrix of the BoW kernel and λ (λϵ [0,
+∞)) is a decay factor.

3.5.3. Bayesian additive regression trees (BART)
BART, a sum-of-trees ensemble Bayesian approach, estimates a non-

parametric function using a fully Bayesian probability model. In this
approach, for estimating the f unknown function, regression trees de-
pend on the recursive binary portioning of predictor space into a set of
hyperrectangles. The BART model can be expressed as (Kapelner and
Bleich, 2014):

= + ≈ + + …+ +f ε A A A ε ε Nn σ InY (X) (X) (X) (X) , ~ (0, 2 )K K
m
K

1 2

(6)

where Y is the a×1 vector of responses, X is the a× g design matrix, ε
is the a×1 vector of noise, and m is regression trees. The AK comprises
an entire tree.

3.5.4. Radial basis function (RBF)
The RBF classifier as a radial base function network (RBFN) trains a

model for classification problems (Wu et al., 2008). The Gaussian
function as one typical RBF for classification can be expressed as
(Frank, 2014):

∑ ∑… =
⎛

⎝
⎜ +

⎛

⎝
⎜−

− ⎞

⎠
⎟

⎞

⎠
⎟

= =

f x x x g w w
a x c

σ
( , , , ) exp

( )
2m

i

b

i
j

m
j j i j

i j
1 2 0

1 1

2
,

2

,
2

(7)

where, x1, x2, …, xm is the vector of attribute values for the instance
concerned, g(.) is the activation function, b is the number of basis
functions, wi is the weight for each basis function, aj2 is the weight of
the jth attribute, and ci,. and σi,.2 are the basis function centers and
variances, respectively.

3.5.5. Extreme gradient boosting (XGBoost)
The XGBoost algorithm proposed by Chen and Guestrin (2016),

based on the concept of boosting (Fan et al., 2018b), is a useful tech-
nique for K classification and regression trees. This model combines all
the predictions of a set of weak learners.

3.5.6. Classification and regression tree (CART)
The CART, proposed by Breiman et al. (1984), constructs predictive

relationships from input variables (Choubin et al., 2018) and generates
a sequence of sub-trees by growing a large tree instead of using stop-
ping rules (Pham et al., 2017). The CART has two different sub-models
including classification tree analysis (CTA) and regression tree analysis
(RTA). Here, we applied RTA to the mapping of storm dust provenance.

3.5.7. Cubist model
Cubist, a non-parametric model (Houborg and McCabe, 2018) is

Table 2
Summary information on the different land uses in the study area.

Land use Area (km2) Area (%)

Agricultural lands and gardens 19,469 30.74
Airport 10 0.016
Aquifer 4 0.006
Bareland 5372 8.46
Fisherypool 118 0.19
Forest 6907 10.9
Mangro 1 0.002
Masil 127 0.2
Range 23,948 37.73
Rock 33 0.052
Saltland 2168 3.42
Sanddune 520 0.82
City 605 0.95
Water 527 0.9
Wetland 3290 5.18
Woodland 358 0.56

Table 3
Summary information on the land use types in the study area.

Land type Area (Km2) Area %

Alluvial plains 18,060 28.47
Alluvial Fan 837 1.32
Flood Plain 1703 2.68
Hill 9686 15.27
Lowland 6068 9.56
Miscellaneous Land 3649 5.75
Mixed Land 522 0.82
Mountain 14,539 22.92
Piedmont 4072 6.45
Plateau and upper terrace 3689 5.82
Residential and industrial areas 596 0.94
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Fig. 4. Maps of effective factors for dust emissions. a) Soil available water capacity (AWC); b) soil bulk density; c) DEM; d) NDVI; e) organic carbon (OC) and f) soil
EC.
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Fig. 5. Maps of effective factors for the dust emissions. a) Soil texture; b) geology; c) total annual precipitation; d) land type; e) wind speed and f) land use.
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based on the M5 theory (Quinlan, 1992), generates multiple linear re-
gression models in the terminal nodes of a tree. For improving model
accuracy, a prediction resulted from the model is combined with pre-
dictions made from nearest-neighbour nodes (Xu et al., 2018).

3.5.8. Boosted regression trees (BRT)
The BRT (Elith et al., 2008) synthesizes the regression trees and

boosting algorithms. To optimize predictions, this approach combines
many simple tree models adaptively (Elith et al., 2008). This model has

reduced sensitivity to over-fitting and high speed in the analysis of large
datasets (Amiri et al., 2019).

3.6. Ensemble modelling (EM)

An ensemble modelling (EM) approach can be applied to combine
different models into an overall synthesized model to improve accuracy
(Sajedi-Hosseini et al., 2018). The ensemble modelling (EM) used:

Fig. 6. The spatial distribution of dust provenance in the study area (Heydarian et al., 2018).

Fig. 7. The spatial distribution of 551 training (70%) and 236 validation (30%) pixels in the study area.

H. Gholami, et al. Atmospheric Research 233 (2020) 104716

8



=
∑ ∗

∑
=

=
EM

AUC M
AUC

( )i
n

i i

i
n

i

1

1 (8)

where, AUCi is the value of area under of curve for the ith single model
(Mi).Models with AUC > 80% were used in the integration process
(Choubin et al., 2019; Sajedi-Hosseini et al., 2018).

3.7. Evaluation of data mining and ensemble models

The receiver operating characteristic (ROC) curve, suggested by
Hong et al. (2016), was applied for the validation of the dust prove-
nance maps predicted by the data mining algorithms and the EM. The
area under curve (AUC) was used to determine the accuracy of the
storm dust provenance predictions provided by the different models.
Values of AUC vary from 0.5 (a random prediction) to 1 (an excellent
prediction) (Park, 2011). Fig. 8 shows a flowchart summarizing key
steps in the spatial modelling of storm dust provenance using the above
data mining algorithms and the resulting EM.

4. Results and discussion

4.1. Multicollinearity analysis

For calculating TC and VIF as collinearity statistics, values of 1 and
0 were assigned to pixels with and without dust provenance, respec-
tively. Based on Table 4, the lowest and highest values of TC were
calculated as 0.106 and 0.918, respectively, and these estimates were
related to the DEM and land use. The respective lowest and highest
estimates of VIF were 1.090 (for land use) and 9.426 (for the DEM). The
lowest TC equated with the highest VIF (Table 4). Generally speaking,
the results for TC and VIF revealed that multicollinearity among the 12
effective factors for storm dust emission was not a problem.

4.2. Dust provenance maps

Figs. 9 and 10 present the storm dust provenance maps generated by
the eight data mining algorithms. Table 5 illustrates the corresponding
areas of dust provenance susceptibility classes predicted by the eight
models. Using the RF model, 14 and 40% of the study area were clas-
sified as high and very high susceptibility classes, whereas 36 and 10%
of the total area were assigned to low and moderate susceptibility
classes, respectively (Fig. 9a). Based on the map of dust provenance
susceptibility generated by the SVM (Fig. 9b), 33, 9, 17 and 41% of the
total study area was classified as low, moderate, high and very high
susceptibility, respectively. For the BART model, the very high sus-
ceptibility class covered 4% of the study area, whereas the low, mod-
erate and very high susceptibility classes covered 65, 13 and 18%, re-
spectively (Fig. 9c). According to the RBF model (Fig. 9d), low,
moderate, high and very high susceptibility classes represented 37, 12,

Fig. 8. Flowchart of the key stages in the spatial modelling of storm dust provenance using data mining algorithms and EM.

Table 4
The results of multicollinearity tests for the effective factors for storm dust
emission.

Effective factors Collinearity statistics

TC VIF

Wind speed 0.427 2.342
Soil texture 0.602 1.662
AWC 0.750 1.334
Soil bulk density 0.548 1.826
Dem 0.106 9.426
Soil Ec 0.497 2.012
Geology units 0.559 1.788
Land type 0.707 1.414
Land use 0.918 1.090
NDVI 0.413 2.419
OM 0.109 9.149
Rainfall 0.274 5.711
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11 and 40%, respectively.
The results of the XGBoost model predicted that 37, 7, 13 and 43%

of the total area belonged to the low, moderate, high and very high
susceptibility classes, respectively (Fig. 10a). In the case of the RTA
model (Fig. 10b), 35% of the area was classified as very high suscept-
ibility, whereas 63, 2 and 0% were classified as low, moderate and high
susceptibility. The map generated by the cubist model suggested that 8
and 49% of the study area were classified as high and very high sus-
ceptibility, whereas 39 and 4% of the area were classified as low and
moderate susceptibility classes, respectively (Fig. 10c). Finally, in the
case of the BRT model, the results classified 16, 25, 34 and 25% of the
study area as low, moderate, high and very high susceptibility respec-
tively (Fig. 10d).

4.3. Validation of the storm dust provenance maps using ROC-AUC

ROC-AUC has been employed in conjunction with classification
problems in machine learning and in the evaluation of species dis-
tribution models (Phillips et al., 2006). Here, the model with the

highest AUC value is selected as the fittest model. Based on the AUC
value, model prediction accuracy can be classified to five categories
(Yesilnacar, 2005): poor (50–60%), moderate (60–70%), good
(70–80%), very good (80–90%) and excellent (90–100%). Here, the
results of using ROC-AUC for evaluating the eight data mining models
used to generate the storm dust provenance maps are presented in
Figs. 11 and 12; and Table 6.

Among the eight models, six (RF, SVM, BART, RBF, XGBoost and
Cubist) were confirmed as having excellent (with AUC > 90%) per-
formance in the prediction of storm dust provenance (Fig. 11a–d;
Fig. 12a, c). Based on Yesilnacar (2005), the BRT (AUC=87.9%) and
RTA (AUC=79.1%) models were judged to be very good and good,
respectively (Table 6; Figs. 12b,d).

In comparison with SVM, the XGBoost model has been shown to
provide better performance for training data, is more stable and has
much higher computational speed (Fan et al., 2018a). Chang et al.
(2018) also reported that the XGBoost model, in comparison with other
single-stage classifiers such as the SVM, is a superior tool for the de-
velopment of risk models. Cubist, RF and XGBoost have been reported

Fig. 9. Dust provenance maps generated by: (a) RF; (b) SVM; c) BART, and; d) RBF.
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as having better performance relative to other machine learning algo-
rithms, and the cubist model has been reported as the best for esti-
mating monthly PM2.5 (Xu et al., 2018). Both the cubist and RF models
are capable of generating better predictions in comparison with ANN

and conventional regression models (Zhou et al., 2019). Previous work
has reported that the RBF classifier is a useful technique for the spatial
modelling of landslides across the world (He et al., 2019).

In our work reported here, the AUC of the RF model (93.5%)

Fig. 10. Dust provenance maps generated by: (a) XGBoost; b) RTA; c) cubist and; d) BRT.

Table 5
The area of dust provenance susceptibility classes predicted by the eight data mining models.

Model Class

Low Moderate High Very high

Area (Km2) Area (%) Area (Km2) Area (%) Area (Km2) Area (%) Area (Km2) Area (%)

RF 22,833 36 6595 10 8978 14 25,611 40
SVM 21,113 33 5646 9 10,944 17 26,316 41
BART 39,656 65 8088 13 10,811 18 2671 4
RBF 23,997 37 7445 12 6940 11 25,667 40
XGBoost 23,638 37 4311 7 8654 13 27,409 43
RTA 38,830 63 1194 2 – – 21,211 35
Cubist 25,002 39 2527 4 4823 8 31,671 49
BRT 10,469 16 15,726 25 21,787 34 16,030 25
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(Fig. 11a) exceeded the corresponding values estimated for four other
models comprising SVM (AUC=91%; Fig. 11b), BART (AUC=92.1%;
Fig. 11c), RTA (AUC=79.1%; Fig. 12d) and BRT (AUC=87.9%;
Fig. 12b), indicating that the RF model provides a better prediction map
for storm dust provenance. Previously, work has reported that among
three models (RF, CART and logistic model tree (LMT)), RF has the best
capability for the spatial prediction of landslide susceptibility (Chen
et al., 2017a). Similarly, in comparison with the RBDT, BRT and CART
models, RF has previously been reported as generating the lowest
predictive error during the mapping of landslide hazards (Rahmati
et al., 2019). Gayen et al. (2019) and Amiri et al. (2019) also reported
that the RF model in comparison with MARS, FDA, BRT and SVM, has
the highest prediction accuracy for the assessment of gully erosion
susceptibility.

Among all eight models, RTA (with AUC=79.1%) (Fig. 12b) had
the lowest accuracy for generating the storm dust provenance maps.
The corresponding value for the BART model was 92.1% (Fig. 11c).
Gomez-Gutierrez et al. (2009) also reported a lower efficiency for BART
in comparison with MARS for predicting gullying. Similarly, in com-
parison with other models, the low prediction accuracy of BART has

also been reported in conjunction with the digital mapping of soil
carbon (Keskin et al., 2019), prediction of flood susceptibility (Choubin
et al., 2019), and the spatial prediction of landslide susceptibility (Chen
et al., 2017a,b).

4.4. Final storm dust provenance map produced by the EM

The individual models with AUC > 80% (see Table 6) were in-
cluded in the EM process (Fig. 13 and Table 7). The EM results in-
dicated that, 23 and 28% of the total study area were classified into
high and very high susceptibility classes, whereas the low and moderate
susceptibility classes accounted for 36 and 13%, respectively. Valida-
tion of the EM storm dust provenance map returned an AUC value of
99.8% (Fig. 14) which exceeded the corresponding AUC for the eight
individual data mining models. Previous work has reported that EM
have higher predictive accuracy than individual data mining models for
gully erosion (Arabameri et al., 2019; Pourghasemi et al., 2017), sus-
pended sediment load (Khosravi et al., 2018), flood susceptibility
(Choubin et al., 2019), landslide susceptibility (Pham et al., 2017), and
groundwater contamination risk (Sajedi-Hosseini et al., 2018).

Fig. 11. Validation of the storm dust provenance maps generated by: (a) RF; (b) SVM; (c) BART, and; (d) RBF using the ROC-AUC.
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4.5. Importance scores (IS) for effective factors for storm dust emissions

Storm dust emissions are controlled by many effective factors such
as topographic conditions, land surface characteristics, soil moisture
content, geology, soil characteristics (organic matter, AWC, etc), ve-
getation and atmospheric conditions (wind speed and rainfall) (Rashki

et al., 2017; Saadoud et al., 2018; Ge et al., 2016; Shao, 2008). For our
work, the importance scores (IS) for effective factors controlling storm
dust emissions were determined by a mean decrease in accuracy mea-
sure (MDAM) (Fig. 15) (Chen et al., 2017a; Gayen et al., 2019). The
MDAM results indicated that wind speed (IS= 23) is the most effective
factor for dust emissions, followed by land use (IS =18), DEM
(IS= 15.5), NDVI (IS= 14.5), precipitation (IS= 13), soil bulk density
(IS= 12), soil Ec (IS= 11), soil AWC (IS= 9.8), OM (IS=9.7), land
type (IS= 8), soil texture (IS= 8) and geology (IS= 6.5). The wind
speed (the most important factor) and rainfall (5th effective factor) as
climatic variables play a major role in storm dust emissions. However,
climate change isn't the only factor that will affect dust storms in the
future; it is necessary to examine other future environmental changes
caused by land use and land cover modifications in conjunction with
human activities (Mahowald and Luo, 2003).

4.6. Limitations and advantages of data mining for mapping storm dust
provenance

Data mining can help better understanding of the complex me-
chanisms behind environmental phenomena and in recent years, these

Fig. 12. Validation of the storm dust provenance maps generated by: (a) XGBoost; (b) RTA; (c) cubist, and; (d) BRT using the ROC-AUC.

Table 6
The values of AUC for data mining models applied to
generating the map of storm dust provenance suscept-
ibility.

Data mining models AUC (%)

RF 93.5
SVM 91
BART 92.1
RBF 99.6
XGBoost 99.7
RTA 79.1
Cubist 99.3
BRT 87.9
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techniques have been increasingly applied to environmental hazards
(Gibert et al., 2018). The input variables are key controls to modelling
processes and can influence model prediction accuracy. Therefore,
preparing and mapping information on effective dust emission factors is
vital and here it is important to be comprehensive in considering all the
main variables affecting dust emissions. Different factors such as the
spatial resolution of images, scale and number of measurement years
can all affect the mapping of the effective factors for storm dust emis-
sions such as NDVI, the digital elevation model, climatic variables
(wind speed and rainfall) and soil characteristics.

Data mining models can help produce new validated and transfer-
able knowledge by integrating various strands of existing knowledge
and expertise. However, selecting the best machine learning model for
an environmental hazard is not simple, and there is currently a lack of
guidelines and criteria for guiding data scientists and environmental
experts in the application of the available algorithms (Gibert et al.,
2018). In the context of building upon the work reported here, we re-
commend future research examines the efficiency of other data mining
models (e.g., boosted linear model, boosted generalized additive model,
neural networks) for predicting dust provenance, so that progress can
be made towards the development of guidelines for end-users.

5. Conclusion

The study reported herein is the first attempt at spatial modelling of

storm dust provenance using eight individual data mining tools and an
EM approach. Generally speaking, the AUC values for the eight data
mining models and the EM ranged between 79.1 and 99.8% and on this
basis it could be concluded that seven individual models (EM, RF, SVM,
BART, RBF, XGBoost and Cubist) returned excellent, very good or good
performances for the prediction of storm dust provenance. Overall, the
EM (with AUC=99.8%) returned the highest prediction accuracy for
generating the storm dust provenance map. In comparison with other
techniques for studying aeolian sediment provenance (such as geo-
chemical source tracing methods), data mining models are inexpensive,
do not require resource intensive field sampling and laboratory ana-
lyses, and critically, provide a basis for mapping provenance over large
spatial scales. We therefore recommend applying data mining algo-
rithms in conjunction with EM approaches to the spatial mapping of
storm dust provenance worldwide.
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