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EXECUTIVE SUMMARY

This PhD thesis project was conducted within the framework of a collaborative programme 

involving Cranfield University, Rothamsted Research and Mohammed VI Polytechnic 

University (UM6P), supported by funding from OCP Africa. The project aimed to pioneer 

novel techniques in remote sensing (RS) and automated crop phenotyping technologies 

tailored specifically for agricultural contexts in Africa.

Efficient production of crops along with the optimal use of fertilisers is fundamental for 

ensuring sustainable, secure and healthy crop production. Currently, efforts in developing and 

utilising high-throughput tools for crop phenotyping is predominantly directed towards the 

crop portfolio characterised by high input and high yield in developed countries. The 

complexity and cost of existing plant phenotyping equipment have hindered their widespread 

use in Africa. Moreover, inadequate technical expertise, operational know-how, regulatory 

constraints and conceptual capacity within the plant science community have compounded 

the challenges, further impeding adoption. The literature review of this PhD thesis (Chapter 

2, section 2.2) which is a published paper extensively discusses and addresses these 

challenges.

This project exploited phenotyping technologies from Cranfield University and Rothamsted 

Research with a specific goal of implementation of low-cost portable tools to acquire, analyse 

and interpret high-throughput plant phenotyping data in Africa/Morocco, for locally 

important crops and cropping systems with particular emphasis on optimising the use of 

fertilisers. This PhD thesis focused on the use of ground-based proximal sensors and drone-

based imagery to assess the nutritional status of African crops. Low-cost hand-held sensors 

and drone were used to collect spectral reflectance data in tandem with agro-morpho-

physiological metrics for nutrient and drought status evaluation in quinoa, cowpea and wheat. 

Datasets were collected and analysed at multiple scales: aerial, ground-based in the field and 

in glasshouse-controlled environment experiments.

In the glasshouse at Cranfield, experiments were conducted examining nitrogen (N) and 

phosphorus (P) stress on quinoa and cowpea (Chapter 3). Additionally, a drought and N stress 

experiment on spring wheat was conducted in the glasshouse (Chapter 4). These experiments 

were used to collect time series of spectral data to test an extensive range of known existing 

canopy spectral reflectance indices (SRIs) for effectiveness and specificity for the various 

stresses, and to search for novel indices using the spectral information. These experiments 
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yielded a high-quality dataset for investigating the interaction between these two nutrients 

and identifying nutrient specific characteristics for diagnostic protocols.

Specific spectral indices that could distinguish between N and P stress at the early growth 

stage of quinoa were found. However, identifying SRIs for P stress was challenging 

particularly in cowpea. Specific spectral reflectance canopy indices have been shown to be 

more sensitive to either water or N stress. Amongst 39 SRIs tested, the Renormalised 

Difference Vegetation Index (RDVI) and Red Difference Vegetation Index (rDVI_790) 

demonstrated best sensitivity for detecting drought stress. Chlorophyll-sensitive indices such 

as the chlorophyll Index (mNDblue_730), Greenness Index (G), Lichtenthaler Index (Lic2), 

as well as red-edge indices including Modified Red-Edge Simple Ratio (MRESR), 

chlorophyll Index Red-Edge (CIrededge) and Normalised Difference Red-Edge (NDRE) 

exhibited best specificity for detecting N stress. In the field at Rothamsted, a multiscale 

approach employing aerial drone imagery and ground-based handheld sensors at the aerial, 

canopy and leaf scales was utilised to assess the nutritional status of winter wheat (Chapter 

5). The Normalised Difference Vegetation Index (NDVI) measured on the ground with a 

handheld sensor at the leaf level indicated the best sensitivity for assessing the N status of 

winter wheat compared to the drone and canopy sensor.

Four (4) publications were produced in addition to one manuscript under review. Aspects of 

the PhD project have been presented at 5 international scientific conferences and workshops 

earning recognition with an award. Significant progress was consistently made during the 4-

year PhD programme in Environment and Agrifood at Cranfield University, successfully 

accomplishing the project’s objectives. 
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GENERAL AUDIENCE ABSTRACT

Understanding the nutritional needs of crops is crucial for ensuring their health and 

maximising yield. However, the capability to accurately measure relevant physical 

characteristics (phenotypes) of important crops in response to complex nutrient stresses is 

limited. For crop breeders and researchers, the existing capacity to characterise crops with 

adequate precision, detail and efficiency is hindering significant progress in crop 

development. In this PhD thesis, the use of advanced sensing techniques to assess the 

nutritional status of African crops was explored, focusing on three main objectives. 

First, the use of a handheld proximal sensor was investigated to evaluate the spectral 

properties of quinoa and cowpea crops grown under different N and P supplies in controlled 

glasshouse conditions (Chapter 3). By analysing these spectral properties, the aim was to 

identify spectral indices that could show early signs of N and P stress separately in the plants. 

These stress indicators were related to the overall performance of the crops. Spectral indices 

were found that could distinguish between N and P stress at the early growth stage of the 

crops. However, identifying spectral indices for P stress was limited, particularly in cowpea 

due to the shorter wavelength range of the handheld device. The results showed significant 

relationships between the spectral indices and traits related to the morphology, physiology 

and agronomy of the crops. 

Second, it was demonstrated that different levels of N impact the drought responses of spring 

wheat (Chapter 4). By evaluating morpho-physiological changes in the plants under high N 

and low N conditions, an understanding of how spectral reflectance measured at the leaf level 

could help distinguish between combined and complex stresses such as drought and nutrient 

deficiency was investigated. The results showed a greater amplitude of drought response in 

plants that were supplied with high N compared to low N levels, with interactive effects on 

many morphological and physiological traits. Out of a group of 39 different SRIs, only the 

Renormalised Difference Vegetation Index (RDVI) and the Red Difference Vegetation Index 

(rDVI_790) showed better accuracy in detecting drought stress. The results also revealed that 

indices sensitive to chlorophyll levels, such as the chlorophyll Index (mNDblue_730), 

Greenness Index (G) and Lichtenthaler Index (Lic2), as well as red-edge indices like 

Modified Red-Edge Simple Ratio (MRESR), chlorophyll Index Red-Edge (CIrededge) and 

Normalised Difference Red-Edge (NDRE), were more accurate in detecting N stress.
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Lastly, the effectiveness of using spectral information from images collected from a drone 

and spectral reflectance measured with proximal sensors on the ground were compared for 

detecting N stress in winter wheat under field conditions (Chapter 5). By comparing these 

two sensing methods, it was assessed which approach is more accurate, reliable and cost-

effective for assessing the N nutritional needs of the crop in real-world agricultural settings. 

The results indicated that the NDVI measured on the ground at the leaf level could accurately 

detect the small changes in N levels earlier compared to the drone NDVI and canopy level 

NDVI and for assessing the agronomic performance of winter wheat. Overall, this PhD 

research sheds new light on the potential of advanced sensing techniques to improve crop 

management practices and enhance agricultural productivity by providing timely and accurate 

information about the nutritional status of the studied crops.

Keywords:

Phenotypes, sensing techniques, spectral properties, drought stress, nutrient deficiency, 
quinoa, cowpea, wheat
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CHAPTER 1

1 GENERAL INTRODUCTION

1.1 Research background and context

Nutritional status is a useful indicator of crop growth for optimising fertilisation 

management. In addition, accurate, real-time and non-destructive monitoring of crop 

nutritional status is crucial for agricultural management decisions and helps guide 

efficient fertiliser applications as well as enabling the prediction of yields (Silva et al., 

2023). Nitrogen (N) and phosphorus (P) are among the most essential nutrients and play 

critical roles in the optimal growth and development of plants as it is the main driver for 

yield and quality (Leghari et al., 2016; Lambers, 2022; Hawkesford et al., 2023). 

However, the conventional approaches to monitoring these essential nutrients in plants 

require extensive sampling, time and expensive laboratory chemical analysis, which are 

neither economically feasible nor environmentally acceptable on a broad scale. These 

measurements are destructive and affected by spatial heterogeneity of soil and crop 

parameters. Therefore, reliable and efficient methods for detecting nutrient stresses in 

crops are needed by farmers to advance current farming practices, particularly in 

developing countries where conventional agricultural systems are unable to keep up 

with the needs of rapid population expansion.

Proximal and remote sensing (PRS) has emerged in recent decades as important 

methodologies for the application of crop status monitoring to improve precision and 

throughput in phenotyping (Mezera et al., 2021; Tao et al., 2022). The principle behind 

using PRS techniques to identify crop nutrient status is the changes caused in pigment 

content, photosynthetic activity, cell structure and other physiological processes that 

alter the spectral reflectance of plants. The reflectance data is frequently used to 

generate spectral reflectance indices (SRIs), which are a mathematical computation of 

multiple wavebands. It has been demonstrated that using SRIs is an effective approach 

to estimating plant biophysical parameters and quantifying stresses using PRS 

techniques (Kamenova et al., 2017; Hatfield et al., 2019; Zhang and Zhou, 2019; 

Galieni et al., 2021).

Recent developments in the fields of spectroscopy using PRS (e.g., handheld 

spectrometers, drone imagery) provide many opportunities to integrate sensors at leaf, 
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canopy and aerial scales for efficient data acquisition, enhance crop management, with a 

focus on nutritional monitoring in various crops (Gabriel et al., 2017; Frels et al., 2018; 

Aracena Santos et al., 2021; Gordillo-Salinas et al., 2021; Zheng et al., 2022; Amaral et 

al., 2022). 

Whilst nutrient status has been thoroughly investigated as single nutrient stresses (e.g., 

either N or P), a gap exists when stresses occur concurrently. For instance, P and water 

stresses could be confounding factors during N stress that can trigger or alter a wide 

range of physiological, morphological and metabolic stress responses in plants that are 

more complex than individual stresses (Krouk and Kiba, 2020). These responses are 

influenced by interactions between the different stresses, which can act as additive, 

synergistic or antagonistic factors (Crain et al., 2008; Jiang et al., 2019; Tan et al., 

2021). However, from a practical standpoint, research needs to focus on the complicated 

interactions between many environmental stresses. Since most farmers especially in 

Africa are challenged with the management of multiple stresses, there is a need to assess 

novel and existing SRIs for specificity to these stresses to support precision agriculture 

(PA). 

Recently, increased attention has been devoted to the use of handheld sensors for 

monitoring the nutritional status of crops in developing countries because of their ease 

of operation, non-destructive data collection and low cost (Cudjoe et al., 2023a). This 

PhD thesis focuses on three (3) crops (quinoa, cowpea and wheat) that are significant to 

African agriculture and many subtropical regions. Quinoa, cowpea and wheat are all 

valuable resources of protein, but they have distinct characteristics and uses. Quinoa is a 

complete protein, containing all nine essential amino acids and gluten-free (Pathan and 

Siddiqui, 2022). It is used as a grain substitute in salads, bowls and as a side dish. 

Cowpea is rich in lysine, which is often limited in other grains (Abebe and Alemayehu, 

2022). It is commonly used in soups, stews, and as a side dish. It can also be dried and 

ground into flour for various recipes. Additionally, cowpea grows well in arid 

conditions and enriches the soil with N, making it beneficial for crop rotation. Wheat 

offers good protein content, though the protein quality is lower than that of quinoa and 

cowpea as it is deficient in lysine. It is the primary ingredient in bread, pasta, pastries 

and other baked products. Wheat is often used as animal feed, particularly in livestock 
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production. Presently, the use of PRS techniques to assess the complex nutrient stress 

effects and their interactions in these crops has not been widely investigated.

Therefore, the overall aim of this thesis is to assess the potential of using handheld 

proximal sensors and drone-based imagery to detect single-nutrient stress and 

differentiate between combined nutrient stresses, as well as their interactions in quinoa, 

cowpea and wheat. This assessment aimed to establish their appropriateness for field 

phenotyping in Africa by employing rapid and non-destructive phenotyping techniques. 

The objectives of this PhD research were implemented after ethical approval from the 

Cranfield University Research Ethics System (CURES) (Appendix A).

1.2 Research objectives

The study concentrated on using SRIs derived at leaf, canopy and aerial scales to 

provide a better estimation of crop nutritional status for improving agricultural 

fertilisation and water management. The overall aim was achieved by the following 

three (3) broad objectives:

1. Evaluation of spectral properties from handheld proximal sensors as indicators of 

individual and combined N and P stress in quinoa and cowpea and how they reflect crop 

performance. These crops are under-studied when it comes to their response to 

nutritional stresses and more importantly, using proximal sensors to detect these 

responses and the inherent interactions. The focus is to identify effective SRIs capable 

of detecting early N and P nutritional stresses, distinguishing between the two stresses 

and relating the spectral response to the morphology, physiology and agronomy of the 

crops. The specific objectives were (1) to identify optimal SRIs indicative of N and P 

status separately or the combined effect and their interactions, (2) to assess the time-

course response of optimal SRIs to identify early nutritional variations, (3) to assess the 

agro-morpho-physiological responses under the different N and P availabilities and (4) 

to examine the relationships between optimal SRIs and agro-morpho-physiological 

parameters. This objective was implemented in 2020 by growing quinoa and cowpea in 

pots under different N and P supplies in the glasshouse at the Plant Growth Facility at 

Cranfield University. Spectral reflectance data were collected using the PolyPen RP410 

contact spectrometer throughout the crop cycle in tandem with the measurement of 

agro-morpho-physiological parameters at specific growth stages. Objective 1 is linked 
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to chapter 3 of the thesis. These objectives connect with the joint PhD thesis in terms of 

the crops used, experimental design and treatment conditions. However, while this 

thesis explores proximal contact sensing, the other uses hyperspectral imagery and 

machine learning approaches to assess the nutritional status.

2. Evaluate the morpho-physiological drought responses at high and low N and examine 

if SRIs derived at the leaf level could discriminate between the combined stresses in 

spring wheat. This will allow the identification of indicative spectral signatures and 

SRIs that are responsive to the combined stresses and specific to either drought or N 

stress. The specific objectives were to (1) assess the morpho-physiological drought 

responses at high and low N conditions, (2) assess the time-course response of SRIs to 

identify early drought responses under high and low N conditions, (3) identify effective 

SRIs specific for discriminating between drought and N stress and (4) to examine the 

relationships between spectral response and morpho-physiological status. Experimental 

work to implement this objective was initiated and completed in 2022. Wheat plants 

were grown in pots exposed to drought and N stress conditions in the glasshouse at the 

Plant Growth Facility at Cranfield University. Spectral reflectance data was acquired 

using the PolyPen RP410 contact spectrometer along with the measurement of morpho-

physiological parameters indicative of water and N stress. Objective 2 is linked to 

Chapter 4 of the thesis. Objective 2 has links with other PhD thesis in terms of the 

experimental design and treatment application. The difference is that while this thesis 

employs contact proximal sensing to collect spectral and morpho-physiological data, the 

other uses hyperspectral and RGB together with deep learning approaches. 

3. Compare the effectiveness of proximal sensors and unmanned aerial vehicle (UAV) 

drone imagery for monitoring N stress responses in winter wheat under field conditions. 

The emphasis was on detecting the effects of N inputs on wheat performance and 

quantifying spectral attributes of the leaf, canopy and aerial scales as potential 

indicators of insufficient N-supply using a multiscale sensing approach. Experimental 

work on this objective was initiated and completed in 2021 at the experimental farm in 

Rothamsted Research using data collected from the Wheat Genetic Improvement 

Network (WGIN) diversity field trial. Spectral reflectance was measured using the 

PolyPen RP410 spectrometer, Tec5 spectroradiometer and UAV (drone) at leaf, canopy 
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and aerial scales respectively. In parallel, agro-morphological parameters were 

measured including the leaf N content (LNC), leaf area (LA), SPAD and yield and yield 

components. Objective 3 is linked to Chapter 5 of the thesis. This objective does not 

overlap with the sister PhD thesis.

1.3 Thesis structure and contributions

• This PhD thesis consists of six (6) chapters. My contribution to this thesis is 

highlighted in each chapter. Chapter 1 starts with a general introduction that 

indicates the scope of the study, the problem statement, the significance of the 

study, the aims and objectives and an outline of the thesis. My contribution 

involved establishing the research scope and context of the thesis and deciding 

the aims and objectives. I was responsible for writing the entire text of this 

chapter.

• Chapter 2 which is the literature review gives a theoretical perspective of PRS 

applications in phenotyping for plant nutritional status with a special focus on 

quinoa, cowpea and wheat. It also highlights field phenotyping for African crops 

based on (Cudjoe et al., 2023a, published in Frontiers in Plant Science: 

https://doi.org/10.3389/fpls.2023.1219673). In this chapter, I conducted a 

comprehensive review of the literature surrounding plant phenotyping, with a 

specific focus on PRS techniques used for crop nutritional status assessment. My 

contribution involved the selection and critical analysis of key research papers, 

the synthesis of relevant findings and the framing of these within the context of 

African agriculture. I was solely responsible for writing the entire text of this 

chapter and ensuring its alignment with the overall thesis objectives.

• Each experimental study/research chapter focuses on specific aims and 

objectives stated under section 1.2. These three research studies (Chapters 3, 4 

and 5) form the most important parts of this thesis and translate to the main 

outcomes of the work produced. Therefore, these chapters have distinct 

abstracts, introductions, materials and methods, results, discussions, conclusions 

and references sub-sections. Chapters 3, 4 and 5 are formatted versions of peer-

https://doi.org/10.3389/fpls.2023.1219673
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reviewed journal articles and manuscripts submitted for publication or in 

preparation.

• Chapter 3 is based on the paper (Cudjoe et al., 2023b; Acta Horticulturae: 

https://doi.org/10.17660/ActaHortic.2023.1360.45 and a manuscript to be 

submitted to the MDPI Agronomy Journal). This is focused on the determination 

of optimal SRIs for monitoring the nutritional status and agro-morpho-

physiological responses in quinoa and cowpea under varying N and P 

availability using proximal sensing at the leaf level. It is also to identify SRIs 

specific to N or P stress. I designed and conducted the experiments detailed in 

this chapter, which involved the use of proximal sensors to monitor quinoa and 

cowpea under varying N and P conditions. I was directly involved in collecting 

the spectral data, analysing the agro-morpho-physiological parameters and 

deriving insights into the nutritional status of the crops. This chapter including 

the manuscript and published paper was written entirely by me, incorporating 

both the experimental data I generated and my interpretation of the results. 

Chapter 3 of the thesis is linked to objective 1.

• Chapter 4 is based on a manuscript under review in the Plant Phenomics 

Journal with manuscript number: PlantPhenomics-D-24-00072. Chapter 4 is 

about the interaction of water and N stress in spring wheat and the potential for 

independent detection using a handheld proximal sensor. The focus of Chapter 4 

is to assess the morpho-physiological drought responses at high and low N 

conditions and examine the potential of SRIs measured at the leaf scale to 

discriminate the combined drought and N stress effects in spring wheat. The 

experiments in this chapter were designed and carried out by me. I personally 

collected and analysed all spectral reflectance and morpho-physiological data, 

which were used to explore the potential for using handheld sensors to 

differentiate between these stresses. I authored the texts for this chapter, 

integrating both the data analysis and scientific discussion to highlight the 

significance of the findings. Chapter 4 is linked to objective 2 of the thesis.

• Chapter 5 is focused on a multiscale assessment, employing a comprehensive 

approach that combines aerial drone imagery and ground-based proximal 
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sensors at the leaf and canopy scales. This integrated approach aims to evaluate 

their capabilities in assessing the N status and how the spectral response reflects 

the agronomic performance of winter wheat. For this chapter, I conducted a field 

study that utilised both proximal sensors and unmanned aerial vehicle (UAV) 

imagery to monitor N stress in winter wheat. My involvement extended to the 

collection of leaf and canopy scale spectral data. The aerial drone data was 

collected by a licensed technician. I collected data to compare the effectiveness 

of the different sensing scales in reflecting the N status and agronomic 

performance of winter wheat. This study was particularly relevant to high-

throughput phenotyping and PA. Chapter 5 is linked to objective 3.  

• Chapter 6 gives a general discussion of the findings and provides a synthesis of 

the main findings of each chapter and research implications. Thus, it summarises 

the overall outcomes and contributions of the thesis in the context of the 

objectives, provides an overview of limitations and discusses ideas for future 

work worthy of further investigation. Future opportunities and practical 

implications for technology transfer to potential end-users are also discussed. In 

this final chapter, I synthesised the results from the previous chapters and 

highlighted the major findings of the research. I also identified potential 

limitations and provided recommendations for future research directions. This 

chapter was crucial in integrating the thesis' contributions to both the scientific 

community and practical applications in agriculture. All the written texts were 

done by me.
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CHAPTER 2

2 LITERATURE REVIEW

The literature review gives a general overview of plant phenotyping, the application of 

PRS techniques in plant phenotyping and its application for the nutritional status 

assessment in quinoa, cowpea and wheat (section 2.1). Another section (2.2) of the 

literature review is dedicated to field phenotyping for African crops which is a review 

paper published in Frontiers in Plant Science (Cudjoe et al., 2023a; 

https://doi.org/10.3389/fpls.2023.1219673).

2.1 Plant phenotyping

The concept of the plant ‘phenotype’ was first introduced by the Danish botanist 

Wilhelm Johannsen (Johannsen 1911). The plant phenotype refers to the observable 

characteristics of the plant that are expressed and measurable as influenced by the 

dynamic interaction between the genotype and the physical world (environment) in 

which the plant develops (Pieruschka and Lawson, 2015; Hickey et al., 2019). These 

interactions underpin crop performance quantified as growth, biomass, abiotic stress 

tolerance, photosynthetic capacity, resource use efficiency, yield and yield components. 

For decades, farmers and plant breeders have made selections based on phenotypes to 

identify superior candidates or traits of agronomic value (Araus and Cairns, 2014). The 

conventional methods used for phenotyping were based on the appearance and touch of 

the crop, requiring experts to visually score plant samples and measure plant features 

manually, which often was destructive to plants. This method is also tedious, labour-

intensive and time-consuming and therefore, limited by its throughput (Dhondt et al., 

2013). Robust phenotyping is essential to plant breeding since it serves as the 

foundation for selecting lines for the development of new varieties. A new era in plant 

phenotyping measures complex traits linked to growth, yield and stress responses and 

adaptations with speed, improved accuracy and precision at different levels of 

organisation, including cells, tissues, organs, canopy, whole plants and populations non-

destructively (Fiorani and Schurr 2013). 

In recent years, many definitions have been used for plant phenotyping (Fiorani and 

Schurr 2013; Hickey et al., 2019; Watt et al., 2020; Li et al., 2021). For this PhD thesis, 

plant phenotyping refers to using a suite of methodologies and protocols developed 
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through PRS techniques for quantifying plant growth, development, morphology, 

physiology and biophysical responses to stresses. Delivering quantitative data on the 

dynamic responses of plants to their environment is one of the targets of contemporary 

plant phenotyping. To decipher genotype-environment (G×E) interactions and model 

phenotypic responses, Li et al. (2014) have proposed a scheme for plant phenotyping 

(Figure 2.1) utilising proximal sensing (PS) for developing cultivars with improved 

traits which includes the selection of plant germplasm, designing the experiment, 

measuring phenotypic parameters and interpreting results. Many of the recent 

advancements in plant phenotyping are driven by innovations in sensor technologies to 

measure plant growth and physiological status non-destructively in a high-throughput 

manner (Großkinsky et al., 2015; Li et al., 2021). 

Presently, most plant phenotyping is conducted indoors (i.e., in growth chambers or 

glasshouses), semi-controlled environment and in the natural field environment using a 

variety of high-throughput phenotyping platforms (HTPPs) (Araus and Cairns, 2014; 

Virlet et al., 2017; Kirchgessner et al., 2017; Shakoor et al., 2017; Pieruschka and 

Schurr, 2022). These platforms use robotics, automation, sensors, imaging techniques 

and precise environmental control for fast, accurate and non-destructive phenotyping 

based on PRS techniques (Tao et al., 2022; Thakur et al., 2023). 

Figure 2.1. A scheme for plant phenotyping. Adapted from Li et al., 2014.
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2.1.1 Proximal and remote sensing in plant phenotyping

Plant phenotyping increasingly employs PRS techniques because of their advantages in 

multi-dimensional phenotypic data acquisition, processing and analysis (Qiu et al., 

2018; Machwitz et al., 2021; Tao et al., 2022). These techniques are used for 

characterising and monitoring crop or vegetation reflectance properties at reasonable 

temporal and spatial resolutions. PS is the employment of sensors close to plants to 

acquire spectral information. Remote sensing (RS) on the other hand is the acquisition 

of spectral information of plants without contact (Cavender-Bares et al., 2020; Tao et 

al., 2022). RS has been widely used in geoscience and engineering and may be applied 

to plant phenotyping and PA (Sishodia et al., 2020; Araus et al., 2022; Ahmed et al., 

2023).

In the context of this PhD thesis, PS is the acquisition of spectral information using 

optical handheld devices or spectrometers contacting a leaf or in close range (non-

contact) at a canopy scale. For example, the Soil Plant Analysis Development (SPAD) 

and PolyPen RP410 used in this work are typical types of contact spectrometers that 

generate spectral data at the leaf level. The Tec5 spectroradiometer on the other hand 

collects spectral data in close range at the canopy level. RS is the assessment of spectral 

information at a distance from the plant using a UAV (i.e., drone). Both PS and RS 

techniques are integrated into plant phenotyping for efficient data collection and 

monitoring of crop physiological status. For instance, the nutritional status of many 

crops has been assessed using PRS (e.g., Gabriel et al., 2017; Gordillo-Salinas et al., 

2021; Zheng et al., 2022). However, little is known about quinoa and cowpea. The next 

section reviews the status of PRS for nutritional status assessment in the studied crops 

including quinoa, cowpea, and wheat.

2.1.2 Current state-of-the-art proximal and remote sensing techniques for 
nutritional status assessment in crops: special focus on quinoa, cowpea and wheat

This section of the literature review focuses on the current state-of-the-art PRS 

techniques employing handheld optical sensors and UAV drone imagery for nutritional 

status (N and P) monitoring in wheat, quinoa and cowpea. Farmers and agricultural 

producers are interested in systematically monitoring and assessing the nutritional status 

of crops at crucial times throughout the growing stages to supply adequate amounts of 

fertilisers (i.e., N and P fertilisers) for optimal crop growth, health monitoring and 
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performance prediction. Thus, a well-known strategy for achieving a high yield with 

minimal negative environmental impact is to match nutrient supply with crop nutritional 

needs (Feng et al., 2016). On a field scale, destructive sampling and laboratory chemical 

analysis are traditional methods of crop nutritional status evaluation that are accurate yet 

time and labour-intensive and expensive for rapid and precise nutritional status 

assessment (Yang et al., 2020; de Castro et al., 2021). Therefore, quick and non-

destructive assessments of crop nutritional status at wide spatial and temporal scales are 

essential. 

In recent years, PRS has played an important role in offering a quick, non-destructive 

and accurate assessment of crop nutritional status which is crucial for optimised 

fertiliser application and precision crop management decisions (Maes and Steppe, 2019; 

Sishodia et al., 2020). Its ability to measure the biophysical parameters of crops and 

detect spatiotemporal variability using appropriate platforms and techniques makes it 

one of the most promising approaches to assessing crop nutritional status (Fiorentini et 

al., 2021). Based on spectral data gathered by PRS, SRIs have been proposed as proxy 

techniques for evaluating the biophysical characteristics of vegetation at leaf and 

canopy scales (Skendžić et al., 2023). 

In wheat, extensive studies have been conducted on nutritional status employing various 

combinations of PRS techniques (e.g., Aracena Santos et al., 2021; Fiorentini et al., 

2021; Song et al., 2022; Zheng et al., 2022). Among the most recent approaches, UAVs 

or drones equipped with multispectral sensors have demonstrated efficiency in tracking 

and monitoring the nutritional status of wheat crops under field conditions (Walsh et al., 

2018; Gordillo-Salinas et al., 2021; Nduku et al., 2023). Their usefulness relies on the 

capability to fly at low altitudes delivering imagery with high spatial resolution, ease of 

operation and the opportunity to mount various sensors to capture spectral data at 

different regions of the electromagnetic spectrum including the visible, near-infrared 

(NIR) and thermal (del Cerro et al., 2021). This enables high spatial-temporal resolution 

of crop monitoring during the production season. In addition, they are rapid, non-

destructive and correlate closely with key physiological and agronomical crop 

characteristics (Lu et al., 2019). For instance, Walsh et al. (2018), evaluated the 

performance of SRIs derived from UAV images for quantification of plant N 
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concentration of spring wheat. The results indicated that red-edge and green-based SRIs 

including Red Edge Normalised Difference Vegetation Index (NDVIrededge), Red Edge 

Simple Ratio (SRrededge), Red Edge Chlorophyll Index (CIrededge) and Green Chlorophyll 

Index (CIgreen) showed higher correlation with plant N concentration compared to the 

red-based SRIs at the Feekes 5 growth stage. The strong correlations between SRIs 

obtained from UAV and plant N concentrations suggest the significance of the derived 

SRIs for early in-season N status detection in spring wheat. In another study, Fiorentini 

et al. (2021) demonstrated the utility of the NIR band-based vegetation indices such as 

Normalised Difference Vegetation Index (NDVI) and Normalised Difference Red Edge 

(NDRE) in detecting durum wheat N status (R2=0.70 on average) under Mediterranean 

conditions.

A few studies have been focusing on determining the appropriate PRS tools for P status 

in wheat (Pimstein et al., 2011; Mahajan et al., 2014; Aracena Santos et al., 2021). For 

example, Mahajan et al. (2014) used leaf and canopy hyperspectral reflectance data 

coupled with linear correlation analysis to identify responsive wavelengths sensitive to 

biomass-based P status in wheat. A new proposed P-sensitive SRI based on 1080 nm 

and 1460 nm wavelengths predicted P content with high and significant accuracy 

(correlation coefficient (r) 0.42 and root means square error (RMSE) 0.180 g m−2) at the 

booting stage of the wheat crop. Recently, Aracena Santos et al. (2021) used a 

spectroradiometer to determine key wavelengths in the visible and NIR spectra (418, 

563, 639, 756 and 1000 nm) associated with P limitations at tillering (GS25) and 

heading (GS55) growth stages in wheat.

Most studies employing PRS techniques on crop nutritional status assessment have 

focused largely on wheat with limited research on tropical and semi-arid crops such as 

quinoa and cowpea. For quinoa, Alvar-Beltrán et al. (2020) tested proximal optical 

sensing tools to monitor quinoa growth in the field under various N input conditions. 

The researchers demonstrated that SPAD-502 and GreenSeeker had good accuracy in 

predicting crop biomass at harvest (R2=0.68 and 0.82, respectively). Similarly, Cudjoe 

et al. (2023b) investigated how PS parameters (SPAD chlorophyll meter values and 

NDVI) could be used as indicators for N status and how they can be linked to quinoa 

performance in terms of photosynthesis and yield. The results showed that both SPAD 
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and NDVI correlated strongly with the leaf N content at 60 DAS (R2=0.76, R2=0.82, 

p<0.001), net CO2 assimilation rate (R2=0.86, R2=0.81, p<0.001) and grain yield 

(R2=0.68, R2=0.80, p<0.001) respectively. 

In cowpea, Amaral et al. (2022) employed a spectroradiometer-based hyperspectral RS 

to quantify the levels of P in cowpea leaves at different phenological stages. The study 

used single band, band ratio and partial least squares regression (PLSR) models to 

estimate the P content. The model showing the best fit was used to predict the P content 

in the single-band (R2=0.62; RMSE=0.54 and RPD=1.61), band ratio (R2=0.66; RMSE 

=0.65 and RPD=1.52) and PLSR models, using data from each of the phenological 

stages (R2=0.80; RMSE=0.47 and RPD=1.66). The spectroscopy-related PLSR 

demonstrated the significant potential for the development of nutritional prediction 

models in cowpea. The authors concluded that the bands in the visible and NIR regions 

appeared to hold promise for determining the amount of nutrients (P) contents in the 

leaves of cowpea. Given the limited application of PRS in quinoa and cowpea, more 

advances in research are needed on these crops using the emerging PRS tools to monitor 

the nutritional status and improve their fertilisation management. These advances will 

be beneficial to farmers and the environment.

2.1.3 Physiological limitations of quinoa, cowpea and wheat to yield: source and 
sink dynamics in relation to N, P and water stress

The yield potential of quinoa, cowpea and wheat can be influenced by their 

physiological limitations, particularly through source-sink dynamics during critical 

growth phases (Lesjak, 2014; Chang and Zhu, 2017). Sources are plant parts like leaves 

that produce and export nutrients, while sinks are parts like seeds that import and use 

these nutrients. The balance between source strength (photosynthesis) and sink capacity 

(seed development) is crucial for optimal yield (Fang et al., 2024). Critical growth 

phases such as anthesis and seed filling are key phases where source-sink balance 

impacts yield (Carrera et al., 2024). For instance, a high source-sink ratio can enhance 

seed size but may lead to disorders if unbalanced (Fang et al., 2024). Adequate N boosts 

source activity by enhancing photosynthesis, while P supports root development, crucial 

for nutrient uptake (Martínez-Peña et al., 2022). Water stress affects both source activity 

(i.e., photosynthesis) and sink development (seed filling), potentially reducing yield 
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(Fang et al., 2024). Understanding these interactions helps in managing nutrient and 

water stresses to optimise crop yields.

Source-sink interactions significantly impact the yield of quinoa, cowpea and wheat by 

influencing the balance between the production of photoassimilates (source) and their 

utilisation for grain development (sink). Quinoa yield is often limited by sink capacity, 

as quinoa's ability to fill seeds depends on the plant's capacity to mobilise and allocate 

resources efficiently (Lesjak, 2014). Source-sink dynamics in cowpea are crucial during 

pod filling (Smith et al., 2018). The balance affects seed size and number, with N 

availability playing a significant role in enhancing source strength. Wheat yields are 

generally sink-limited, meaning that the number and size of grains determine yield 

potential (Miralles and Slafer, 2007). Enhancing sink capacity through breeding can 

improve yield. Overall, understanding these interactions helps optimise breeding 

strategies for better yield outcomes.
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2.2 Field phenotyping for African crops: overview and perspectives

(This part of the literature review is based on Cudjoe et al., 2023a published in Frontiers in 
Plant Science, 14, https://doi.org/10.3389/fpls.2023.1219673 with minor modifications to the 
text, figures, tables and reformatting of the sections in general to improve clarity).
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Abstract

Improvements in crop productivity are required to meet the dietary demands of the 

rapidly increasing African population. The development of key staple crop cultivars that 

are high-yielding and resilient to biotic and abiotic stresses is essential. To contribute to 

this objective, high-throughput plant phenotyping approaches are important enablers for 

the African plant science community to measure complex quantitative phenotypes and 

to establish the genetic basis of agriculturally relevant traits. These advances will 

facilitate the screening of germplasm for optimum performance and adaptation to low-

input agriculture and resource-constrained environments. Increasing the capacity to 

investigate plant function and structure through non-invasive technologies is an 

effective strategy to aid plant breeding and additionally may contribute to precision 

agriculture (PA). However, despite the significant global advances in basic knowledge 

and sensor technology for plant phenotyping, Africa still lags behind in the development 

and implementation of these systems due to several practical, financial, geographical 

and political barriers. Currently, field phenotyping is mostly carried out by manual 

methods that are prone to error, costly, labour-intensive and may come with adverse 
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economic implications. Therefore, improvements in advanced field phenotyping 

capabilities and appropriate implementation are key factors for success in modern 

breeding and agricultural monitoring. In this review, we provide an overview of the 

current state of field phenotyping and the challenges limiting its implementation in 

some African countries. We suggest that the lack of appropriate field phenotyping 

infrastructures is impeding the development of improved crop cultivars and will have a 

detrimental impact on the agricultural sector and food security. We highlight the 

prospects for integrating emerging and advanced low-cost phenotyping technologies 

into breeding protocols and characterising crop responses to environmental challenges 

in field experimentation. Finally, we explore strategies for overcoming the barriers and 

maximising the full potential of emerging field phenotyping technologies in African 

agriculture. This review paper will open new windows and provide new perspectives for 

breeders and the entire plant science community in Africa. 

Keywords: African crops, phenotypes, field phenotyping, high-throughput 
phenotyping, phenotyping infrastructures, low-cost phenotyping, African agriculture, 
precision agriculture

2.2.1 Introduction

The global demand for food is projected to increase in the coming decades, driven by 

population growth, climate change, pandemics, shifts in food consumption and biofuel 

use (Tilman et al., 2011; Godfray and Robinson, 2015; van Dijk et al., 2021). Ensuring 

that crop production is sufficient to meet future goals is a challenge for plant and 

agricultural sciences. 

In Africa, agricultural crops provide food and income for smallholder farmers and 

consumers. Despite the huge agricultural potential, agricultural productivity in African 

countries continues to remain the lowest in the world (Bjornlund et al., 2020). Many 

studies have indicated that yields of several important staple crops may be stagnating or 

even declining across the continent (Roudier et al., 2011; Knox et al., 2012; Ray et al., 

2012; Parkes et al., 2018). This is the case for key staple crops such as maize, rice, 

wheat, millet, sorghum, cowpea, cassava and yam, which together account for a large 

portion of the population’s diet. Therefore, food supply systems would be negatively 

affected if yield gains in these crops continue to slow due to environmental stresses and 

production constraints. 
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Addressing food security in Africa is a vast challenge that needs to be tackled in many 

complementary directions. Infrastructure development adapted to local needs, good 

farming practices, management and political will are some of the major axes of 

development for food security. Improving crop performance and tolerance/resistance to 

biotic and abiotic conditions is the challenge facing the scientific community and 

innovative methods are needed. Advanced field phenotyping, e.g., using digital 

approaches, has developed substantially over the past decade and provides means for 

real-time monitoring of response to environmental stresses and nutrition, and aids in 

unravelling the relationships between yield and complex genotypic traits. The 

identification of genotypes with superior traits of agricultural interest remains one of the 

major targets for the genetic improvement of crops (Varshney et al., 2021). 

The genomes of many agricultural crops such as rice (Matsumoto et al., 2005), sorghum 

(Paterson et al., 2009), maize (Schnable et al., 2009), soybean (Schmutz et al., 2010) 

and recently wheat (Appels et al., 2018) have been sequenced. However, the advances 

made in genomic approaches such as maker-assisted selection and high-throughput 

sequencing (Crossa et al., 2017; Scheben et al., 2018) are yet to be complemented with 

accurate field phenotyping methods (Minervini et al., 2015). Most of the traits of 

agronomic relevance (e.g., yield) are complex and quantitative, requiring tools for their 

phenotypic assessment in the field (Reynolds et al., 2020). Furthermore, open field 

rather than controlled environment measurements are more likely to be useful in 

identifying genotypes that will perform better in farming practice, especially when large 

plots that mimic real farm conditions (i.e., environmental and management conditions) 

are employed (Rebetzke et al., 2014). 

In addition, PA is becoming increasingly important in today’s technologically advanced 

world (Langemeier and Boehlje, 2021; Gobezie and Biswas, 2023) and PA remains one 

of the cardinal principles of field phenotyping. The PA farming management concept 

relies on modern digital techniques to monitor and optimise agricultural production 

processes to improve crop performance (Hedley, 2015; Gokool et al., 2023). Despite 

PA’s contributions to sustainable agriculture, its use in resource-constrained 

smallholder farming environments, particularly in Sub-Saharan Africa (SSA), has been 

very limited (Gobezie and Biswas, 2023). Recent developments in sensor technologies, 

machine vision and higher-resolution digital cameras, in tandem with advanced data 
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processing power and other portable tools have paved the way for high-throughput plant 

phenotyping in the field to benefit crop breeding programmes (Deery et al., 2014; 

Zhang et al., 2016; Araus et al., 2022; Ahmed et al., 2023). From the field phenotyping 

perspective, these emerging technologies are enabling automated intensive data 

collection and increasing the ability to investigate plant function and structure through 

non-invasive methods with high accuracy. Such field phenotyping methods will aid 

crop improvement efforts to meet the expected demand for food and agricultural 

products in the future. 

The development and application of these high-throughput tools for field phenotyping 

are currently focused on the main staple crops grown in the most developed agricultural 

regions. Over the decades, breeders and agronomists in Africa have used traditional 

phenotyping based on manual methods either for selecting traits or for improving yields 

through changes in agronomic practices (Iizumi and Sakai, 2020). However, traditional 

phenotyping in breeding is time-consuming and laborious, and data collection is 

insufficient to fulfil the needs of plant breeders which impedes breeding progress. 

Therefore, further advances in phenotyping methods and appropriate implementation 

are required to increase the effectiveness of selection in breeding programmes, speed up 

genetic gains, reduce costs and enable monitoring of plant status more efficiently than is 

currently feasible. The sophistication and cost of current plant phenotyping equipment 

(Reynolds et al., 2019) have restricted them from being widely applied in the 

developing world, especially in Africa. Additionally, insufficient technical, operational 

and regulatory restrictions and conceptual capacity in the plant science community have 

further limited implementation. Therefore, it is timely to begin to apply these 

technologies more widely, both geographically and with respect to target crops in 

Africa. Affordable high-throughput phenotyping aims to achieve reasonably priced 

solutions for all the components comprising the phenotyping pipeline which will 

promote their adoption for the breeding of African crops (Whalen and Yuhas, 2019; 

Bongomin et al., 2022). 

Few studies have covered the use of modern field phenotyping approaches employing 

RS in Africa (e.g., Mutanga et al., 2016; Chivasa et al., 2017; Buchaillot et al., 2019; 

Bongomin et al., 2022; Kassim et al., 2022). For instance, Bongomin et al. (2022) 
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recently reviewed the status of field phenotyping in Uganda with a focus on the 

application of drones and image analytics. 

In this review, we provide a background on African agriculture and cover the concept of 

digital field phenotyping, focused on traits that may be measured by emerging 

technologies and which could be applicable to African crops. The current developments 

of field phenotyping in Africa, including initiatives, implementation challenges and 

prospects are comprehensively reviewed. We observed that the lack of suitable field 

phenotyping infrastructures and approaches using digital technologies is limiting the 

development of improved crop cultivars and will negatively affect the agricultural 

industry and food security in Africa. We emphasise the potential for incorporating 

cutting-edge and low-cost phenotyping tools (i.e., portable field sensors, UAVs) into 

breeding schemes and for identifying agricultural crop responses to environmental 

constraints through field experimentation. Finally, we consider policy directions for 

tackling the implementation challenges (i.e., practical, financial, geographical and 

political) of digital field phenotyping and realising the full potential of available field 

phenotyping resources (i.e., technologies, tools and know-how) appropriate for African 

crops.

2.2.2 African crops and the production challenges

African countries are important producers of major crops with diverse agro-climatic and 

ecological conditions and cultural diversity (Leakey et al., 2022). Sub-Saharan West 

Africa is composed of a wide variety of ecosystems and an equally high number of 

production systems (https://www.fao.org/3/AC349E/ ac349e04.htm). Generally, crop 

production is concentrated in areas with a favourable combination of agro-bioclimatic 

conditions. In the Sahelian zone, cereals such as millet and sorghum are the 

predominant crops with annual rainfall (200-600 mm), transitioning to maize, 

groundnuts and cowpeas farther south in the Sudanian savannah zone (the so-called 

“Middle Belt”). These food crops are among the top five harvested crops in the Sahelian 

countries–Burkina Faso, Senegal, Mauritania, Mali, Chad and Niger. According to 

FAOSTAT (2018a) data, maize is the major essential staple food in SSA, accounting for 

nearly 20% of total calorie intake. The same source indicates that in Sub-Saharan West 

Africa, millet and sorghum account for roughly 64% of total cereal production. Across 

the rainy forests of the Guinean zone (1200-2200 mm of rainfall per year), crops are 
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predominantly root and tuber crops such as cassava and yams which are mostly 

cultivated in Ghana, Nigeria, Côte d’Ivoire and Sierra Leone. Yam is the second most 

important crop in Africa in terms of production after cassava (FAOSTAT, 2018a). Rice, 

on the other hand, is one of the most widely harvested crops in this humid zone, ranking 

first in Guinea, Liberia and Sierra Leone in terms of area harvested (Soullier et al., 

2020; Duvallet et al., 2021). 

Crop production in West Africa is mostly rainfed and crop production is vulnerable to 

climate change, which manifests itself in unpredictably high temperatures and erratic 

rainfall patterns (Sultan and Gaetani, 2016; Affoh et al., 2022). The five principal crops 

in West Africa in terms of harvested area (in millions of hectares per year on average in 

the last decade) are cassava (81), maize (19), millet (10), sorghum (12) and yam (57) 

(FAOSTAT, 2022). Major cash crops are cocoa, coffee and cotton. Declining soil 

fertility and unpredictable climate change impacts (among other factors) have made it 

difficult to maintain the yields of these major crops (Shimeles et al., 2018). Over the last 

three decades, the agricultural sector in West Africa has been characterised by strong 

production growth in some major staple crops culminating in increased production 

volumes for both domestic and export markets (Blein et al., 2008; FAO, 2015). 

Similarly to West Africa, Central Africa’s principal food crops include cassava, peanuts, 

sorghum, millet, maize, sesame and plantains. Additionally, major cash crops for export 

include cotton, coffee and tobacco (Ochieng et al., 2020).

In Northern Africa, particularly Morocco, crop production is regionally diverse owing 

to different climatic conditions, agro-ecological zones, land-crop tenure and farming 

systems (Ouraich and Tyner, 2018). This geographical diversity results in varied 

agriculture, with crops ranging from cereals and vegetables to fruits and nuts, grains, 

legumes, etc., that contribute significantly towards the country’s agricultural 

sustainability and food security. Cereal production accounts for 65% of cultivable 

agricultural areas (Ouraich and Tyner, 2018). Most cereal production occurs under 

rainfed conditions. As a result, productivity performance is influenced by precipitation 

levels. For instance, 7.3 million tonnes of wheat were produced in 2018 making it the 

20th largest producer in the world, and 2.8 million tonnes of barley is the 15th largest 

producer in the world (FAOSTAT, 2018b). However, drought is a persistent threat to 
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crop production, especially in the lowlands where cereals are grown are particularly at 

risk because of the wide variations in annual precipitation (Verner et al., 2018; Meliho 

et al., 2020). In recent years, quinoa has sparked particular attention in Morocco 

(Choukr-Allah et al., 2016; Hirich et al., 2021). It remains one of the most nutrient-

dense crops and is recognised as a ‘Super Food’ due to its nutritional benefits. Thus, 

Morocco is one of the few North African countries capable of achieving self-sufficiency 

in food production (Saidi and Diouri, 2017).

Grains and cereals (e.g., maize, wheat, barley, oats and sorghum) are South Africa’s 

most important crops occupying more than 60% of the acreage under cultivation (FAO, 

2022). Together, these crops account for one of the largest agricultural industries 

contributing more than 30% to the total gross value of agricultural production (FAO, 

2022). Maize, the country’s most important crop and largest locally produced field crop 

is a dietary staple supplying most of the carbohydrate needs, a source of livestock feed 

and an export crop (Epule et al., 2022). The country has emerged as the largest maize 

producer and exporter in the Southern African Development Community (SADC) 

region and Africa as a whole (Fisher et al., 2015; FAO, 2022). According to the FAO, 

2022, in 2021 South Africa produced 17 million metric tonnes of maize, making it the 

9th largest producer in the world. Moreover, it produced 2.6 million metric tonnes of 

potato and 2.3 million metric tonnes of wheat. Largely, South Africa has a semi-arid 

climate characterised by summer and winter rainfall seasons. Unpredictable weather 

conditions due to climate change have a severe impact on maize and wheat production 

which accounts for more than 36% of the total value of field crops (Bradshaw et al., 

2022). 

Smallholder farmers dominate agriculture in East African countries, contributing up to 

90% of total agricultural production (Salami et al., 2010; Livingston et al., 2011). A 

cereal‐legume mixed cropping pattern is the dominant system that includes maize, 

millet, sorghum and wheat (Van Duivenbooden et al., 2000). Over 40% of the region is 

covered by the maize mixed cropping system, which is followed by the pastoral (14%), 

root crop (12%) and cereal-root crop mixed system (11%) (Adhikari et al., 2015). Teff 

is a significant crop in the Ethiopian highlands, while other significant crops in the area 

include cassava, bananas and rice. The mixed cropping system in East Africa is based 
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on millet in the drier regions and maize and cassava in the humid regions (Adhikari et 

al., 2015). The main cash crops in most of the East African countries in SSA are coffee, 

tea, cotton, tobacco and sugarcane. Rainfall variability negatively impacts crop 

production in East African countries (Palmer et al., 2023). Generally, the major 

challenges to crop production in Africa are unproductive soils, pests and diseases, 

drought and poor crop management (Tadele, 2017). The distribution of major crops in 

each sub-region except Northern Africa is summarised in Figure 2.2.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Eastern Africa Central Africa Southern Africa Western Africa

Fruit and vegetables Pulses Roots and tubers

Oilseeds Other Cash Crops Cereals

 

Figure 2.2. Major crop distribution in the Sub-Saharan African region based on average 
production values between 2011-13. Adapted from FAOSTAT. (2016). FAO, 
http://faostat3.fao.org/.

2.2.3 Digital and image-based field phenotyping

Experiments with repeated trials in diverse environments are often necessary to screen 

plants for desirable traits. This becomes problematic when there is the need to screen a 

large panel of genotypes for valuable traits (i.e., yield potential or abiotic and biotic 

stress tolerance) to assess genotype, environment and management (G×E×M) 

interactions (Araus and Cairns, 2014). Over the years, the measurement of individual 

plants in controlled conditions has dominated most of the phenotyping research. 

However, controlled environments often do not accurately mimic plant growth and 

development in field conditions (White et al., 2012). Field phenotyping is becoming 

more widely recognised as the approach that gives the most accurate representation of 

traits in real-world cropping systems (Tariq et al., 2020). Thus, field phenotyping is an 
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important component of crop improvement to assess how the genotype, the environment 

and their interaction (G×E) influence quantitative traits in a complex and dynamic 

manner (Fiorani and Schurr, 2013; Araus and Cairns, 2014; Neilson et al., 2015). 

Furthermore, field phenotyping is employed to discover novel traits, identify new 

germplasm carrying relevant but complex traits for breeding, and for testing proof of 

concept to validate traits (Watt et al., 2020). Traditionally, destructive sampling has 

been used to quantify certain observable plant traits, including laboratory analysis to 

characterise phenotypes based on their genetic and physiological functions. Digital 

phenotyping approaches seek to reduce this need (Tripodi et al., 2022; Virlet et al., 

2022). 

Different measurement approaches including novel technologies such as non-invasive 

imaging, robotics and sensor positioning systems have been incorporated in well-

designed field phenotyping installations for high-throughput phenotyping (e.g., Araus 

and Cairns, 2014; Kirchgessner et al., 2017; Shakoor et al., 2017; Virlet et al., 2017; 

Pieruschka and Schurr, 2022). These significant strides in field phenotyping have 

fostered a major international collaborative effort directed toward data and protocol 

standardisation (Pieruschka and Schurr, 2019; Lorence and Jimenez, 2022). The appeal 

of these platforms is the increased throughput and objectivity in data collection 

compared to traditional field approaches. Non-invasive portable devices, ground-

wheeled, motorised gantry scanalyzer systems, agricultural robots and aerial vehicles 

that deploy a wide range of cameras and sensors, together with high-performance 

computing are currently required to conduct field phenotyping in a timely and 

economical manner (Figure 2.3). Together, these platforms can phenotype plant 

characteristics throughout the season in field environments (White et al., 2012; Fritsche-

Neto and Borém, 2015; Jimenez-Berni et al., 2018; Furbank et al., 2019; Li et al., 2021). 

In recent years, manned and UAV-RS platforms have emerged as convenient high-

throughput tools for field phenotyping (Pajares, 2015; Shi et al., 2016; Feng et al., 

2021). These RS approaches, particularly UAVs enable quick and non-destructive high 

throughput phenotyping, with the benefit of adaptable and convenient operation (Yang 

et al., 2017a). These phenotyping platforms can combine multiple sensors such as 

digital cameras, infrared thermal imagers, light detection and ranging (LiDAR), 
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multispectral cameras and hyperspectral sensors for various assessments of 

morphological and physiological plant traits (Gonzalez-Dugo et al., 2015; Yang et al., 

2017a; Camino et al., 2018; Roitsch et al., 2019). 

Alternatively, field phenotyping can be accomplished on the ground utilising a fully 

automated fixed-site phenotyping platform (e.g., Kirchgessner et al., 2017; Virlet et al., 

2017; Bai et al., 2019), hand-held sensors, portable spectroradiometers, hand-pushed 

carts or high-clearance tractors carrying multiple high-resolution sensors to measure 

phenotypic features non-destructively (Comar et al., 2012; Andrade-Sanchez et al., 

2014; Crain et al., 2016). The use of rapid non-invasive portable devices that carry 

sensors for crop status monitoring has advanced field data collection due to their 

applicability and ease of operation (Parks et al., 2012; Yang et al., 2014; Condorelli et 

al., 2018). Recently, field phenotyping has become more flexible by integrating ground-

based and aerial platforms (Potgieter et al., 2018; Furbank et al., 2019; Ninomiya, 

2022). Table 2.1 summarises the diverse ground-based and aerial field phenotyping 

platforms, their applications, advantages and limitations. 

Figure 2.3. Overview of the most common field phenotyping systems and approaches at 
proximal and remote sensing (PRS) scales. The proximal sensing (PS) approach is 
based on ground-based platforms such as handheld spectrometers, hand-pushed carts 
equipped with sensors, tractor-based platforms fitted with multiple cameras and gantry 
scanalyzer systems that collect spectral information of crops in close range or contact. 
On the other hand, the remote sensing (RS) technique is based on aerial platforms 
including unmanned aerial vehicles (i.e., drones), manned aircraft and satellites that 
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acquire spectral imagery of crops without making physical contact but at a distance. 
Modified from (Pineda et al., 2021).
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Table 2.1. Applications and limitations of field phenotyping platforms. Modified from Li et al., 2014 and Deery et al., 2014.

Phenotyping platform Examples Applications Advantages Limitations References

Ground-based 
platforms
Fixed-site systems Field scanalyzers (i.e., 

Rothamsted field 
scanalyzer, Maricopa 
field scanalyzer)

Ground cover, canopy height, plant
geometry, growth, growth stages,
vegetation indices, chlorophyll
fluorescence parameters

Unmanned continuous 
operation with good 
repeatability, deploy a wide 
range of sensors, fully 
automated. Not limited by soil 
conditions

Expensive, monitor a 
limited number of plots, 
limited by weather 
conditions

Virlet et al., 2017; 
Burnette et al., 2018

Permanent platforms 
based on a cable-
suspended multi-sensor 
system

The ETH field 
phenotyping platform, 
the University of 
Nebraska phenotyping 
system 

Monitor canopy cover, canopy 
height, and traits related to thermal 
and multi-spectral imaging with 
selected examples from winter 
wheat, maize, and soybean

Produce precise, high-
resolution images, deploy a 
wide range of sensors, fully 
automated

Monitor a limited area of 
crop, difficult to move, 
expensive, and limited by 
weather conditions

Kirchgessner et al., 2017; 
Bai et al., 2019

Handheld sensors Point spectroradiometers, 
thermal sensors, 
chlorophyll meters, 
imagers

Estimate chlorophyll fluorescence, 
canopy temperature, nitrogen 
status, leaf area, plant height, yield

Ground truth reference to 
validate aerial measurements 
(UAVs) and airplanes, low-cost 
and easy-to-use

Labour intensive and 
time-consuming, limited 
plot coverage, 
measurement bias

Yang et al., 2014; 
Andrianto et al., 2017; 
Garriga et al., 2017

In-field mobile 
platforms

Phenocart, proximal 
sensing cart, 
phenomobiles, manned 
buggies

Estimate biomass, leaf area index, 
counting plants, plant height, early 
vigour, and plant maturity

Manually operated, low-cost, 
easier to construct, multiple 
traits evaluations, deploy
more sensors, flexibility with 
payload and view angle 
geometry; very adaptable

The motorised platforms 
are costly to construct and 
run, need technical 
expertise, hard to operate 
for large-scale 
experiments. Limited by 
weather and soil 
conditions

White and Conley, 2013; 
Andrade-Sanchez et al., 
2014; Deery et al., 2014; 
Crain et al., 2016
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Aerial platforms

Unmanned aerial 
vehicles (UAVs)

Broadly classified into 
Rotocopters, fixed
wing systems, 
parachutes, and blimps

Traits such as canopy cover, 
canopy height, crop lodging, 
growth indices, and canopy 
temperature can be estimated from 
the imagery

Rotocopters (i.e., drones) can 
deploy a wide range of sensors, 
including thermal, 
multispectral, and 
hyperspectral cameras, high 
hovering capabilities, better 
flight time

Lower speeds for image 
stitching, lens distortion, 
and overlap of the 
acquired images can affect 
orthomosaic, battery use 
and flying time may be 
limited by the payload, 
and operability is limited 
in windy, wet, dull, 
variable light, or cold 
conditions

Sankaran et al., 2015; 
Zaman-Allah et al., 2015; 
Chawade et al., 2019; 
Holman, 2020

Satellite imaging Digital Globe 
WorldView-2 satellite,  
WorldView-3 satellite, 
RADARSAT-2

In precision agriculture for 
germplasm evaluation, multi-
location yield trials, field 
observation of crop biophysical 
parameters, weather predictions

Evaluation of moderate to 
large-sized trial, multi-location 
evaluation; provides automated 
coverage of isolated field trials 
across a larger geographical 
area

Affected by weather 
conditions, resolution, 
frequency of imaging, 
takes a long time from 
image acquisition to 
access, costly, higher 
frequency of satellite 
revisits, cloud cover can
interfere with imaging

Tattaris et al., 2016; 
Yang et al., 2017b; Yang, 
2018
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2.2.4 Traits assessed by sensor platforms and their relevance for field phenotyping

For field phenotyping, traits that have been evaluated by sensors in the field have been 

reviewed recently by Watt et al. (2020) and include for example; (a) plant 

morphological development (i.e., including seed establishment and growth of the crop, 

the timing and dynamics of flower and fruit development); (b) functional traits that are 

related to the photosynthetic capacity and carbon uptake during the phenological growth 

phase; (c) traits related to biotic and abiotic stress resistance/tolerance; (d) traits that 

determine crop water status (e.g., water uptake and transpiration and water-use 

efficiency) of plants; (e) yield-related traits and harvest quality of crops (i.e., biomass 

yield) and (f) the structural and functional root traits (i.e., root architecture). These traits 

have been previously classified into morphometric and physiological parameters (Qiu et 

al., 2018). Traits such as plant height, stem diameter, leaf area or leaf area index, leaf 

angle, stalk length and in-plant space are morphometric parameters. Physiological 

parameters include traits such as photosynthetic rate, chlorophyll content, water stress, 

leaf water content, biomass and salt resistance, which together can impact plant growth. 

It should be emphasised that different phenotypic traits have specific time frames within 

the phenological cycle of the plant when they are relevant for the breeder and farmer. 

Currently, the most researched crops in field phenotyping are economic crops, such as 

wheat, maize, barley, sorghum, tomato, bean and grape because they have significant 

economic value for agricultural development. A challenge is to extend phenotyping into 

the vast range of African crops, some of which may be of only local importance. 

Field phenotyping makes use of a variety of sensors due to the large number of 

phenotypic traits that must be measured. Several conventional and novel sensors such as 

digital cameras, range cameras, depth cameras, spectral sensors, lidar or laser sensors, 

thermal sensors, fluorescence sensors, multispectral cameras, hyperspectral cameras and 

others are employed and integrated for plant trait measurement in field phenotyping 

(Qiu et al., 2018; Roitsch et al., 2019; Xie and Yang, 2020). Since plants develop 

rapidly during their early growth stages, frequent measurements during their 

establishment are a prerequisite for the quantitative selection of vigour phenotypes. 

Drones fitted with conventional red-green-blue (RGB) cameras, in combination with 

advanced image processing pipelines, can automatically detect crop stands (single 

plants) and determine seed emergence, germination rates and timing under extreme 
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climatic events in the field (Liu et al., 2017). Most plants display strong morphological 

changes during their phenological development, which is greatly influenced by the 

availability of resources and changes in abiotic and biotic factors. Therefore, the 

development of robust, automated and precise methods to measure morphological plant 

traits in field conditions is still required (Gibbs et al., 2017).

The leaf is one of the important components of a plant. It plays a major role in plant 

growth given that its growing status influences the efficiency of the direct solar energy 

utilisation by plants. Hence, it is a significant parameter in plant phenotyping. 

Measurements of morphometric parameters of the leaf and other canopy features (i.e., 

leaf area, stem height, number of tillers and inflorescence architecture) have been 

evaluated using non-destructive multi-sensor approaches (Busemeyer et al., 2013; 

Fiorani and Schurr, 2013; Rahaman et al., 2015). However, the most frequently used 

geometric measure of plant canopy is the green leaf area index (GLAI), which relates 

the one-sided green leaf area per unit projected ground area (Chen and Black, 1992). 

For instance, UAV multispectral imagery has been used to characterise GLAI dynamics 

of a large maize panel under contrasted environmental conditions and thus holds great 

potential for yield predictions in breeding programmes (Blancon et al., 2019). LAI can 

also be evaluated, indicating plant coverage from spectral images (Dammer et al., 2016; 

Schirrmann et al., 2016).

Plant canopy architecture and other morphological traits of plant organs have been 

measured concurrently with 3D PS techniques. A body of recent reviews has compared 

the performances of the most common 3D sensors for high-throughput plant 

phenotyping (Li et al., 2014; Qiu et al., 2019). The 3D acquisition devices and 

approaches commonly used are LiDAR time-of-flight cameras, mono, multi-view stereo 

vision and structure-from-motion (SfM). The LiDAR sensors can scan and extract 

morphological traits of plant organs from 3D point clouds. For example, LiDAR was 

used to estimate plant height, ground cover and above-ground biomass in wheat 

(Jimenez-Berni et al., 2018). However, LiDAR sensors are expensive (Li et al., 2014), 

take significant time and there is a need to increase scanning time to increase the spatial 

resolution. Deploying a UAV-based system may reduce this challenge. Plant height is a 

key indicator of canopy structure, yield, carbohydrate storage capacity and lodging 
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occurrence (Holman et al., 2016; Hassan et al., 2019). Additionally, it has significant 

applications in predicting biomass, identifying plant cultivars, plant stress and 

phenological stages (Aasen et al., 2015). The traditional method of measuring height 

using a metre rule is labour-intensive, cumbersome and low throughput. In recent years, 

the development of drones and imaging sensors that capture high-resolution images has 

enabled high-throughput plant height estimation. For instance, Holman et al. (2016) 

estimated wheat height using UAV-based RGB images and terrestrial LiDAR. 

Chlorophyll is a vital plant trait because it is strongly related to crop physiological 

status and may be indicative of photosynthetic rate, crop stress, nutrition status, yield 

and plant productivity (Peng et al., 2011; Maimaitijiang et al., 2017). The most popular 

tools for evaluating vegetation health using visible and NIR light are spectral sensors. 

Chlorophyll meters such as the SPAD-502 are frequently used instruments to measure 

the relative chlorophyll content. Handheld chlorophyll meters and fluorescence meters 

have been used to assess plant N status, photosynthesis, yield and its components in 

crops (Yang et al., 2014; Andrianto et al., 2017; Fernández-Calleja et al., 2020). 

Additionally, chlorophyll can be measured using NDVI sensors and portable 

spectrometers in the field (Bai et al., 2016). 

Crop N content can serve as a proxy for soil fertiliser availability, assisting farmers in 

precision N application to the soil. UAV-based hyperspectral imaging and ground-level 

optical sensors (SPAD-502, Duplex and Multiplex) have been employed to estimate N 

fertilisation status in maize (Quemada et al., 2014). In another study, Zaman-Allah et al. 

(2015) used a UAV equipped with a multispectral sensor (Green, Red and NIR) to 

assess low N stress tolerance in corn. Additionally, vegetation indices (VIs) derived 

from spectral reflectance data captured by sensor devices such as the CropScan 

multispectral radiometer (Zhu et al., 2008), handheld spectroradiometers, the FieldSpec 

(Fitzgerald et al., 2006; Tilling et al., 2007; Feng et al., 2008) and Tec5 

spectroradiometer (Erdle et al., 2013) can accurately measure N status in wheat and rice. 

The above-ground biomass reflects light use efficiency and growth and is vital for 

carbon (C) stock accumulation and monitoring (Swinfield et al., 2019). Brocks and 

Bareth (2018) estimated the biomass in barley using RGB images collected by UAV. 
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Thermal NIR sensors are mostly used to detect crop water stress since they can provide 

temperature information for the crop (Park et al., 2017; Poblete et al., 2018; Bian et al., 

2019). Thermal NIR sensors enable the estimation of canopy temperature which is a 

reflection of plant transpiration and plant water status. Kumar et al. (2020) used a 

proximal phenotyping cart (Phenocart) mounted with low-cost consumer-grade digital 

cameras to characterise wheat germplasm for drought tolerance under field conditions. 

Plant yield has been considered an important agronomic trait for field phenotyping. 

Bascon et al. (2022) estimated rice yield using multispectral images. 

Additionally, roots play a crucial role in the uptake of N and P, essential nutrients for 

plant growth. They facilitate the absorption of these nutrients from the soil, which are 

vital for photosynthesis, energy transfer and overall plant health. Efficient root systems 

can enhance nutrient uptake efficiency, contributing to better growth and yield.

RS and root phenotyping with thermal imaging can help detect plant stresses by 

measuring leaf and canopy temperatures, which can indirectly reflect root activity (Li et 

al., 2014; Pineda et al., 2021). Thermal imaging capture emitted radiation, providing 

temperature readings that can indicate water stress and nutrient uptake efficiency 

(Smigaj et al., 2024; Wen et al., 2023). By combining thermal imaging with other 

spectral data, researchers can phenotype crops under various stress conditions (Sharma 

et al., 2023). Thermal imaging can be used in controlled environments to monitor early 

stress symptoms, aiding in the selection of genotypes with improved nutrient uptake 

capabilities (Sharma et al., 2023; Pineda et al., 2021). Overall, RS with thermal imaging 

offers a non-invasive method to study root phenotypes by analysing plant stress 

responses related to nutrient uptake.

The features of the sensors (e.g., spectral resolution, spatial resolution, specificity and 

cost) should be considered according to the specific applications, phenotyping needs 

and context. In the African context, low-cost sensors and analysis pipelines that are not 

complex would benefit a broader user base for plant phenotypic trait assessments. The 

most successful trait assessment approach incorporates in time (throughout the crop 

cycle) and space (at the canopy level) the performance of the crop with respect to 

capturing resources (e.g., radiation, water and nutrients) and the efficiency of resource 

utilisation (Araus et al., 2008). The aforementioned traits are discussed here with 
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specific examples of sensors and automated measurement approaches used for their 

evaluation in the field (see Table 2.2). The advantages and limitations of each type of 

sensor are indicated.
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Table 2.2. Emerging high-throughput phenotyping techniques and integrated sensor platforms applicable for plant trait assessment for field phenotyping. 
Modified from Zhao et al., 2019. 

Sensor Examples Crop 
species

Trait/phenotypic 
parameter

Applications Advantages Limitation References

Hyperspectral 
sensor

VNIR, SWIR Rice, 
Wheat

N status, NUE, water 
content, yield 
estimation, canopy 
components

Evaluate spectral 
properties, explore 
hyperspectral bands, 
estimate indices for 
fertiliser accumulated in 
plant organs, early 
detection of plant stress

Accurate estimation 
of N content and other 
biochemical or 
physiological status

Update model for new 
crop species, image 
processing is challenging, 
sensors are costly, large 
data size

Seiffert et al., 2010; 
Deery et al., 2014; 
Sadeghi-Tehran et al., 
2021; Wang et al., 2021

Thermal sensor Thermal infrared 
sensor, near-infrared 
camera, FLIR 
sensor

Wheat Canopy temperature, 
drought tolerance, 
water use efficiency, 
root traits

Monitor crop 
temperature for abiotic 
stresses e.g., drought 
tolerance

Low-cost, precise and 
reliable in repeated 
experiments

Environmental factors 
have an impact on 
performance, very small 
temperature variations are 
undetectable, and cameras 
with higher resolution are 
heavier

Costa et al., 2013; 
Deery et al., 2019; 
Sagan et al., 2019 ; 
Pineda et al., 2021 

Visible light sensor RGB sensor, visible 
light camera

Rice Shoot growth, 
phenology, 
greenness, plant 
vigour, leaf area

Visible phenotype 
parameters, 
classification of crop 
organs, greenness, 
growth and health, time 
series of vegetation 
indices

Affordable sensors 
are available

Visual spectral bands and 
properties are limited, 
Changes in illumination 
conditions cause image 
blur and noise errors

Kipp et al., 2014; Guo 
et al., 2015

3D sensor LIDAR (Light 
Detection and   
Ranging) sensor, 3D 
laser scanner

Maize, 
Wheat

Plant height, canopy 
cover, above-ground 
biomass, crop 
architecture

Extract morphological 
traits of plants organs 
from 3D point clouds; 
measuring crop height 
and volume

3D plant information 
can be quickly 
captured through 
close-range 
observation

LIDAR can be sensitive 
to small variations in path 
length, field applications 
can be challenging

Müller-Linow et al., 
2015; Guo et al., 2018; 
Jimenez-Berni et al., 
2018; Qiu et al., 2019

Fluorescence sensor Fluorescence 
camera, LIFT 
fluorometer

Wheat Photosynthetic 
capacity, chlorophyll 
content, quantum 
yield

Measure photosynthesis, 
chlorophyll, water stress

Automatic and rapid
measurement of
photosynthetic 
parameters

Limited for UAV 
imagery, can be affected 
by background noise, 
difficult to use in the field

Chaerle and Van Der 
Straeten, 2000; 
Zendonadi dos Santos 
et al., 2021



Chapter 2 – Literature Review on Field Phenotyping for African Crops

37

Multispectral sensor     Sorghum, 
Maize

Disease resistance, 
nutrient use 
efficiency, N content, 
biomass, grain yield

Multiple plant responses 
to nutrient deficiency, 
water stress, diseases, 
etc., 

High-resolution, fast Sensors can be expensive, 
limited to a few spectral 
bands

Zaman-Allah et al., 
2015; Zhao et al., 2021

Spectrometer                                                   

 

Maize Water content, seed 
composition, yield

Leaf and canopy growth, 
disease evaluation, leaf 
area, chlorophyll 
content, canopy 
temperature, and crop 
responses

Handy and easy to 
use, inexpensive

The quality of the data 
may be affected by soil 
background, spectral 
mixing could occur, and 
sensor calibration 
required

Cozzolino, 2014; 
Andrianto et al., 2017; 
Chivasa et al., 2020; 
Cavaco et al., 2022 
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2.2.5 Overview of the status of field phenotyping in Africa

Despite the recent advances in high-throughput field phenotyping based on the non-

destructive analysis of plant traits, Africa has yet to consolidate the gains of these 

cutting-edge technologies for research into agricultural productivity. In terms of the 

deployment of high-end field phenotyping tools and approaches, Africa cannot keep 

pace with many regions, even in the era of artificial intelligence (AI), ‘internet-of-

things’ (IoT) and technological advancements, although more affordable and lean 

phenotyping systems are now becoming available. Community-wide surveys and 

exchanges conducted by the International Plant Phenotyping Network (IPPN) and 

European Infrastructure for Multi-Scale Plant Phenomics and Simulation (EMPHASIS) 

within the growing phenotyping community in recent years have identified focus areas 

to assess the status of global plant phenotyping and crucial bottlenecks in the emerging 

field. 

The major bottlenecks for developing field phenotyping in Africa were non-invasive 

phenotyping approaches, data management and cost among others (IPPN, 2016; 

Rosenqvist et al., 2019). This survey further reveals that in terms of using high-intensity 

field approaches (e.g., automation, robotics, image analysis and data storage 

management) for field phenotyping, Africa ranks lowest around the world. A recent 

survey conducted in the framework of the IPPN and EMPHASIS projects in 2020 

(IPPN, 2020) which was reported by Yang et al. (2020) and Fahrner et al. (2021), 

indicated that Africa is still behind in the implementation of high-throughput field 

phenotyping. This highlights the need for a broader deployment of high-throughput 

field phenotyping techniques, which are essential enablers or resources for agricultural 

sciences and breeding to address upcoming crop production challenges. 

The IPPN over the years has been promoting the idea of strengthening modern plant 

phenotyping in African countries by giving travel grants to Africa and inviting students 

and researchers for International Plant Phenotyping symposia and internships. However, 

only a few institutional members are identified for collaboration in the region. In recent 

times, there has been some high-throughput field phenotyping research and initiatives in 

African countries such as South Africa, Ghana, Senegal, Morocco, Nigeria, Ethiopia, 
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Kenya, Egypt and Zimbabwe which is encouraging for the emerging field and will be 

highlighted in this review (see section 2.2.5.2 and Table 2.3). 

Like in many developing countries, field phenotyping in African countries is mostly 

based on conventional and traditional methodologies that rely heavily on manually 

recorded measurements of phenotypic data or visual assessment of plant parameters. It 

entails manually inspecting crops and measuring several crop characteristics that affect 

yield traits, including plant height, number of tillers, leaf colour, leaf shape, LAI, 

chlorophyll content, growth stages, above-ground biomass and stress tolerance (Gedil 

and Menkir, 2019; Bongomin et al., 2022; Badu-Apraku et al., 2023). In practice, in 

traditional field phenotyping, breeders or research evaluators inspect the trial fields and 

rate the plots according to how they feel, taste, smell and appear (Kim, 2020). Such 

phenotyping methods have several disadvantages such as being low-throughput, time-

consuming, laborious, expensive and error-prone (Chapu et al., 2022; Xiao et al., 2022). 

Although these methods have been beneficial in developing new crop cultivars and 

improved yields, more effective phenotyping methods must be used to increase the 

accuracy of data collection. 

In parallel, field phenotyping is undertaken to evaluate the agronomic performance of 

crops in breeding programmes, germplasm collections and in biotechnology 

programmes to deliver improved cultivars that can cope with environmental stresses 

(e.g., Asare-Bediako et al., 2019; Gedil and Menkir, 2019; Rezende et al., 2020; 

Kavhiza et al., 2022). These phenotyping research targets are focused on key crops for 

food security but are predominantly low-throughput phenotyping based on field trials. 

In SSA, breeding programmes championed by the Alliance for a Green Revolution in 

Africa (AGRA) have been dedicated to priority crops such as rice, maize, cassava, yam, 

beans, cowpea and vegetables under various regional breeding networks for improved 

varieties and seed systems (FAO, 2011; AGRA, 2019). 

Previous studies have used a variety of calibration data, including ground-based survey 

methods and crop model simulations, to predict yield in smallholder systems (Burke and 

Lobell, 2017; Ogutu et al., 2018). However, there has been emerging evidence in SSA 

suggesting inaccurate farmer-reported crop production estimates in smallholder 

production systems (World Bank, 2010; Gourlay et al., 2017; Abay et al., 2019; Wahab, 
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2020). These anomalies in crop yield estimation at smallholder, country and regional 

levels can cause price fluctuations (i.e., inflation), wrong national policy decisions and 

food insecurity among others. High-throughput and/or digital phenotyping might offer a 

better estimation of regional and national crop production. Recent advances in sensor 

technology and the availability of free high-resolution (spatial and temporal) 

multispectral satellite images have also presented an opportunity to predict the yield of 

maize (Chivasa et al., 2017) and detect leaf spot diseases in groundnut (Sie et al., 2022), 

adaptation responses to early drought stress in sorghum (Gano et al., 2021) as well as 

mapping spatial distribution on a near real-time basis for a region, which hitherto was 

not feasible.

2.2.5.1 Field phenotyping initiatives and programmes in Africa

Despite the low implementation of high-throughput field phenotyping in Africa, there 

are some efforts by research organisations to adopt the technology in some countries. 

Prominent among these initiatives is a global network for precision field-based wheat 

phenotyping (https://globalrust.org/content/global-network-precision-field-based-wheat-

phenotyping). Based on a global network of wheat partners, field phenotyping platforms 

are being developed with the support of the Consultative Group on International 

Agricultural Research (CGIAR) research programme on wheat and co-investing 

national agricultural research centres around the world, including some African 

countries such as Kenya, Ghana, Nigeria, Ethiopia and Morocco.

The main goal of this network is to generate high-quality phenotypic data to assist plant 

breeders in developing disease and drought-resistant and high-yielding wheat varieties 

with a broad genetic base and maximising the potential of new genotyping technologies. 

Additional but vital goals are to share knowledge and germplasm to accelerate new 

germplasm development and dissemination as well as develop capacities of breeders 

and plant scientists in precision field phenotyping. Some examples of these field 

phenotyping interventions being implemented include the development and application 

of precise phenotyping approaches, standardised protocols and novel tools for heat 

stress assessment in Sudan, Septoria tritici blotch in durum wheat in Tunisia (Ben 

M’Barek et al., 2022), Septoria tritici blotch in durum wheat and wheat rusts in Ethiopia 

(Kidane et al., 2017; https://globalrust.org/content/sources-resistance-septoria-tritici-
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blotch-identified-ethiopian-durum-wheat), heat and drought tolerance in spring wheat in 

Morocco, yield potential in Egypt and Zimbabwe and drought and yield potential in 

Kenya (https://globalrust.org/content/global-network-precision-field-based-wheat-

phenotyping). Additionally, low-cost high-throughput phenotyping tools for field 

selection for disease, drought and crop variety performance are currently being 

developed. These tools will be used in breeding programmes in Senegal, Ghana and 

Uganda and will serve as “centres of excellence for peanut breeding” in West and 

Eastern Africa (https://ftfpeanutlab.caes.uga.edu/Research/variety-development/high-

throughput-phenotyping-in-senegal–ghana-and-uganda.html). 

In West Africa, the field phenotyping network, since its inception in 2016 in the sub-

region, has implemented high-throughput UAV (drone-based) phenotyping 

methodologies which are functional for sorghum, cowpea, peanut and pearl millet 

(Gano et al., 2021; Audebert et al., 2022). The network is advancing breeding activities 

through ‘fine phenotyping’, varietal evaluations in diverse environments to identify hot 

spots for specific stresses, including farmers’ fields to test promising breeding lines in 

participating countries such as Senegal, Ghana, Mali and Burkina Faso. 

The establishment of the network has facilitated infrastructure development, equipment 

acquisition and data management paired with long-term training of dedicated students, 

technicians and breeders capable of doing both breeding and carrying out high-

throughput phenotyping measurements. In the sub-region, three sites have been chosen 

as prospective hubs for high-throughput phenotyping. Each hub including Bambey 

(ISRA research station, Senegal), Sotouba (IER research station, Bamako, Mali) and 

Farako-ba (INERA research Station, Bobo Dioulasso, Burkina Faso) exemplifies the 

diversity of soil and climate conditions in the region. According to Audebert et al. 

(2022), the network setup in Senegal is the most advanced while Mali and Burkina Faso 

lag behind mainly due to limited phenotyping equipment and funding challenges. 

Similarly, the Regional Study Centre for the Improvement of Drought Adaptation 

(CERAAS) in complementing the field phenotyping initiatives of the West African field 

phenotyping network, has developed robust UAV imagery-based data collection and 

spatial modelling methodologies to accurately measure key traits of cereal crops to 
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advance plant breeding programmes. UAVs equipped with a multispectral imaging 

system coupled with a fully automated image processing pipeline can indirectly 

measure agronomic and phenological characteristics of cereal crops in agricultural field 

trials (Mbaye et al., 2022). Moreover, to advance the promotion and advancement of PA 

in Africa, the African Association for Precision Agriculture (AAPA), an initiative of the 

African Plant Nutrition Institute (APNI) is spearheading this goal 

(https://paafrica.org/AAPA). Since its establishment in 2020, the AAPA has worked in 

partnership with academia, research institutions, agri-food industry, financial 

institutions and public and private sector organisations to develop and scale up PA 

strategies and innovations through sustainable integration into African agriculture to 

address food security (i.e., reduce yield gaps) climate change and land degradation 

challenges.

2.2.5.2 Field phenotyping research in African countries

2.2.5.2.1 The case in Ghana

Digitalisation of agriculture is a new trend facilitated by digital platforms aimed at 

transforming small-scale agriculture by providing agricultural services to smallholder 

farmers in Ghana (Atanga, 2020; Abdulai et al., 2023). These digital platforms include 

simple devices such as mobile phones or radios to more sophisticated devices (e.g., field 

sensors, GIS, drones, field sensors, machinery sensors and diagnostics precision 

systems). 

In Ghana, some of the notable digital platforms transforming the small-scale farming 

sector include the TROTRO Tractor Limited (an agritech company) that combines 

mechanisation with IoT and technology to make agricultural machinery (i.e., tractors 

and combined harvesters) available, accessible and affordable to farmers thereby 

enhancing their efficiency and productivity (https://www.trotrotractor.com). The use of 

RS as a decision support system (DSS) tool to optimise irrigation and farm management 

towards increasing yields has also been demonstrated (Kpienbaareh et al., 2019). These 

innovations primarily address the numerous issues smallholders and rural farmers 

confront in the present food systems, such as climate change, low access to inputs and 

restricted access to information (Degila et al., 2023). 
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As in many African countries breeding and field phenotyping is mostly based on 

conventional manual methods. However, to evaluate crop performance and improve 

breeding competitiveness, modern technologies using high-throughput techniques are 

being implemented but at a slow pace (e.g., Hall et al., 2018; Kassim et al., 2022; Sie et 

al., 2022). For instance, the responses of two populations of groundnut genotypes with 

various maturities to early and late leaf spot diseases were assessed under field 

conditions using UAV imagery (Kassim et al., 2022). In another breeding programme, 

smartphone-based RGB images detected leaf spot resistance and predicted yield in 

groundnuts (Sie et al., 2022). In a resource-constrained economy, Ghana is faced with 

numerous challenges such as lack of research funding, phenotyping infrastructures and 

technical personnel among others that can advance rapid characterisation of 

agriculturally relevant traits (e.g., growth, yield and stress resistance). Increasing its 

phenotyping capabilities will require a concerted effort from all stakeholders across the 

crop production value chain. 

2.2.5.2.2 The case in Senegal

Senegal is making strides in PA by employing digital tools to address crop production 

challenges (https://www.apni.net/wp-content/uploads/2020/02/WAFPA-Tine.pdf). Even 

though advancement in modern breeding and field phenotyping methodologies has been 

slower and predominantly based on conventional methods (e.g., Dingkuhn et al., 2015), 

the use of drones for agricultural monitoring (i.e., stress detection, disease surveillance 

and crop performance) aided by high-throughput phenotyping has been exploited thanks 

to initiatives by the CERAAS and West African field phenotyping network. For 

instance, UAV multi-spectral imaging has been employed for the estimation of shoot 

biomass, LAI and plant height of West African sorghum varieties under severe drought 

conditions (Gano et al., 2021). The drone-based field phenotyping approach developed 

could help identify essential traits and cultivars for drought tolerance in sorghum 

breeding. The main challenges confronting crop field phenotyping in Senegal are a lack 

of equipment, technical personnel and funding (Audebert et al., 2022). However, 

Senegal being a hub for field phenotyping in West Africa, has the potential to increase 

its field phenotyping capabilities in the future. 
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2.2.5.2.3 The case in Nigeria

According to a recent review by Izuogu et al. (2023), the digitalisation of agriculture in 

Nigeria has reduced middlemen’s participation in agriculture, offered small-holder 

farmers opportunities to improve their productivity and markets and strengthened the 

connections between extension and research facilities. The authors demonstrated that 

for effective digitalisation of agriculture, training was required in the areas of skills 

development, use of demand-driven digital services, digital privacy and security issues. 

The challenges of digitalisation of agriculture identified were lack of technical 

expertise, inadequate infrastructure and high purchase and maintenance costs. The use 

of RS techniques for precision crop production and monitoring has been implemented 

but to a lesser extent. Ifeanyieze et al. (2014) have previously reviewed the RS 

techniques needed for the smooth implementation of precision crop management by 

farmers as a climate change adaptation strategy in Nigeria. Few research groups have 

utilised RS for field phenotyping. For instance, Ejikeme et al. (2017) used a satellite-

based crop prediction model to estimate crop statistics of major crops including rice, 

cassava, yam and maize. 

Recently, the Institute of Tropical Agriculture (IITA) through its collaborative soybean 

breeding programmes has implemented machine learning (ML) models and 

multispectral high-resolution UAV imagery to aid rapid high-throughput phenotypic 

workflow for soybean yield estimation (Alabi et al., 2022). Other breeding programmes 

used manual field evaluation coupled with digital imaging analysis for phenotyping 

tomato breeding population (Daniel et al., 2016). The use of a handheld optical NDVI 

sensor for the evaluation of shoot biomass in field-grown staking yam has been 

implemented (Iseki and Matsumoto, 2019). Altogether, Nigeria has great potential for 

improving its field phenotyping capabilities. 

2.2.5.2.4 The case in Morocco 

Morocco is among the few African countries well-positioned for widespread 

agricultural digitalisation for PA and field phenotyping to increase crop production and 

cope with adverse environmental conditions such as drought. Jabir and Falih (2020) 

recently reviewed the state of digital agriculture in Morocco and highlighted the 

opportunities and challenges that need to be addressed. The design and implementation 
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of a wireless sensor network (WSN) and decision support tools (i.e., drones) for 

monitoring the agricultural environment have been demonstrated (Jabir and Falih, 

2020). Nevertheless, challenges such as sensor deployment and inadequate software 

analytics still exist (Kobo et al., 2017). Morocco is home to the International Centre for 

Agricultural Research in the Dry Areas (ICARDA’s) phenotyping facilities (ICARDA 

phenotyping platforms in Morocco), including a precision phenotyping platform at Sidi 

el Aidi (Settat) (Figure 2.4) and a phenomobile system (PhenoBuggy) situated at the 

main research station in Marchouch (Rabat) designed for drought and heat stress 

tolerance studies (https://www.cgiar.org/news-events/news/icardas-phenotyping-

facilities-a-game-changing-solution-for-abiotic-stress-tolerance-in-crops/). The 

PhenoMA is another high-throughput phenotyping platform currently installed in 

Benguerir (Quahir et al., 2022). Field phenotyping using various RS techniques has 

been deployed for drought monitoring (Bijaber et al., 2018; Bouras et al., 2020; 

Laachrate et al., 2020), and grain yield prediction (Belmahi et al., 2023).

Figure 2.4. The ICARDA's precision field phenotyping platforms installed at Sidi el 
Aidi (Settat) in Morocco. Images are in courtesy of Andrea Visioni of ICARDA-
Morocco.

2.2.5.2.5 The case in Egypt 

Digital agriculture appears promising in addressing the major challenges facing the agri-

food sector in Egypt and across the Middle East and North Africa (MENA) countries 

(Bahn et al., 2021). Available evidence indicates that the adoption of digital and PA 

technologies is still in its infancy and is typically driven by high-value agricultural 

production (Elsafty and Atallah, 2022; Sayed et al., 2023). However, Egypt has made 
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strides in the utilisation of modern technologies for agricultural crop management 

employing big data in tandem with cloud support systems, IoT, UAVs, satellite 

imagery, AI, ML and RS (Shokr, 2020; Abdelnabby and Khalil, 2023; Sayed et al., 

2023). Typical high-throughput field phenotyping methodologies have been 

implemented in various crops for quantifying wheat characteristics in the Nile Delta 

(Elmetwalli et al., 2022) and estimating the growth performance and yield of soybean 

exposed to different drip irrigation regimes under arid conditions (Elmetwalli et al., 

2020). Additionally, RS techniques based on thermal imaging and passive reflectance 

have been used to estimate the crop water status and grain yield in wheat (El-Shirbeny 

et al., 2014; Elsayed et al., 2017).

2.2.5.2.6 The case in South Africa

The agricultural sector in South Africa has been developing and moving towards 

becoming a knowledge-intensive enterprise due to new innovations and technologies 

incorporated in the digital economy (Baumüller and Kah, 2019; Born et al., 2021; Smidt 

and Jokonya, 2022). Due to this transformation, conventional production methods have 

gradually been replaced with more advanced, efficient and innovative systems (e.g., RS) 

for crop breeding and phenotyping (Mutanga et al., 2016). 

Field phenotyping using modern high-throughput infrastructures and PA techniques is 

better developed in South Africa compared to other countries on the continent (Nyaga et 

al., 2021; Mukhawana et al., 2023). Some research groups are making efforts to 

champion field phenotyping and PA through workshops and implementation of UAV 

and RS applications and other approaches for agricultural monitoring (stress detection, 

nutrient and irrigation management) (https://www.fabinet.up.ac.za/index.php/research-

groups/remote-sensing). For example, the Forestry and Agricultural Biotechnology 

Institute (FABI) and the Agricultural Research Council (ARC) 

(https://www.arc.agric.za/Pages/Home.aspx) are committed to building phenotyping 

infrastructures and disseminating emerging technologies for agricultural development. 

Various RS applications have been employed targeted at different scales of crop 

monitoring (e.g., crop water use efficiency) in PA (e.g., Munghemezulu et al., 2023; 

Wellington, 2023). For instance, foliar temperature and stomatal conductance have been 
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used as indicators of water stress in maize based on optical and thermal imagery 

acquired using a UAV platform (Brewer et al., 2022a). The utility of multispectral UAV 

imagery as a proxy for predicting the chlorophyll content of maize at various growth 

stages in smallholder farming systems has been reported (Brewer et al., 2022b). The 

physiological processes of the maize canopy are intimately tied to and influenced by 

LAI, which is closely related to its productivity (Peng et al., 2021). Another study has 

focused on estimating the LAI of maize in smallholder farms across the growing season 

using UAV-derived multi-spectral data (Buthelezi et al., 2023). Maize is a major crop in 

South Africa, therefore, significant research on the crop using high-throughput 

techniques will aid in developing improved cultivars for farmers. South Africa has a 

great potential for becoming the field phenotyping hub of Africa due to the massive 

investment in modern technologies. 

2.2.5.2.7 The case in Zimbabwe

In Zimbabwe, the implementation of digitalised agriculture is low and tilted toward 

commercial farmers rather than smallholder community farmers (Parwada and Marufu, 

2023). Specifically, highly literate and resource-rich farming communities tend to use 

digitalised agriculture more frequently than farmers with fewer resources. At the 

communal level, farmers use mobile phones to obtain farming information relating to 

crop management, climate and weather information (Musungwini, 2018; Zimbabwe 

Centre for High-Performance Computing, 2021). The application of modern digital 

agriculture tools and infrastructure (i.e., sensors, robotics, AI, UAVs and other 

advanced machinery) is common in a few well-resourced commercial farms notably, 

those managed by large multinational companies (Shonhe and Scoones, 2022). Parwada 

and Marufu (2023) recently reviewed the challenges and opportunities for digitalisation 

of the Zimbabwean agriculture. 

Key challenges such as lack of high-throughput infrastructures, digital illiteracy and 

strict regulations for drone deployment among others have been highlighted for limiting 

digital agriculture applications. However, according to the authors, Zimbabwe has the 

potential to improve its digital agriculture for crop management, yield prediction, 

disease detection, climate forecasting and soil management through PA. In recent years, 

few high-throughput phenotyping has been implemented in Zimbabwe using RGB 
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picture vegetation indexes (Kefauver et al., 2015), and multi-spectral imaging for field 

phenotyping of maize (Zaman-Allah et al., 2015). Other studies include RS 

methodologies for crop monitoring under conservation agriculture (Gracia-Romero et 

al., 2018; Gracia-Romero et al., 2020), affordable UAV-based RGB phenotyping 

techniques for evaluating maize performance under low N conditions (Buchaillot et al., 

2019), and accelerating crop improvement in response to changing climate conditions 

employing UAV-based multispectral phenotyping for disease resistance in maize 

(Chivasa et al., 2020). Zimbabwe is among the few African countries capable of 

advancing its field phenotyping capabilities in the future.

2.2.5.2.8 The case in Kenya

Although there are several technologies currently available to Kenya's agricultural 

sector, they have not yet become widely used (Osiemo et al., 2021). Large-scale 

adoption of digital solutions is hampered by a lack of digital literacy and infrastructure. 

Only a few research groups are skilled in using and maintaining back-end service 

operations like data management, blockchain, ML, IoT, GIS and drones (Osiemo et al., 

2021). However, the application of GIS and RS techniques have been used to map frost 

hotspots for mitigating agricultural losses (Kotikot and Onywere, 2015), climate-smart 

crop management (Manzi and Gweyi-Onyango, 2021) and assessment of yield 

variations and its determinants in smallholder systems (Burke and Lobell, 2017). 

Similarly, high-throughput phenotyping platforms based on multi-spectral imaging and 

RGB VIs have been implemented for field phenotyping of maize (Kefauver et al., 2015; 

Zaman-Allah et al., 2015). Kenya has the potential to expand its phenotyping capacities 

through low-cost PA and breeding. 

2.2.5.2.9 The case in Ethiopia

Digital agricultural innovations in PA have the potential to increase productivity while 

minimising harmful environmental impacts along the value chains of agriculture and the 

food systems in Ethiopia (Alemaw and Agegnehu, 2019; Tamene and Ashenafi, 2022). 

In recent years, there have been some improvements in digital infrastructure in Ethiopia 

(Abdulai, 2022). However, the majority of Ethiopia’s smallholder farmers have limited 

access to digital farming technologies (Tamene and Ashenafi, 2022). According to 

Tamene and Ashenafi (2022), several challenges such as inadequate technological 
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capacity, limited funding to develop and disseminate digital tools and lack of data-

sharing channels hampers the development of digital agriculture in Ethiopia. These 

barriers restrict the deployment of modern technologies for crop breeding and field 

phenotyping. Field phenotyping has relied largely on conventional methods as in the 

studies of eco-geographic adaptation and phenotypic diversity of Ethiopian teff across 

its cultivation range (Woldeyohannes et al., 2020) and genetic diversity in Ethiopian 

durum wheat (Mengistu et al., 2018). Field phenotyping using high-throughput 

techniques has been introduced in recent times. RS and GIS based methods have been 

used as crop yield predictors in wheat and maize (Beyene et al., 2022; Debalke and 

Abebe, 2022) as well as physical land suitability analysis for major cereal crops (Debesa 

et al., 2020). In essence, Ethiopia has the potential to accelerate its phenotyping 

capabilities. Table 2.3 summarises some key field phenotyping activities that exist in 

the African countries discussed in this review.
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Table 2.3. Summary of some major characteristics of field phenotyping activities implemented in some African countries. 

Region Country Area of high-throughput field phenotyping research Prospects Reference/weblink

West Africa Ghana Exploration of digital agriculture, deployment of low-cost 
sensors and technologies for breeding, exploration of RS for 
PA, GIS

Digital agriculture, low-cost PA and 
breeding, use of high-throughput tools 

Hall et al., 2018; Kpienbaareh et al., 2019; Kassim et 
al., 2022; Sie et al., 2022;
https://ftfpeanutlab.caes.uga.edu/Research/variety-
development/high-throughput-phenotyping-in-
senegal--ghana-and-uganda.html

Senegal Exploration of digital agriculture, exploration of UAV 
imagery, multi-spectral imaging, GIS

Development of high-throughput 
approaches, digital agriculture, low-
cost precision breeding

Dingkuhn et al., 2015; Gano et al., 2021;
https://www.devdiscourse.com/article/other/523595-
senegals-embrace-of-the-digital-revolution-in-
agriculture-marks-the-way-forward-for-africa

Nigeria Use of field mobile agricultural robots, digital imaging, RS, 
ML, GIS, site-specific analytics, drone imagery

Development of high-throughput 
approaches, digital agriculture, low-
cost precision breeding, deployment 
of digital technologies and 
innovations

Ifeanyieze et al., 2014; Daniel et al., 2016; Ejikeme 
et al., 2017; Iseki and Matsumoto, 2019; Alabi et al., 
2022; Izuogu et al., 2023; https://nitda.gov.ng/wp-
content/uploads/2020/11/Digital-Agriculture-
Strategy-NDAS-In-Review_Clean.pdf

North Africa Morocco High-throughput phenotyping, precision field-based 
phenotyping platform for drought/heat tolerance, 
development of quinoa phenotyping methodologies, 
expanding the precision and prediction value of 
phenotyping/genotypic data for new germplasm emerging 
from the wheat, adding an HTPP system for wheat abiotic 
stresses

Expanding phenotyping capabilities, 
low-cost precision breeding, 
deployment of digital technologies 
and innovations, expansion in RS 
capabilities

Bijaber et al., 2018; Danzi et al., 2019; Bouras et al., 
2020; Laachrate et al., 2020; Jabir and Falih, 2020; 
Quahir et al., 2022;
https://www.fao.org/in-action/plant-
breeding/nuestrosasociados/africa/morocco/es/; 
https://www.icarda.org/research/projects/precision-
field-based-phenotyping-platform-droughtheat-
tolerance-morocco-pwpp

Egypt High-throughput precision phenotyping for improvement of 
drought and salt tolerance in wheat genotypes, 
implementation of digital technology (mobile applications) 
for field phenotyping, AI-enabled system to enhance 
agriculture process, satellite imagery for crop monitoring

Expanding phenotyping capacities, 
low-cost PA and breeding

El-Shirbeny et al., 2014; Elsayed et al., 2017; Shokr, 
2020; Bahn et al., 2021; Elmetwalli et al., 2022; 
Elsafty et al., 2022; Abdelnabby and Khalil, 2023; 
Mahdy and Ahmad, 2023; Sayed et al., 2023; 
https://globalrust.org/geographic/egypt; 
https://www.fao.org/e-agriculture/news/egypt-turns-
fao-digital-transformation-agriculture; 
https://dailynewsegypt.com/2021/12/07/government-
launches-ai-enabled-system-to-enhance-agriculture-
process/
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Southern 
Africa

South 
Africa

Deployment of field scanalyzer (FieldScan) for spectral crop 
measurement, RS for PA

Expanding phenotyping capacities, 
low-cost PA and breeding, advancing 
RS capabilities

Mutanga et al., 2016; Brewer et al., 2022a; Buthelezi 
et al., 2023

Zimbabwe UAV-based high-throughput phenotyping, multispectral RS 
in maize varietal response to maize streak virus (MSV) 
disease, high-throughput phenotyping of maize performance 
under phosphorus fertilization, RS methodologies for crop 
monitoring under conservation agriculture 

Expanding phenotyping capacities, 
low-cost PA and breeding

Kefauver et al., 2015; Zaman-Allah et al., 2015; 
Gracia-Romero et al., 2018, Musungwini, 2018; 
Buchaillot et al., 2019; Chivasa et al., 2020; Gracia-
Romero et al., 2020; Shonhe and Scoones, 2022; 
Parwada et al., 2023; 

East Africa Kenya Satellite-based assessment of maize yield variations in 
smallholder farms, GIS and RS capabilities

Expanding phenotyping capacities, 
low-cost PA and breeding

Kefauver et al., 2015; Kotikot and Onywere, 2015; 
Zaman-Allah et al., 2015; Burke and Lobell, 2017; 
Manzi and Gweyi-Onyango, 2021

Ethiopia GIS for PA, imaging technologies for crop trait analysis Expanding phenotyping capacities, 
low-cost PA and breeding

Alemaw and Agegnehu, 2019; Bontpart et al., 2020; 
Debesa et al., 2020; Beyene et al., 2022; Debalke 
and Abebe, 2022
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2.2.5.3 Current developing field phenotyping platforms in Africa

UAVs have been selected as the technical solution that is most suited for deployment 

across sites and trials throughout the several initiatives that made it possible for the 

West African field phenotyping network to get started (Audebert et al., 2022). For 

instance, in Senegal, the UAV platform comprises a FeHexaCopterV2 HexaCopter 

UAV system (Flying Eye Ltd., Sophia Antipolis, France) fitted with three cameras 

mounted on a two-axis gimbal pointing vertically downward. The camera consists of an 

RGB ILCE-6000 digital camera (Sony Corporation, New York, NY, USA), AIRPHEN 

multispectral camera (Hiphen, Avignon, France), and NIR thermographic camera Tau 2 

(FLIR system, Oregon, USA) that collects spectral imagery of crops such as sorghum, 

pearl millet and peanut and cowpea (Gano et al., 2021; Diop et al., 2021).

The ARC of South Africa has installed a Phenospex planteye multispectral 3D laser 

scanner (the first of its kind in Africa) in the field 

(https://phenospex.com/products/plant-phenotyping/fieldscan-high-throughput-field-

phenotyping/fieldscan-3d-spectral-plant-measurements-in-the-field-south-africa/). This 

state-of-the-art facility is fully automated, carrying a high-resolution sensor that 

combines the strength of 3D vision with the power of multispectral imaging. It captures 

plant data non-destructively and delivers precise and accurate plant parameters in real 

time. Plant phenotypic features such as digital biomass, plant height, 3D leaf area, 

projected leaf area, LAI, leaf inclination, etc., can be measured. The spectral 

information allows for the quantification of plant health, disease, senescence, N-content, 

chlorophyll levels, etc. Therefore, this phenotyping facility could assist in the 

characterisation and development of varieties with improved biotic and abiotic stress 

resistance for key crops such as grapefruit, sunflower, green maize and other cereals in 

Southern Africa.

Recently, a unique close-to-field high-throughput plant phenotyping platform 

“PhenoMA’’ has been installed in Benguerir, in the arid region of Morocco by the 

UM6P. PhenoMA consists of a 1440 fully automated lysimetric mini-plot system that 

can track the dynamics of water use and simulate drought scenarios. A critical 

component is a fully autonomous phenotyping robot (Hiphen PhenoMobile) that 

enables plant measurements at the canopy scale, using a range of sensors including 

https://phenospex.com/products/plant-phenotyping/fieldscan-high-throughput-field-phenotyping/fieldscan-3d-spectral-plant-measurements-in-the-field-south-africa/
https://phenospex.com/products/plant-phenotyping/fieldscan-high-throughput-field-phenotyping/fieldscan-3d-spectral-plant-measurements-in-the-field-south-africa/
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RGB, multispectral, IR and LiDAR cameras to monitor canopy development (Quahir et 

al., 2022).

Overall, due to the rich agricultural biodiversity of Africa, phenotyping in Africa has 

great potential to contribute to the development of improved crop varieties and 

enhanced food security. The utilisation of high-throughput tools can boost the 

elucidation of new agriculturally proven traits and catalogue these phenotypes in their 

natural environment. 

2.2.5.4 Challenges limiting the application of high-throughput field phenotyping in 
Africa and the way forward

The application of emerging field phenotyping technologies has the potential to 

accelerate plant breeding efforts and crop production in Africa. On the other hand, most 

of these approaches reviewed here are at best relatively new or unknown to some of the 

plant science community in Africa. Field phenotyping is a critical component of crop 

improvement but remains a major bottleneck in African agriculture, as is the case 

globally. Some of the key challenges limiting the application of high-throughput field 

phenotyping in Africa are highlighted below. 

2.2.5.4.1 Lack of appropriate high-throughput field phenotyping approaches

Phenotypic analysis has become a major limiting factor in genetic and physiological 

analyses in plant sciences as well as in plant breeding in Africa. The inadequate 

phenotyping infrastructures and software analytical tools that can be used by 

agricultural practitioners to make sense of simple to complicated phenotypic datasets 

have contributed to the low implementation of high-throughput phenotyping. The 

operational complexity of supporting both data acquisition and analysis has limited the 

use of these platforms for research activities worldwide (Chapman et al., 2014), 

including developing continents like Africa. To this end, training in image analytics, 

software and computer vision to provide a new generation of skilled personnel must be 

implemented by African governments, universities and the private sector. Phenotyping 

advancement is critical for current breeding progress for crop improvement in Africa. 

While the development of efficient high-throughput field phenotyping remains a 

challenge for future breeding progress, the growing interest in low-cost solutions for RS 
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approaches, machine vision, as well as data management, may facilitate technological 

adoption.  

2.2.5.4.2 Cost of phenotyping infrastructures and maintenance

As a developing continent comprising highly indebted poor countries (HIPC) (Henri, 

2019) and faced with multi-faceted economic hardships, the major limitation to the 

adoption and implementation of high-tech field phenotyping in Africa is the perceived 

high entry costs associated with the longer-term footprint of prototypical platforms 

(Reynolds et al., 2019). In several African countries, especially those discussed in this 

review, basic phenotyping tools and infrastructure even for the simplest field 

measurements and experimentation are scarce.

This prevents many research organisations in Africa such as IITA, International Centre 

for Tropical Agriculture (CIAT) and Africa Rice, from implementing demand-driven 

approaches due to a lack of investment budget or avoiding the significant follow-up 

costs on maintenance of large phenotyping infrastructures. For instance, the use of 

ground vehicles, aerial vehicles and gantries may require huge investment costs (Pauli 

et al., 2016; Vergara-Díaz et al., 2016). 

Therefore, the requirements for such specialised equipment may be a bottleneck for 

widespread use in breeding programmes in poor countries. To alleviate this challenge, 

low-cost concepts and methods of HTPPs (e.g., sensors and platforms) that rely on 

easy-to-use technology must be disseminated in Africa by identifying demands and 

relevance, and adopting the required approach given the current financial constraints. 

For instance, conventional digital cameras (i.e., digital photography) could provide a 

more convenient method since they are more affordable, portable and easy to use 

(Casadesús et al., 2014).

2.2.5.4.3 Limited investment and funding

Limited investments in science, technology and innovation (STI) on the part of African 

governments, research institutions (e.g., academia) and the private sector have partly 

contributed to the poor implementation of high-throughput field phenotyping. The 

budgetary allocations dedicated to research, development and innovation are small. For 

example, in Ghana, a minimum of 1% of gross domestic product (GDP) is applied 

towards research and development (https://mesti.gov.gh/government-increase-research-
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funding/). Similarly, in Morocco, the percentage of GDP to research as of 2010 was 

0.63% (Hamidi and Benabdeljalil, 2013). This research funding gap is pervasive across 

the African continent.

Whereas research institutions and universities in developed economies, such as Europe 

(https://eppn2020.plant-phenotyping.eu/EPPN2020_installations#/), Australia, North 

America and Asia, have in recent years invested heavily in large-scale research 

infrastructure for automated and high-throughput field phenotyping, the same cannot be 

said for Africa. These large investments for plant phenotyping include funding, research 

hours and high-throughput installations (Costa et al., 2019; Rosenqvist et al., 2019; 

https://eppn2020.plant-phenotyping.eu/).

Furthermore, crops grown in Africa are frequently too local to attract international 

research funding for field phenotyping. Only a few essential African crop commodities, 

such as cassava and sweet potatoes are funded solely by extrabudgetary sources. Most 

of the main staple crops are exclusively funded for phenotyping exploitation outside of 

Africa. In addition to the above considerations, African governments and the Science 

Granting Councils Initiative (SGCI) in SSA countries mandated to support the Science 

Granting Councils (SGCs), must dedicate enough funding for low-cost plant 

phenotyping research infrastructure in the sub-region in the short to medium term. This 

could be achieved by developing financing mechanisms and collaborating with private 

sector partners. Donor support to Africa for agriculture and food security research 

should also consider projects in modern plant phenotyping and digital agriculture. 

2.2.5.4.4 Lack of skilled technical personnel

A serious deficit of skilled technical personnel in the plant sciences and phenotyping 

ecosystem is evident in African countries. The building up of such competencies and 

the development of human resource capacity is necessary to operate simple-to-

sophisticated equipment to accelerate breeding efforts through high-throughput 

phenotyping techniques. Another major barrier is the loss of talented and skilled 

personnel who were trained in developed nations and have contributed to the brain drain 

due to inadequate job prospects in Africa. Mostly, funds to pay salaries and absorb 

project operating costs are either limited or insufficient, resulting in a reduction of 

skilled personnel. Furthermore, due to the inadequacies in research and infrastructure in 
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many African nations, training acquired overseas is sometimes unsuited to local 

demands. To address this constraint, digital agricultural competencies and sensor 

technologies should be integrated into undergraduate and postgraduate learning 

curricula to allow students to specialise in digital agriculture through their projects. This 

will create a plethora of career opportunities for competent skilled personnel who can 

adapt to the emerging technologies for field phenotyping. 

2.2.5.4.5 Regulations controlling emerging technologies

Emerging technologies such as UAVs offer the advantages of being flexible, real-time 

and non-destructive for agricultural phenotyping, but they must adhere to strict 

operational standards to ensure their safe use. Strict airspace regulations in many 

jurisdictions around the world and particularly in African countries due to the impact of 

political instability and military governments on UAV deployment may prohibit their 

use or make them unfeasible in practice (Gago et al., 2015; Yang et al., 2017a; Ayamga 

et al., 2021). For instance, authorisation from regulatory authorities, such as the Air 

Force, civil aviation and police, are required to undertake UAV flight campaigns, which 

mostly take time to be approved causing issues in time-critical data collection 

applications. According to Ayamga et al. (2021), in Africa, countries with regulations 

include Ghana, South Africa, Zimbabwe, Nigeria, Cameroon, Benin, Gabon, Senegal, 

Botswana, Namibia, Malawi, Tanzania, Zambia, Madagascar, Rwanda and Kenya. 

However, the lack of proper regulation and enforcement continues to limit the 

widespread adoption of drones.  Unfortunately, these regulations combine to mean that 

most high-throughput techniques can only be implemented by multinational research 

institutions, even in those organisations, deployment of systems is limited to a few high-

priority projects. The commitment of African governments and relevant stakeholders is 

crucial in the implementation and enforcement of regulations. The widespread 

deployment of drones stands to benefit farmers hence concerted effort needs to be made 

to sustain its adoption by promoting public digital literacy on the technology, skill 

development for potential users and farmers on drone operation and developing the 

necessary policy framework with regulatory agencies to increase the safety and 

acceptability of using agricultural drones in Africa. 
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2.2.5.4.6 Weakness of phenotyping linkages

At the regional and continental levels, networking is a powerful tool for increasing 

scientific collaboration and fostering information sharing. There seems to be weak 

collaborations between the African plant science community and international 

phenotyping partners which hampers technological transfer and adoption. As high-

throughput field phenotyping initiatives have started in Africa, there is a need to 

strengthen national and institutional efforts within the continent for the development 

and application of accurate and high-throughput field phenotyping capabilities. The 

West Africa field phenotyping network should be strengthened and better resourced to 

carry out their mandate. Similar initiatives such as the EMPHASIS 

(https://emphasis.plant-phenotyping.eu) should be experimented to provide a more 

practical use of the available phenotyping data and infrastructure. The IPPN should 

spread its operations to Africa to develop programmes and establish synergies geared 

towards face-lifting plant phenotyping projects in the continent. Again, African 

governments and their partners should invest in building a centre of excellence or 

shared facilities for African plant scientists. Finally, a more urgent challenge is, 

however, that the international phenotyping community needs to bridge the gap between 

advanced economies and developing regions of the world such as Africa to benefit from 

the huge research efforts made internationally.

2.2.6 Concluding remarks and future perspectives

This review provides an overview of high-throughput field phenotyping and its 

implications for African crops. It highlights the prospects of emerging high-throughput 

phenotyping techniques and integrated sensor platforms for plant trait assessment for 

field phenotyping that could apply to African crops. High-throughput field phenotyping 

has superior advantages that facilitate quick, non-destructive and high-throughput 

detection, thus overcoming the shortcomings of conventional approaches. The readiness 

and the potential adoption of high-throughput field phenotyping for practical 

implementation in Africa are of paramount interest and should be demonstrated. 

Field phenotyping solutions of immediate to long-term feasibility for African crops will 

likely rely on a combination of available techniques or prototypes of low-cost sensors 

and imaging approaches to study crop performance. Manual methods dominate the field 

https://emphasis.plant-phenotyping.eu
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phenotyping ecosystem with only a few countries beginning to explore high-throughput 

techniques through digital and PA. Notably, high-throughput phenotyping cannot yet 

completely replace manual measurements but should be promoted. The implementation 

of high-throughput phenotyping in general, and low-cost methods for field evaluation is 

still fraught with challenges in Africa. Challenges identified by this present review 

include the high upfront cost of the prototypical platforms, huge funding gap, lack of 

conceptual and technical capacity, lack of technology transfer infrastructure and 

methodological approaches, lack of phenotyping network on the continent and the 

needed legislation in some cases, amongst others.

Lack of financial resources, a problem pervasive in African countries needs to be 

tackled holistically. Public-private partnerships could support resolving these financial 

and investment challenges to foster political will. Although in some countries, this 

public-private drive is already being implemented through close collaboration between 

universities and agricultural research organisations, these efforts need to be stepped up. 

In parallel, African governments should dedicate enough funding, incentives and tools 

to breeders to advance research and innovations regarding high-end plant breeding. We 

suggest that donor support to Africa for agriculture and food security research should 

also consider projects in modern plant phenotyping to cope with current and projected 

climate change. 

This will open the possibility of investing more in current sensor and imaging 

technologies for field data collection and the use of cost-effective phenotyping 

technologies that are already available to increase the throughput, quantity and quality 

of phenotypic data. The wide range of applications for these phenotyping technologies 

makes them good candidates and feasible choices for adoption in Africa which hitherto 

were prohibitive in terms of cost and deployment. The advantages of improved sensor-

platform integration have facilitated the development of complete phenotyping systems 

that can gather, integrate and store data for many subsystems concurrently in a 

structured, efficient and cost-effective way. Such platforms have been widely adopted 

by research groups in developed countries and are gradually adopted by plant breeders 

in Africa as the technology develops and the benefits are proven. 
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In addition to the adoption of high-throughput field phenotyping approaches in African 

countries, PA will also greatly benefit and revitalise the establishment of closer 

interaction between breeders and farmers to develop protocols mutually for the optimal 

use of improved crop varieties. The tools and knowledge exchange are expected to spur 

a second green revolution to meet the agricultural challenges to feed the ever-increasing 

African population. In terms of advancing field crop phenotyping in Africa for 

agricultural crop sustainability, we propose that breeding priority should be given to the 

most important staple crops such as maize, wheat, yam, cassava, cowpea, sorghum, etc. 

These crops form the backbone for food security and hence their improvement is crucial 

in the wake of prevailing climate change and production constraints. We suggest that 

each country selects traits that are of high demand and relevance by farmers and 

consumers when designing breeding strategies. In parallel, high-throughput 

phenotyping should be incorporated into national agricultural research policies and 

prioritise the practical implementation of field phenotyping. By and large, these could 

be achieved when governmental and private sector participation, as well as financial 

support is readily available. 

To overcome the challenges with the deployment of phenotyping tools and the 

integration of software to deliver accurate data acquisition, processing, analysis and 

management, a multidisciplinary team of expert-level skills and competencies may be 

required. This will necessitate deliberate training and capacity improvement of African 

plant scientists and students in software engineering and computer science domains, 

including AI, demanding true interdisciplinary partnerships to provide meaningful 

results and inform decision making, while addressing the issue of training cost and 

related risks. In this instance, we recommend technological adoption rather than 

complete technological development considering the financial constraints and the low-

level expertise in software and equipment development. However, as the plant 

phenotyping industry develops the development of new technologies from scratch may 

be feasible in Africa. 

Furthermore, we propose encouraging collaborations between the African plant science 

community with their international counterparts to foster collaborative research, 

effective technological transfer and adoption. This review recommends close 

collaboration with the IPPN and similar phenotyping networks to benefit from the 



Chapter 2 – Literature Review on Field Phenotyping for African Crops

60

unprecedented investments made in field phenotyping infrastructures globally. 

Consequently, crop scientists may leverage ground-breaking advancements in high-

throughput field data collection, image analysis and data management. Efforts should be 

made to foster synergies among different African countries by establishing transnational 

interdisciplinary networks that incorporate expertise in all aspects of plant breeding. 

To address the limited investments in STI, a commitment to expanded and long-term 

funding of agricultural research and development is essential. At the policy and 

operational levels, barriers must be overcome to allow the smooth establishment of 

public-private partnerships for transformational change in research and demand-driven 

technologies for breeders and farmers. There is renewed interest both from private and 

public institutions in developed countries to support African agriculture. Hence, African 

agricultural institutions need to develop strategies and synergies that include building 

partnerships that must be implemented to tackle the challenges, especially in the face of 

climate change and food insecurity.

The widespread adoption of high-throughput field phenotyping techniques in African 

countries could only be made possible in plant breeding programmes if it can be proven 

as something worthwhile in terms of genetic gains attained with resources invested. 

Hence, costs must be reasoned in relation to the precision, repeatability, heritability, 

cost per unit plot or trait, prevailing climatic and economic condition, etc., required in a 

particular phenotyping activity. Given what has been said, to ensure that such 

implementation of field phenotyping can be translated into yield gains, low-cost 

phenotyping tools must be adopted. On this basis, affordable, easy-to-handle, reliable 

tools and phenotyping infrastructures for small to large-scale field phenotyping may 

become a strategic choice and pave the way for practical implementation. Such 

technologies applicable to phenotyping methodologies should be available soon due to 

the high demands and efforts by the phenotyping community in Africa. 
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CHAPTER 3

Determination of optimal spectral reflectance indices for monitoring 
the nutritional status and agro-morpho-physiological responses in 

quinoa and cowpea under varying nitrogen and phosphorus 
availability using proximal sensing

(This chapter is based on Cudjoe et al., 2023b: Acta Horticulturae, 
https://doi.org/10.17660/ActaHortic.2023.1360.45, Appendix B-1 and with the addition of cowpea data 
included and analysed to satisfy this chapter’s objectives. Accordingly, minor modifications of the text 
and data analysis were necessary compared with the published article and manuscript under review).
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Abstract

Nitrogen (N) and phosphorus (P) are the two most crucial mineral nutrients used by 

plants for optimum growth and crop yield improvement in agricultural production. 

However, the use of spectral reflectance indices (SRIs) at the leaf level using proximal 

sensing (PS) to assess effects of N and P stress separately and in combination on the 

nutritional status, morphology, physiology and agronomy of quinoa (Chenopodium 

quinoa Willd.) and cowpea (Vigna unguiculata L. Walp) has not been extensively 

studied. In the present study, the potential of SRIs to track the nutritional status and crop 

performance of quinoa and cowpea grown under glasshouse conditions with varying 

combinations of N and P availability were assessed. Using a handheld proximal sensor, 

SRIs computed from multiple wavelengths were measured along with agro-morpho-
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physiological parameters indicative of N and P stress. Repeated measures ANOVA 

(RMA) was used to select optimal SRIs specific to N and P stress, both separately and 

in combination. RMA was also used to assess the effects of N and P treatments (and 

their interaction) on the agro-morpho-physiological parameters and SRIs. The 

relationship between optimal SRIs and the agro-morpho-physiological status of quinoa 

and cowpea was evaluated using correlation analysis. The results showed that SRIs 

including NDVI, OSAVI, G, MCARI, TCARI, ZMI, SPRI, NPQI, NPCI, Ctr2, Lic1, 

SIPI, CRI1, CRI2, RDVI, GNDVI_780 and SRa_790 demonstrated specificity for N 

stress detection in quinoa. On the other hand, SRIs that indicated specificity for N stress 

detection in cowpea included G and rDVI_790. For P status, the two SRIs that 

demonstrated specificity for detection in quinoa were mNDblue_730 and PRI_550. 

However, no SRI was identified to be specific for P status in cowpea. This study 

demonstrated the potential of using SRIs to identify early nutritional variations in 

quinoa and cowpea. Furthermore, our findings showed that the concurrent application of 

different N and P availabilities resulted in an overall positive response, as evidenced by 

the increases in agro-morpho-physiological parameters. The SRIs specific for assessing 

the N and P status also showed strong significant relationships with the agro-morpho-

physiological parameters assessed in both crops. Altogether, our study demonstrated the 

utility of SRIs from the low-cost proximal sensor for discriminating N and P status and 

assessing the crop performance in quinoa and cowpea. Future work into this study will 

concentrate on applying these findings to field phenotyping in Africa, which may be 

essential for precision agriculture (PA) and aid in the advancement of portable sensor 

technology.

Keywords: Proximal sensing, nutritional status, quinoa, cowpea, spectral reflectance 
indices, agro-morpho-physiological responses

3.1 Introduction

Quinoa (Chenopodium quinoa Willd.) is a unique annual pseudocereal grain crop 

originating from the Andean region of South America (Adolf et al., 2013). The Lake 

Titicaca region of Bolivia and Peru is where quinoa was domesticated, and these 

countries are still the leading producers and exporters of quinoa. Quinoa has attracted 

global attention as an important food crop because of its versatility as having 
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exceptional nutritional qualities, health benefits and resilience to various abiotic stresses 

(Bazile et al., 2016; Hinojosa et al., 2018; Dakhili et al., 2019; Noratto et al., 2019). 

Quinoa is highly adaptable to climate change scenarios and has a high economic value, 

making it a potential novel crop in other parts of the world (Bazile et al., 2016; Hinojosa 

et al., 2019; Ain et al., 2023; Taaime et al., 2023). The introduction of high-yielding 

quinoa into the cropping system and diet has the potential to improve food and 

nutritional security in developing countries, especially in Africa (Maliro and Guwela, 

2015; Maliro and Njala, 2019; Fathi and Kardoni, 2020). Quinoa was first introduced to 

Africa in the late 1990s (Oyoo et al., 2010; Maliro and Guwela, 2015). However, more 

research is required to better understand its production techniques and how it responds 

to various environmental conditions for farming in the semi-arid region. Quinoa is well 

adapted to marginal soil conditions (Choukr-Allah et al., 2016). However, crop 

productivity is limited by nutrient deficiency (Jacobsen et al., 2016; Wang et al., 2020). 

On the other hand, cowpea (Vigna unguiculata L. Walp) is one of the most 

economically important indigenous African leguminous crops grown in the tropical and 

subtropical regions of the world for vegetables, grains and fodder (Singh et al., 2003; 

Fang et al., 2007; Abebe et al., 2022). It is a major cash crop and provides livelihoods to 

millions of people specifically smallholder farmers in many African countries (Kebede 

and Bekeko, 2020). In SSA, most of the cowpea cultivation occurs in West Africa, 

contributing to about 60% of global production (Kamara et al., 2018; Nwagboso et al., 

2024). It is a source of nutritious grain and provides relatively cheap and high-quality 

protein for both rural and urban poor consumers (Kamara et al., 2018; Horn et al., 

2022). In addition, cowpea serves as a protective cover crop and enhances soil fertility 

through the process of atmospheric N fixation. Thus, cowpea is a vital multipurpose 

crop crucial for food security in Africa. 

Improved agronomic techniques and the breeding of more nutrient-efficient crops are 

required by farmers and breeders to meet the growing demand for crops such as quinoa 

and cowpea particularly in low-productivity areas (Keneni and Imtiaz, 2010; Choukr-

Allah et al., 2016). Therefore, adjusting crop macronutrient needs based on the 

prediction of potential yield is a crucial component of PA for making in-season 
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management decisions, sustaining the crop metabolism for optimal growth and 

development and increasing profitability. 

Plant growth is frequently limited by N and P (Elser et al., 2007; Agren et al., 2012; 

Dong et al., 2023). Therefore, understanding crop responses to the availability of these 

nutrients, their coordinated acquisition and biological interactions are vital for achieving 

nutritional balance and optimal growth under fluctuating nutritional conditions while 

reducing/optimising fertiliser use in agriculture (Luo et al., 2016; Medici et al., 2019; 

Alvar-Beltrán et al., 2021). To date, the effects of N and P fertilisation on crops, 

particularly quinoa and cowpea, have been largely studied separately or in isolation, but 

recent findings suggest interactions between the macronutrients at several levels of 

integration (Agren et al., 2012; Grohskopf et al., 2019; Krouk and Kiba, 2020; Alvar-

Beltrán et al., 2021; Xia et al., 2023). 

The amount of N and P in the soil changes through time, which can create interactions 

between the nutrients and result in synergistic or antagonistic combinations (Rietra et 

al., 2017; Grohskopf et al., 2019). This might directly or indirectly affect crop responses 

to the co-fertilisation of N and P (Groot et al., 2003; Duncan et al., 2018b). For instance, 

P deficiency in the soil could limit the plant response to N fertilisation (Setiyono et al., 

2010) and negatively affect N uptake and assimilation (Gniazdowska and Rychter, 

2000; Gan et al., 2016). Hence, the concomitant supply of these nutrients in the soil 

could lead to changes in chemical, physical and biological features that can alter the 

dynamics of N and P elements and ultimately crop response (Chen et al., 2017). 

Unfortunately, the traditional methods of monitoring these essential nutrients and their 

complex interactions in plants require time-consuming, labour-intensive sampling and 

costly laboratory chemical analyses, all of which are not environmentally acceptable or 

economically viable on a large scale. The costs and destructive nature of these 

measurements limit determination of the spatial variability of soil and crop parameters. 

Therefore, to improve current farming practices and optimise input supply, especially in 

developing nations where conventional agricultural systems are challenged with the 

demands of a rapidly expanding population, farmers need innovative, accurate and 

efficient methods for detecting nutrient stresses in crops.
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PS through plant phenotyping and phenomics technologies offers fast, timely, non-

destructive and accurate assessments of crop nutritional status, which is crucially 

important for optimised fertiliser application and precision crop management (Chawade 

et al., 2019; Alvar-Beltrán et al., 2020; Huang et al., 2020; Stanschewski et al., 2021). 

SRIs computed from multiple wavelengths are among the many metrics provided by 

spectroscopy technologies (single point or image-based) and have been employed to 

assess the nutritional status of crops, detect nutrient deficiency, monitor growth and 

predict crop yields (Padilla et al., 2018; Darra et al., 2021; Rehman et al., 2022). 

Numerous studies have proposed SRIs, the majority of which are based on spectral 

wavelengths, to non-destructively estimate the N status of plants and provide a measure 

of the stress caused by N deficiency (Li et al., 2008; Eitel et al., 2008; Wei et al., 2012; 

Lunagaria et al., 2015; Li et al., 2021). For instance, Wei et al. (2012) demonstrated the 

satisfactory performance of SRIs in estimating leaf N accumulation (LNA) in rice and 

wheat. The authors reported that the optimum SRI for estimating LNA during the early 

mid-season from jointing to booting was the Soil Adjusted Vegetation Index (SAVI) 

and Ratio Vegetation Index (RVI) for the mid-late season from heading to grain filling. 

Li et al. (2008) also showed the utility of Simple Ratio Vegetation Indices (SRVIs) 

including the Red Vegetation Index (ReVI) and Green Vegetation Index (GVI) as well 

as Normalised Difference Vegetation Indices (NDVI and GNDVI) among others for 

estimating the N uptake of winter wheat varieties at different growth stages. The authors 

concluded that using RVI showed the highest prediction (R2=0.60) for N uptake across 

different years, varieties and growth stages. 

In quinoa, Alvar-Beltrán et al. (2020) tested proximal optical sensors and derived NDVI 

to assess the N status. The GreenSeeker-derived NDVI was effective at making in-

season predictions of crop biomass at harvest. Additionally, only a few studies have 

concentrated on selecting optimal wavelengths and SRIs for estimating crop P status 

using PS (e.g., Osborne et al., 2002; Alharbi, 2018; Pinit et al., 2022). For example, 

Alharbi (2018) demonstrated the effectiveness of NDVI for determining P deficiency in 

winter wheat due to a strong correlation with yield under low P conditions. However, no 

SRI has been found for determining quinoa P status yet. Therefore, to improve quinoa 
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productivity and nutrient use efficiency, more research is required to develop PS for P 

and to understand the specificity of estimating quinoa P status using spectroscopy. 

Recently, Cudjoe et al. (2023b) assessed the combined impact of N and P stress on 

quinoa employing PS. However, there is no extensive research on the application of 

SRIs at the leaf level using PS to evaluate N and P stress separately and in combination 

on the morphology, physiology and agronomy of quinoa. This knowledge gap could 

compromise fertilisation management by resulting in incorrect diagnosis when 

monitoring the effects of N and P stress in quinoa. Therefore, it is essential to evaluate 

SRIs for more accurate and timely detection and phenotyping of the nutritional status to 

support PA and increase quinoa and cowpea productivity, as most farmers deal with 

both N and P nutrient stress management. The use of handheld sensors for field 

phenotyping and stress responses in crops in developing nations has garnered more 

attention recently due to the affordability, ease of use and potential lack of significant 

pre-processing of spectral data (Cudjoe et al., 2023a). 

In the present study, quinoa and cowpea grown in different combinations of N and P 

availabilities under glasshouse conditions were evaluated to assess SRIs capable of 

monitoring their nutritional status and crop performance. The overall aim was to 

identify SRIs from a handheld proximal sensor capable of distinguishing between N and 

P stress in these crops and relating the spectral responses to the nutritional status, 

morpho-physiology and how they reflect crop performance. The specific objectives 

were (i) to identify optimal SRIs indicative of N and P status separately or the combined 

effect and their interactions, (ii) to assess the time-course response of optimal SRIs to 

identify early nutritional variations, (iii) to assess the agro-morpho-physiological 

responses under the different N and P availabilities and (iv) to examine the relationships 

between optimal SRIs and agro-morpho-physiological parameters. 

3.2 Materials and methods

3.2.1 Plant materials and growth conditions

Seeds of quinoa (Chenopodium quinoa Willd.) and cowpea (Vigna unguiculata L. 

Walp) were obtained from Magic Garden Seeds GmbH (Regensburg, Germany) and 

were used for this study based on their significance to African agriculture but as these 

are understudied. A pot experiment was installed in the glasshouse at the Plant Growth 
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Facility at Cranfield University, United Kingdom (52° 4' 28.61" N, 0° 37' 41.819" W) 

from September 2020 to January 2021. The glasshouse conditions were set as follows: 

relative humidity (RH) of 50-65%; day/night temperature 24/21±2 °C; photoperiod of 

14 h and natural light intensity of 400 µmol m−2 s−1 with supplemental light of 460 

µmol m−2 s−1. Before sowing, quinoa and cowpea seeds were stratified at 4 °C for three 

days. 

After stratification, cowpea seeds were sown directly into pots while quinoa seeds were 

pre-germinated by sowing in wet vermiculite compost on a mini pot tray and incubated 

in the dark. After 3 days, germinated quinoa seeds were illuminated to prevent 

etiolation. Seedlings of similar size (5 cm) were transplanted into pots (21×19 cm). At 

the two-leaf stage, the seedlings were thinned to one plant per pot. Quinoa and cowpea 

were intercropped (Figure 3.1) and grown to physiological maturity on a reconstituted 

Levington F1, low-nutrient compost (ICL, Everris, Ipswich, Suffolk, England, United 

Kingdom). 

Figure 3.1. Crop establishment and experimental setup of quinoa intercropped with 
cowpea in the glasshouse at the Plant Growth Facility at Cranfield University. The 
photograph was taken 44 days after sowing (DAS). 

3.2.2 Preparation of compost and application of nutrient treatments

The Levington F1 low-nutrient compost, supplied by ICL, Everris, Ipswich, United 

Kingdom, was used in the experiment. The compost was first washed to remove soluble 

nutrients, by flooding one part of the compost with five-part deionised water, mixing, 
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breaking up aggregates and draining the mixture through a double 0.8 mm sieve 

(adapted from Masters-Clark et al., 2020; Cudjoe et al., 2023b) (Appendix B, Figure B-

1). After five rounds of repeated washing, the washed compost was oven-dried at 105 

°C for 48 h until no further water loss occurred. Dried samples of the washed compost 

were assessed by elemental analysis to determine that the washed compost had no or 

little nutrients remaining (Appendix B, Figure B-1). 

A modified Letcombe nutrient solution was used to reconstitute nutrients in the washed 

compost, along with the supply of macro and micronutrients (Masters-Clark et al., 

2020). Four nutritional treatments based on all combinations of two levels of N (high N; 

low N) and two levels of P (high P; low P) were tested. The combined treatment factors 

were designated as HNHP, HNLP, LNHP and LNLP with H and L for high and low 

levels, respectively. The N and P levels were varied to create a range in the N-P status 

and test the effectiveness of spectral reflectance measurement to detect these differences 

(Ansari et al., 2016; Skendžić et al., 2023). The macro-nutritional composition for each 

treatment is summarised in Table 3.1. The concentrations for HN and LN were 42.6 

mM and 13.0 mM, respectively, and HP and LP were 13.4 mM and 3.3 mM, 

respectively. Each pot (of size 21×19 cm) was filled with 1500 g of washed compost 

mixed with 242 g of silver sand and 790 ml of nutrient solution. Based on the assigned 

treatments, pots were replenished with 790 ml of nutrient solution at 23, 44, 65 and 79 

DAS. Equal amounts of deionised water were used to irrigate the plants at regular 

intervals.
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Table 3.1. The composition of the modified Letcombe nutrient solution based on 
HNHP, HNLP, LNHP and LNLP input conditions. The concentrations of the treatment 
conditions are indicated. Nutrient solutions were prepared at pH=6.

 Final concentration (mM)
Macronutrient Stock Solution HNHP HNLP LNHP LNLP

1 M Ca(NO3)2 x 4H2O 6.4 6.4 1.6 1.6
1 M KNO3 26.3 26.3 6.6 6.6
1 M CH4N2O 9.9 9.9 2.5 2.5
1 M MgSO4 6.6 6.6 6.6 6.6
1 M KH2PO4

1 M K2HPO4
13.4 3.3 13.4 3.3

1 M KCl 0.0 10.0 19.7 29.7
1 M CaCl2 0.0 0.0 4.8 4.8
50 mM FeEDTA 0.3 0.3 0.3 0.3

3.2.3 Statistical design

Quinoa and cowpea plants were arranged on a 550×180 cm bench and were spaced 50 

cm apart within each row (Figure 3.2). The basic design comprised a 2×2 factorial set of 

N and P treatments which were allocated to pots according to a five-block randomised 

complete block design (RCBD). Hence, each of the four nutritional treatments was 

replicated five times. Each pot was sampled for spectral reflectance and morpho-

physiological parameters on up to 13 successive occasions (DAS) hence, the maximal 

design structure comprised a 2×2×13 factorial, with a nested blocking structure, 

expressed as block/pot/sample, i.e., samples nested within pots nested within blocks. 

Shading effects during later growth stage of the crops in the glasshouse were managed 

by adjusting spacing between plants in a way that allowed for optimal light distribution. 

This included rotating pots or altering the positioning of plants to ensure all receive 

adequate light. Additionally, experimental errors such as shading and random effects 

were also considered during data analysis.
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Figure 3.2. The statistical design employed for the experiment showing the allocation of 
the 2×2 factorial set of N and P treatments according to a 5-block randomised complete 
block design. Quinoa was intercropped with cowpea. The experimental area measured 
550×180 cm with pots spaced 50 cm apart in each row (A-D). The rectangles are 
individual pots (plants) that have varying amounts of N and P supplied. The N and P 
treatments were randomly applied within each block. Pots are numbered from 1 to 40.

3.2.4 Data collection

3.2.4.1 Measurement of spectral reflectance 

Leaf spectral reflectance data were collected using the PolyPen RP410/UVIS handheld 

contact spectroradiometer (Photon Systems Instruments, Drasov, Czech Republic), 

which can measure the wavelength range of 320-790 nm of the electromagnetic 

spectrum at intervals of 1.9 nm. Spectral reflectance was obtained from the uppermost 

fully expanded leaf of quinoa whereas in cowpea, the fully expanded trifoliate leaf from 

the top was used between 11:00 and 16:00 GMT repeatedly at 23, 30, 37, 44, 51, 58, 65, 

72, 79, 86, 93, 100, 107 and 114 DAS. Three readings were made on each leaf and then 

averaged. A diffuse white reference standard (Spectralon®, Labsphere, Inc., North 

Sutton, USA) was used to calibrate the spectrometer sensor before and periodically 

during measurements. A xenon incandescent light source, emitting radiation in the 

range of 380–1050 nm is integrated into the PolyPen RP410 device. Along with 

manually computed SRIs from multiple wavelengths, the PolyPen RP410 incorporates 

predefined formulae for calculating frequently used SRIs. Initially, the spectra from 

each treatment were averaged, and the overall mean spectrum was analysed to look for 

variations in the spectral signature obtained from the different nutrient treatment 

combinations (Figures 3.3 and 3.4). Table 3.2 shows the SRIs that were computed from 

narrow-bands wavelengths for this study.
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Figure 3.3. Reflectance spectra of quinoa leaves exposed to varying combinations of 
nitrogen (N) and phosphorus (P) treatments at different days after sowing (DAS) (A, 23 
DAS), (B, 37 DAS), (C, 65 DAS), (D, 86 DAS), (E, 93 DAS) and (F, 107 DAS). 

Figure 3.4. Reflectance spectra of cowpea leaves exposed to varying combinations of 
nitrogen (N) and phosphorus (P) treatments at different days after sowing (DAS) (A, 30 
DAS), (B, 65 DAS), (C, 72 DAS), (D, 100 DAS), (E, 107 DAS) and (F, 114 DAS). 
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Table 3.2. Summary of the SRIs used in this study.

Spectral Reflectance Index Acronym Formulation/wavebands Traits References

Automatic computed indices from the PolyPen RP410

Normalised Difference Vegetation 
Index

NDVI (R780 - R680)/(R780 + R680)
Leaf greenness, canopy cover, stress 
levels, LAI, biomass, photosynthetic 
activity, vigor, plant health, N status

Rouse et al., 1974

Simple Ratio SR (R780/R680)                                                                                                      
Leaf greenness, vegetation cover, 
chlorophyll content, vigor, plant health

Chen, 1996

Modified Chlorophyll Absorption in 
Reflectance Index 

MCARI1 1.2 * [2.5 * (R790- R670) - 1.3 * (R790- R550)]
Chlorophyll concentration, vigor, LAI, 
stress levels

Haboudane et al., 2004

Optimised Soil-Adjusted Vegetation 
Index 

OSAVI (1 + 0.16) * (R790- R670) / (R790- R670 + 0.16)
Greenness, canopy cover, vigor, 
biomass

Rondeaux et al., 1996

Greenness Index G (R554/R677)
Chlorophyll content, biomass, 
photosynthetic activity, vigor, LAI, 
plant health

Roujean and Breon, 
1995

Modified Chlorophyll Absorption in 
Reflectance Index 

MCARI [(R700- R670) - 0.2 * (R700- R550)] * (R700/ R670)
Chlorophyll concentration, vigor, LAI, 
stress levels

Daughtry et al., 2000

Transformed Chlorophyll 
Absorption in Reflectance Index 

TCARI
3 × [(R700- R670) − 0.2 * (R700-R550) * 
(R700/R670)]

Chlorophyll concentration, vigor, LAI, 
stress levels

Haboudane et al., 2002

Triangular Vegetation Index TVI 0.5 * [120 * (R750- R550) - 200 * (R670- R550)]
Chlorophyll content, greenness, stress 
levels, nutrient status, photosynthetic 
activity

Zarco‐Tejada et al., 
2005

Zarco-Tejada and Miller Index ZMI (R750 / R710)
Chlorophyll concentration, LAI, stress 
levels, photosynthetic activity

Zarco-Tejada et al., 
2001

Simple Ratio Pigment Index SRPI (R430 / R680)
Chlorophyll concentration, 
photosynthetic activity, LAI, vegetation 
cover, green biomass

Peñuelas et al., 1995

Normalised Phaeophytinisation 
Index 

NPQI (R415- R435) / (R415+ R435)
Leaf senescence, drought, nutrient 
stress, plant health, vigor, crop maturity

Barnes et al., 1992
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Photochemical Reflectance Index PRI (R531- R570) / (R531+ R570)
Photosynthetic stress, water stress, light 
use efficiency, leaf pigment 
composition

Gamon et al., 1992

Normalised Pigment Chlorophyll 
Index 

NPCI (R680- R430) / (R680+ R430)
Chlorophyll content, photosynthetic 
activity, stress levels, N status

Peñuelas et al., 1994

Carter Indices Ctr1 and Ctr2 Ctr1 = (R695 / R420); Ctr2 = (R695 / R760)
Chlorophyll concentration, vigor, LAI, 
stress levels

Carter and Miller, 1994

Lichtenthaler Indices Lic1 and Lic2
Lic1 = (R790 - R680) / (R790 + R680); Lic2 = 
(R440 / R690)

Chlorophyll content, carotenoid 
content, greenness, photosynthetic 
activity, stress levels

Lichtenthaler et al., 
1996

Structure Intensive Pigment Index SIPI (R790- R450) / (R790+ R650)

Pigment concentration, leaf angle, 
canopy density, canopy structure, 
chlorophyll content, photosynthetic 
activity

Peñuelas et al., 1995

Gitelson and Merzlyak Indices GM1 and GM2 GM1 = (R750/ R550); GM2 = (R750/ R700)
Chlorophyll concentration, greenness, 
plant health status, vegetation biomass

Gitelson and Merzlyak, 
1997

Anthocyanin Reflectance Indices ARI1 and ARI2
ARI1 = (1/R550-1/R700); ARI2 = R790*(1/R550-
1/R700)

Stress levels, phenological stage, 
anthocyanin concentration, leaf 
coloration, fruit maturity

Gitelson et al., 2009

Carotenoid Reflectance Indices CRI1 and CRI2
CRI1 = (1/R510-1/R550); CRI2 = (1/R510-
1/R700)

Carotenoid to chlorophyll ratio, 
photosynthetic efficiency, leaf 
senescence, environmental stress 
response

Gitelson et al., 2002

Renormalised Difference Vegetation 
Index 

RDVI (R780-R670)/((R780+R670) ^ 0.5)
Leaf greenness, canopy cover, stress 
levels, LAI, biomass,  photosynthetic 
activity, vigor, plant health

Roujean and Breon, 
1995

Manually computed indices derived from the PolyPen RP410

Photochemical Reflectance Index 
PRI550 and 
PRInorm

PRI550 = (R549.1- R530.6) / (R549.1+ R530.6); 
PRInorm = PRI550/(RDVI*(R699.9 / R669.4))

Photosynthetic stress, water stress, light 
use efficiency, leaf pigment 
composition

Gamon et al., 1992

Green Normalised Difference 
Vegetation Index

GNDVI780 (R780.7 - R549.1)/(R780.7 + R549.1)
Chlorophyll content, biomass, 
photosynthetic activity, vigor, LAI, 
plant health

Goodwin et al., 2018
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Modified Red Edge Simple Ratio MRESR (R749.3 - R444.7)/(R705.2 - R444.7)
Chlorophyll content, LAI, stress levels, 
biomass, canopy density, early signs of 
senescence

Sims and Gamon, 2002

Red Edge Normalised Difference 
Vegetation Index 

RENDVI (R749.3 - R705.2)/(R749.3 + R705.2)
Chlorophyll concentration, stress levels, 
LAI, vigor, plant health, early growth 
stage monitoring

Sims and Gamon, 2002

Normalised Difference Red Edge NDRE (R789.4 - R719.4)/(R789.4 + R719.4)
Chlorophyll concentration, stress levels, 
LAI, vigor, plant health, early growth 
stage monitoring

Sharifi and Felegari, 
2023

Chlorophyll Index Green CIgreen (R791.1/R549.1) – 1
Chlorophyll concentration, stress levels, 
senescence, N status, yield, growth

Muramatsu, 2019

Chlorophyll Index Red Edge CIrededge (R791.1/R719.4) – 1
Chlorophyll concentration, vigor, LAI, 
stress levels, N status

Gitelson et al., 2005

Chlorophyll Index 
mNDblue530 

and 
mNDblue730

mNDblue530 = (R530.6 - R450.4)/(R791.1 + R450.4); 
mNDblue730 = (R730 - R450.4)/(R791.1 + R450.4)

Chlorophyll concentration, plant stress, 
N status, growth stage, potential yield

Shrestha et al., 2012

Red Difference Vegetation Index rDVI790 (R789.4 - R680.2)
Chlorophyll content, LAI, stress levels, 
biomass, vegetation density, vigor, 
plant health

Roujean and Breon, 
1995

Green Simple Ratio gSRa790 (R789.4/R549.1)
Leaf greenness, vegetation cover, 
chlorophyll content, vigor, plant health

Rouse et al., 1974

Red Simple Ratio SRa790 (R789.4/R680.2)
Chlorophyll content, vegetation cover, 
plant stress, vigor, biomass, LAI

Rouse et al., 1974
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3.2.4.2 Measurement of morpho-physiological parameters

3.2.4.2.1 Leaf-level photosynthesis measurement

The portable photosynthesis system LI-6400XT (LI-COR Biosciences Inc., Lincoln, 

NE, USA), equipped with the 6400-40 LCF chamber was used to measure the net CO2 

assimilation rate (An, µmol CO2 m−2 s−1) (Appendix B, Figure B-2). The uppermost fully 

expanded leaves of quinoa and the expanded trifoliate leaf of cowpea were used. Five 

plants per treatment were used for the photosynthesis measurement, which took place 

between 11:00 and 16:00 GMT at 44, 72 and 107 DAS. To account for any potential 

effects of the time of day on the measurements, the randomisation order of the 

experiment was followed. The flow rate was set at 200 µmol s−1, leaf chamber CO2 

concentration was set to 400 µmol mol -1, leaf temperature was maintained at 20 °C, 

relative humidity (RH) was adjusted between 60–65% and photosynthetically active 

radiation (PAR) was controlled to 1800 µmol m -2 s-1 to attain maximum photosynthetic 

capacity. Measurements were taken once gas exchange rates had stabilised within five 

minutes after the reading began. 

3.2.4.2.2 SPAD measurement

The chlorophyll content was measured from the same leaves as above using a SPAD-

502 chlorophyll meter (Soil Plant Analysis Development, Minolta Camera Co., Ltd., 

Japan). Three readings were made on each leaf and then averaged. SPAD measurements 

were done synchronously with the PolyPen RP410. 

3.2.4.2.3 Plant height 

The plant height (PH) was measured at indicative growth stages at 44, 72 and 107 DAS 

using a metre ruler placed at the soil level in the pot to the tip of the fully expanded leaf. 

3.2.4.2.4 Leaf nitrogen content

Harvested leaf samples were taken at indicative stages of development (44, 72 and 107 

DAS) for their nutrient status estimation. Fresh leaf samples were oven-dried at 80 °C 

for 24 h until no further water loss occurred and weighed to determine the dry weight 

(DW) expressed as gram per pot (g pot-1). The dried samples were then milled to a fine 

powder at a speed of 17500 rpm using the Genogrinder (SPEX SamplePrep®, 2010, 

USA) for subsequent elemental analysis by the Analytical Chemistry Unit at 

Rothamsted Research. The leaf N content (LNC) (%) was determined by employing the 
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LECO combustion method (LECO CN628 Analyzer, LECO Corporation, St Joseph, 

Michigan, USA) as employed in earlier studies (Freidenreich et al., 2019). 

3.2.4.2.5 Leaf phosphorus concentration

The same milled samples used for LNC were prepared for leaf P concentration (LPC). 

For the analysis of LPC, a total of 100 mg of sample was digested in acid for 24 h at 90 

°C within Teflon vessels, using 2 ml of nitric acid (HNO3) and 0.5 ml perchloric acid 

(HClO4) with samples subsequently re-suspended in 25 ml of deionised water. Analyses 

were performed by the Inductively Coupled Plasma Optical Emission Spectroscopy 

(ICP-OES) using a Perkin-Elmer Optima 3200RL Spectrometer (Perkin-Elmer, 

Massachusetts, EEUU). LPC was expressed in ppm of dry matter (DM). 

3.2.4.3 Measurement of agronomic parameters

Agronomic parameters including vegetative biomass (VB), total plant biomass (TPB), 

thousand-grain weight (TGW) and grain yield (GY) were determined at the final 

harvest. Manual destructive harvest of quinoa plants was done to separate seed heads 

from the vegetative parts (i.e., panicles, stems). The fresh vegetative parts were weighed 

using the Sartorius weighing balance (Sartorius Lab Instruments GmbH and Co.KG, 

Goettingen, Germany) and dried at 80 °C in a forced-air oven for 48 h. The dry 

vegetative biomass (VB) per plant (g plant-1) was determined. The TPB was determined 

by weighing both dried seed heads and VB together and expressed as (g plant-1). 

Additionally, TGW was determined by counting 1000 grains of quinoa using the Elmor 

seed counter (Elmor AG, SA, Ltd, Switzerland). The GY (g pot-1) was also determined. 

For cowpea, agronomic parameters including fresh weight (FW), dry weight (DW), 

number of pods, number of seeds, hundred seed weight (HSW) and seed yield (SY) 

were determined. 

3.2.5 Statistical analysis

Agronomic responses were analysed using analysis of variance (ANOVA) incorporating 

the 2×2 factorial treatment structure and RCBD blocking structure. F-statistics were 

employed to test all fixed terms (i.e., main effects and interaction), with all tests 

conducted at the 5% significance level. Spectral responses and agro-morpho-

physiological variables measured on successive occasions were analysed using repeated 
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measures ANOVA (RMA) that incorporates an adjustment for the presence of 

autocorrelation between sample occasions (Greenhouse and Geisser, 1959; Girden, 

1992; Keselman et al., 2000). These analyses incorporated the 3-way factorial treatment 

structure and the nested split-plot blocking structure. The RMA estimates a parameter 

(epsilon) that reflects the level of autocorrelation in the data (Greenhouse and Geisser, 

1959) which is then used to adjust (reduce) the degrees of freedom (df) in the 

block.pot.sample stratum (i.e., the lowest stratum). F-statistics were then assessed on 

these reduced df, effectively meaning that the F-tests are more conservative the more 

evidence there is for autocorrelation (i.e., as epsilon gets smaller). 

A log10 transformation was implemented to satisfy assumptions and achieve 

homogeneity of the residuals of some of the agronomic parameters where necessary. 

The residuals were examined to verify variance homogeneity (through fitted values 

plots) and normality assumptions (using histograms and Q-Q plots). Means plots were 

produced and differences between fitted means for the N and P treatment combinations 

on each sampling occasion were assessed against the approximate least significant 

difference (LSD) at a 5% level of significance. The relationship between responsive 

SRIs and agro-morpho-physiological traits was examined using the Pearson correlation 

coefficient (r). GenStat 22nd edition (VSN International Ltd., Hemel Hempstead, 

United Kingdom) was used for all analysis and visualisations.

3.3 Results

3.3.1 Quinoa

3.3.1.1 Identification of optimal spectral reflectance indices for N and P status in 
quinoa

RMA was employed to identify SRIs sensitive to N and P stresses both individually and 

in combination using the PolyPen RP410 spectrometer (Appendix B, Figure B-3). A 

wide range of SRIs, including NDVI, SR, OSAVI, G, MCARI, TCARI, ZMI, SPRI, 

NPQI, PRI, NPCI, Ctr1, Ctr2, Lic1, Lic2, SIPI, GM1, GM2, CRI1, CRI2, RDVI, 

GNDVI_780, MRESR, RENDVI, NDRE, CIgreen, CIrededge, mNDblue_530, 

gSRa_790 and SRa_790 were responsive to N stress (Table 3.3). SRIs that were 

responsive to P included SR, PRI, Ctr1, Lic2, GM1, GM2, PRI_550, MRESR, 

RENDVI, NDRE, CIgreen, CIrededge, mNDblue_530, mNDblue_730 and gSRa_790 
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(Table 3.3). Additionally, SRIs including SR, PRI, Ctr1, Lic2, GM1, GM2, MRESR, 

RENDVI, NDRE, CIgreen, CIrededge, mNDblue_530 and gSRa_790 showed high 

response to the combined N and P stress. Based on the results presented in Table 3.3, 

SRIs that were responsive to only N stress were NDVI, OSAVI, G, MCARI, TCARI, 

ZMI, SPRI, NPQI, NPCI, Ctr2, Lic1, SIPI, CRI1, CRI2, RDVI, GNDVI_780 and 

SRa_790 which indicates specificity for their detection (Table 3.3; Figure 3.5). The raw 

data distribution and residual plots for some of the N stress-specific SRIs are shown in 

Appendix B, Figure B-4. For P stress, the only SRIs that were responsive and indicated 

specificity for their detection were mNDblue_730 and PRI_550 (Table 3.3; Figure 3.6). 

Appendix B, Figure B-5 shows the raw data distribution and residual plots for the P 

stress-specific SRIs. The SRIs that showed no response to either N or P and their 

combined effect included MCARI1, TVI, ARI1, ARI2, PRI_norm, PRI/NDVI and 

rDVI_790 (Table 3.3). Additionally, a wide range of SRIs including NDVI, SR, 

OSAVI, ZMI, RENDVI, NDRE etc., were effective in detecting N×P interaction.

Table 3.3. F-tests from repeated measures ANOVA (RMA) for main effects of N and P 
on spectral reflectance indices (SRIs) in quinoa. The RMA analysis was done 
considering all treatment combinations and time points (DAS). The Statistically 
significant results (p<0.05) indicating differences between means for levels of N or P 
are shown in bold. Full results are given in Appendix B, Table B-1.

Index                N               P           N×P

NDVI F1,12=93.618, p<0.001 F1,12=3.895, p=0.072 F1,12=30.052, p<0.001
SR F1,12=144.270, p<0.001 F1,12=9.031, p<0.05 F1,12=44.955, p<0.001
MCARI1 F1,12=0.159, p=0.697 F1,12=0.028, p=0.870 F1,12=1.977, p=0.185

OSAVI F1,12=31.695, p<0.001 F1,12=0.932, p=0.353 F1,12=16.811, p<0.01
G F1,12=14.128, p<0.01 F1,12=0.984, p=0.341 F1,12=4.861, p<0.05
MCARI F1,12=41.319, p<0.001 F1,12=3.400, p=0.090 F1,12=2.552, p=0.136

TCARI F1,12=51.418, p<0.001 F1,12=0.794, p=0.391 F1,12=11.627, p<0.01
TVI F1,12=0.112, p=0.744 F1,12=0.065, p=0.803 F1,12=4.311, p=0.060

ZMI F1,12=87.508, p<0.001 F1,12=3.566, p=0.083 F1,12=18.871, p<0.001
SPRI F1,12=43.292, p<0.001 F1,12=4.581, p=0.054 F1,12=1.056, p=0.324

NPQI F1,12=7.493, p<0.05 F1,12=1.323, p=0.272 F1,12=2.879, p=0.116

PRI F1,12=71.065, p<0.001 F1,12=10.129, p<0.01 F1,12=1.537, p=0.239

NPCI F1,12=32.916, p<0.001 F1,12=3.642, p=0.081 F1,12=0.783, p=0.394

Ctr1 F1,12=78.080, p<0.001 F1,12=9.731, p<0.01 F1,12=2.110, p=0.172

Ctr2 F1,12=81.244, p<0.001 F1,12=3.237, p=0.097 F1,12=23.513, p<0.001
Lic1 F1,12=33.269, p<0.001 F1,12=0.960, p=0.346 F1,12=13.029, p<0.01
Lic2 F1,12=98.123, p<0.001 F1,12=10.519, p<0.01 F1,12=6.008, p<0.05
SIPI F1,12=65.267, p<0.001 F1,12=0.510, p=0.489 F1,12=47.186, p<0.001
GM1 F1,12=118.366, p<0.001 F1,12=6.127, p<0.05 F1,12=51.745, p<0.001
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GM2 F1,12=129.417, p<0.001 F1,12=8.692, p<0.05 F1,12=34.177, p<0.001
ARI1 F1,12=2.492, p=0.140 F1,12=1.162, p=0.302 F1,12=6.302, p<0.05
ARI2 F1,12=2.305, p=0.155 F1,12=1.187, p=0.297 F1,12=8.190, p<0.05
CRI1 F1,12=81.086, p<0.001 F1,12=0.263, p=0.617 F1,12=25.724, p<0.001
CRI2 F1,12=27.284, p<0.001 F1,12=0.924, p=0.355 F1,12=23.756, p<0.001
RDVI F1,12=21.289, p<0.001 F1,12=0.803, p=0.388 F1,12=18.592, p<0.01
PRI_550 F1,12=2.916, p=0.113 F1,12=7.991, p<0.05 F1,12=2.279, p=0.157

PRI_norm F1,12=0.297, p=0.596 F1,12=0.013, p=0.910 F1,12=1.650, p=0.223

PRI/NDVI F1,12=2.850, p=0.117 F1,12=0.013, p=0.910 F1,12=1.315, p=0.274

GNDVI_780 F1,12=61.883, p<0.001 F1,12=3.118, p=0.103 F1,12=55.354, p<0.001
MRESR F1,12=128.244, p<0.001 F1,12=16.706, p<0.01 F1,12=46.811, p<0.001
RENDVI F1,12=129.217, p<0.001 F1,12=12.446, p<0.01 F1,12=55.461, p<0.001
NDRE F1,12=133.386, p<0.001 F1,12=18.080, p<0.01 F1,12=57.081, p<0.001
CIgreen F1,12=76.664, p<0.001 F1,12=6.938, p<0.05 F1,12=63.164, p<0.001
CIrededge F1,12=132.412, p<0.001 F1,12=19.031, p<0.001 F1,12=57.428, p<0.001
mNDblue_530 F1,12=79.911, p<0.001 F1,12=5.736, p<0.05 F1,12=37.803, p<0.001
mNDblue_730 F1,12=1.993, p=0.183 F1,12=8.454, p<0.05 F1,12=20.623, p<0.001
rDVI_790 F1,12=4.316, p=0.060 F1,12=0.432, p=0.523 F1,12=10.946, p<0.05
gSRa_790 F1,12=76.664, p<0.001 F1,12=6.938, p<0.05 F1,12=63.164, p<0.001
SRa_790 F1,12=45.166, p<0.001 F1,12=3.663, p=0.080 F1,12=30.725, p<0.001

3.3.1.2 Time course response of spectral reflectance indices to N and P variations

Figures 3.5 and 3.6 show the time course responses of the SRIs that indicated specificity 

for N and P stress in Table 3.3. The results as presented in Figures 3.5 and 3.6 revealed 

the earliest response of SRIs comprising GNDVI_780 and SRa_790 to detecting N and 

P nutritional variations first at 37 DAS (vegetative stage) and consistently from the mid-

growth stage (anthesis) at 58 to 107 DAS (physiological maturity) stage of quinoa 

(Figure 3.5). These SRIs also displayed better separation of nutritional treatments 

particularly at the mid-growth and physiological maturity stages (Figure 3.5). Higher 

values were generally obtained for the HNHP treatment for GNDVI_780 and SRa_790.

Close to a week after 37 DAS, NDVI, MCARI, G, TCARI, Ctr2 and ZMI showed 

similar patterns in detecting N and P nutritional variations first at 44 DAS and 

consistently from 58 to 107 DAS with good separation between treatment conditions 

(Figure 3.5). Except for G, MCARI and Ctr2, high mean values were obtained under 

HNHP treatment by NDVI, TCARI and ZMI (Figure 3.5). For mNDblue_730, N and P 

nutritional variation during anthesis was first detected at 51 DAS and at later stages at 

86, 93 and 100 DAS with corresponding separation between treatments (Figure 3.6A). 

NPQI showed the detection of N and P variations at late anthesis (65 DAS) and grain 
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development (79 and 86 DAS) with good separation between treatments (Figure 3.5H). 

Additionally, SIPI observed the detection of N and P variations at late anthesis (65 

DAS) and later stages at 79, 86, 93, 100 and 107 DAS with good separation between 

treatments. Higher values were recorded for the HNHP treatment over time (Figure 

3.5L). 

SRIs such as OSAVI and Lic1 detected N and P nutritional variations at later growth 

stages at 79, 86, 93 and 100 DAS coupled with good separation between treatments 

(Figure 3.5). Higher values were obtained for the HNHP treatment for OSAVI and Lic1. 

At 86, 93, 100 and 107 DAS, RDVI detected changes in N and P nutrition with good 

separation between treatments (Figure 3.5N). A similar trend of N and P nutritional 

variation detection was observed for SPRI, NPCI and PRI_550 at physiological 

maturity at 93, 100 and 107 DAS with good separation between treatments (Figure 3.5). 

Generally, SRIs that were optimal for N stress such as SRa_790, GNDVI_780, NDVI, 

G, MCARI, CRI1, TCARI and ZMI showed early detection of variations in N and P 

nutrition compared to P-specific indices (mNDblue_730 and PRI_550) (Figure 3.5 and 

3.6).
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Figure 3.5. Time course of N stress responsive SRIs including (A) NDVI, (B) OSAVI, (C) G, (D) MCARI, (E) TCARI, (F) ZMI, (G) SPRI, (H) NPQI, (I) NPCI, (J) 
Ctr2, (K) Lic1, (L) SIPI, (M) CRI2, (N) RDVI, (O) GNDVI_780 and (P) SRa_790 showing their responses to N and P nutritional variations at specific days after 
sowing (DAS) during quinoa crop cycle from 23 to 107 DAS. Mean values represent five replicates per treatment condition. Bars indicate the average least significant 
difference (LSD) at the 5% significance level. Asterisks (*) indicate significant difference between treatments at 5% significance level at different DAS.      
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Figure 3.6. Time course of P stress specific SRIs including (A) mNDblue_730 and (B) 
PRI_550, showing their responses to N and P nutritional variations at specific days after 
sowing (DAS) during quinoa crop cycle from 23 to 107 DAS. Mean values represent 
five replicates per treatment condition. Bars indicate the average least significant 
difference (LSD) at the 5% significance level. Asterisks (*) indicate significant 
difference between treatments at 5% significance level at different DAS.      

3.3.1.3 Assessment of quinoa agro-morpho-physiological responses under varying 
N and P availabilities

3.3.1.3.1 Morpho-physiological responses

Figure 3.7 shows a pictorial morpho-physiological response of quinoa assessed under 

different N and P availabilities. The mean values of LNC and LPC increased with 

increasing N and P supply over time with statistically significant differences between 

treatments observed at 44, 72 and 107 DAS (Figure 3.8). The raw data distribution of 

the different N and P treatments and their residual plots with fitted values for LNC and 

LPC are shown in Appendix B, Figure B-6. The HNHP treatment achieved high mean 

values in both variables (Figure 3.8). LNC responded significantly to N stress (p<0.001) 

and P stress (p<0.001) with a significant interaction (p<0.001) between the two stress 

factors (Table 3.4). A significant N×P×DAS interaction was observed (p<0.001) 

indicating the influence of all factors on LNC (Table 3.4). Similarly, LPC responded 

significantly to N stress (p<0.001) and P stress (p<0.001) but only the effect of P 

changed over time (P×DAS, p<0.001). 

SPAD values increased with increasing N and P availability with significant differences 

between treatments observed over time except at 23 and 30 DAS (Figure 3.8C). High 
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SPAD values were recorded for the HNHP treatment (Figure 3.8C). SPAD values 

responded significantly to N stress (p<0.001) and P stress (p<0.01) with a significant 

N×P interaction (p<0.001) (Table 3.4). SPAD values indicated N×P×DAS interaction 

(p<0.001). 

Additionally, An increased with a corresponding increase in N and P supply with 

significant differences between treatments observed at 44, 72 and 107 DAS (Figure 

3.8D). The An values obtained for the HNHP treatment were high compared to the other 

treatments. An  responded significantly to N stress (p<0.001) and P stress (p<0.001) and 

these effects changed over time (DAS, p<0.001) (Table 3.4). 

PH increased with increasing N and P supply with a significant difference between 

treatments indicated at 72 and 107 DAS (Figure 3.8E). Except for 44 DAS, the HNHP 

treatment led to high mean values. PH responded significantly to N stress (p<0.001) and 

P stress (p<0.05) and the effects of both factors changed over time (N×DAS, p<0.001, 

and P×DAS, p<0.05) (Table 3.4).

Figure 3.7. Morpho-physiological responses of quinoa assessed under different N and P 
availabilities. A, B, C and D indicate quinoa plants grown under HNHP, HNLP, LNHP 
and LNLP nutrient conditions respectively. The photograph was taken 74 days after 
sowing (DAS). 

         A                                              B                                     C                             D
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Figure 3.8. Mean values and time course of morpho-physiological parameters measured 
in response to different levels of N and P availability and assessed by repeated measures 
ANOVA. (A) LNC, (B) LPC, (C) SPAD, (D) An and (E) PH. Mean values represent 
five replicates per treatment. Bars indicate the average least significant difference (LSD) 
at the 5% significance level. Significant differences between treatments at 5% 
significance level at different days after sowing (DAS) are indicated with asterisks (*). 
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Table 3.4. F-tests from repeated measures ANOVA to assess the main effects of (and interactions between) N, P and days after sowing (DAS) on quinoa 
morpho-physiological parameters: leaf nitrogen content (LNC), leaf phosphorus concentration (LPC), SPAD, photosynthetic net CO2 assimilation (An) and 
plant height (PH). Statistically significant results (p<0.05) are shown in bold.  

Parameter N P N×P DAS N×DAS P×DAS N×P×DAS

LNC (%) F1,12=2784.511, p<0.001 F1,12=375.809, p<0.001 F1,12=98.300, p<0.001 F1.5,24.5=315.179, p<0.001 F1.5,24.5=14.404, p<0.001 F1.5,24.5=6.960, p=0.007 F1.5,24.5=19.920, p<0.001

LPC (ppm DM) F1,12=28.573, p<0.001 F1,12=566.097, p<0.001 F1,12=0.979, p=0.342 F1,17=673.838, p<0.001 F1,17=1.073, p=0.319 F1,17=53.861, p<0.001 F1,17=0.053, p=0.833

SPAD F1,12=233.951, p<0.001 F1,12=26.702, p<0.001 F1,12=72.752, p<0.001 F5.4,85.8=144.743, p<0.001 F5.4,85.8=11.487, p<0.001 F5.4,85.8=4.092, p<0.05 F5.4,85.8=9.580, p<0.001

An (µmol CO2 m−2 s−1) F1,12=122.208, p<0.001 F1,12=20.124, p<0.001 F1,12=3.177, p=0.100 F1.4,22.6=94.404, p<0.001 F1.4,22.6=0.991, p=0.360 F1.4,22.6=1.767, p=0.198 F1.4,22.6=1.782, p=0.196

PH (cm) F1,12=91.591, p<0.001 F1,12=6.717, p<0.05 F1,12=2.075, p=0.175 F1.2,19.5=528.766, p<0.001 F1.2,19.5=111.227, p<0.001 F1.2,19.5=10.611, p<0.05 F1.2,19.5=1.613, p=0.223
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3.3.1.3.2 Assessment of agronomic responses

Table 3.5 and Figure 3.9 show the responses of agronomic variables under different N and P 

availabilities. All agronomic variables were responsive to N and P stress except for TGW 

(Table 3.5). Mean values of VB, TPB and GY increased with increased N and P supply, and 

statistically significant differences between treatments were observed (Table 3.5). Mean 

values of all agronomic variables obtained under HNHP treatment were high except for TGW 

(Table 3.5).  No N×P interaction was observed for any of these agronomic variables (Table 

3.5). 

Table 3.5. Mean values of quinoa agronomic variables: vegetative biomass (VB), total plant 
biomass (TPB), thousand-grain weight (TGW) and grain yield (GY) in response to different 
N and P supplies. Values of VB, TPB and GY were log10-transformed to achieve 
homogeneity of the residuals. Statistically significant results (p<0.05) are shown in bold. 

Parameter log10VB (g plant-1)  log10 TPB (g plant-1)  TGW (g plant-1)  log10 GY (g pot-1)

Treatment Means  Means  Means  Means

HNHP 1.88 2.17 2.73 1.87

HNLP 1.78 2.04 2.97 1.70

LNHP 1.59 1.80 3.05 1.36

LNLP 1.48  1.66  2.93  1.18

N p<0.001 p<0.001 p=0.259 p<0.001

P p<0.001 p<0.001 p=0.636 p<0.001

N×P p=0.655  p=0.865  p=0.162  p=0.861
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Figure 3.9. Responses of quinoa agronomic variables to different N and P supplies: (A) 
vegetative biomass (VB), (B) total plant biomass (TPB), (C) thousand-grain weight (TGW) 
and (D) grain yield (GY). Variables VB, TPB and GY were log10-transformed to achieve 
homogeneity of the residuals. Mean values represent five replicates per treatment. Bars 
indicate the least significant difference (LSD) at the 5% significance level.

3.3.1.4 Assessing the relationship between spectral response and agro-morpho-
physiological status

To evaluate the relationships between SRIs and quinoa agro-morpho-physiological 

parameters, correlation coefficients (r) were calculated for the SRIs that were specific to N 

and P stress (p<0.05) (Table 3.3). Results from the correlation analysis (Table 3.6) showed 

several of the SRIs significantly correlated with LNC except for G, MCARI, NPQI and CRI2. 

The highest correlation coefficients with LNC were obtained by NDVI, SIPI, CRI1, Ctr2 and 

ZMI (Table 3.6). A similar pattern of correlation was achieved for LPC where NDVI, Ctr2, 

SIPI, SPRI and SRa_790 showed the highest correlations, whereas MCARI, NPQI and CRI2 

were non-significantly correlated (Table 3.6). 
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Almost all the SRIs significantly correlated with SPAD except for NPQI. The highest 

correlation coefficient with SPAD was recorded by NDVI, Ctr2, ZMI, SIPI and SRa_790 

(Table 3.6). For An, a wide range of the SRIs significantly correlated with the photosynthetic 

parameter except for MCARI, NPCI and CRI2 (Table 3.6). The highest correlation with An 

was achieved by NDVI, Ctr2, SIPI, ZMI and CRI1. Several of the SRIs significantly 

correlated with PH, with SPRI, NPCI, PRI_550, Ctr2 and NDVI having the highest 

correlations with the plant growth indicator (Table 3.6). The only SRIs that were poorly 

correlated with PH included MCARI, TCARI, ZMI and CRI2. 

Additionally, most of the SRIs significantly correlated with VB except for MCARI, TCARI, 

NPQI, CRI1, CRI2, GNDVI_780, SRa_790, mNDblue_730 and PRI_550. SRIs that achieved 

the highest correlation coefficient with VB included ZMI, NDVI, Ctr2, G and SIPI. A similar 

trend of correlation was observed for TPB.  For TGW, none of the SRIs correlated with the 

agronomic parameter. However, most of the SRIs significantly correlated with GY except for 

TCARI, NPCI, CRI1, CRI2, GNDVI_780 and PRI_550 (Table 3.6). The highest correlation 

coefficient with GY was obtained by ZMI, NDVI, SPRI, SIPI and G.

Altogether, it is observed that the N-specific SRIs such as NDVI, ZMI, Ctr2, SIPI, SPRI, G, 

etc., achieved the highest correlation with several of the agro-morpho-physiological 

parameters. Contrarily, the two P-specific SRIs (mNDblue_730 and PRI_550) showed a non-

significant correlation with all agronomic parameters (VB, TPB, TGW and GY) except 

mNDblue_730 which correlated significantly with GY (Table 3.6). 
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Table 3.6. Correlation analysis between optimal SRIs and quinoa agro-morpho-physiological parameters assessed by Pearson correlation. The data from 
spectral reflectance measurements and agro-morpho-physiological parameters measured at the same time were used. For LNC, LPC, An and PH, correlations 
with SRIs were implemented at 44, 72 and 107 DAS. SPAD and SRIs were correlated using data from 23 to 107 DAS. Agronomic parameters such as VB, 
TPB, TGW and GY were correlated with SRIs at 107 DAS at final harvest. Values are Pearson correlation coefficient (r) between SRIs and morpho-
physiological parameters. Significant r values (p<0.05) are indicated in bold. 

 Agro-morpho-physiological parameters

Nutrient 
specific indices LNC (%) LPC (ppm DM) SPAD An (µmol CO2 m−2 s−1) PH (cm) VB (g plant-1) TPB (g plant-1) TGW (g plant-1) GY (g pot-1)

NDVI 0.61 0.68 0.88 0.66 -0.32 0.52 0.58 -0.12 0.62

OSAVI 0.52 0.62 0.77 0.56 -0.30 0.45 0.51 -0.03 0.54

G 0.26 0.48 0.33 0.31 -0.29 0.50 0.54 -0.15 0.56

MCARI -0.13 0.04 -0.36 -0.12 -0.06 0.37 0.42 0.06 0.45

TCARI 0.57 0.43 0.71 0.55 -0.13 0.12 0.17 0.25 0.20

ZMI 0.58 0.57 0.83 0.62 -0.25 0.56 0.62 -0.26 0.65

SPRI 0.54 0.66 0.78 0.60 -0.39 0.47 0.53 -0.12 0.57

NPQI 0.14 -0.09 0.09 0.13 0.29 0.11 0.10 -0.20 0.09

NPCI -0.53 -0.64 -0.74 -0.58 0.35 -0.46 -0.52 0.08 -0.55

Ctr2 -0.61 -0.68 -0.87 -0.65 0.32 -0.52 -0.58 0.14 -0.62

Lic1 0.53 0.62 0.78 0.57 -0.31 0.45 0.50 -0.03 0.54

SIPI 0.61 0.67 0.83 0.64 -0.30 0.48 0.54 -0.04 0.57

CRI1 0.59 0.62 0.79 0.62 -0.30 0.31 0.34 -0.05 0.36

CRI2 0.02 -0.10 0.33 -0.01 0.02 -0.26 -0.25 0.30 -0.23

RDVI 0.50 0.60 0.74 0.54 -0.31 0.44 0.50 -0.02 0.53

GNDVI_780 0.51 0.59 0.80 0.52 -0.27 -0.15 -0.11 0.28 -0.07

SRa_790 0.52 0.65 0.82 0.55 -0.33 0.42 0.48 -0.08 0.52

mNDblue_730 -0.50 -0.61 -0.32 -0.57 0.31 -0.40 -0.44 0.22 -0.46

PRI_550 -0.45 -0.61 -0.50 -0.53 0.34 -0.32 -0.37 -0.01 -0.40
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3.3.2 Cowpea

3.3.2.1 Identification of optimal spectral reflectance indices for N and P status in cowpea

To select the optimal SRIs sensitive to N and P stress separately and their combined effect in 

cowpea, RMA reflecting a degree of autocorrelation was used as employed in quinoa. Many 

different SRIs were responsive to N stress, including NDVI, SR, OSAVI, G, MCARI, 

TCARI, ZMI, SPRI, PRI, NPCI, Ctr1, Ctr2, Lic1, Lic2, GM1, GM2, RDVI, PRI_550, 

PRI_norm, PRI/NDVI, GNDVI_780, MRESR, RENDVI, NDRE, CIgreen, CIrededge, 

mNDblue_530, rDVI_790, gSRa_790 and SRa_790 according to the F-statistics and F-Test 

probabilities at the p<0.05 significance level (Table 3.7). 

The NDVI, SR, OSAVI, MCARI, TCARI, ZMI, SPRI, PRI, NPCI, Ctr1, Ctr2, Lic1, Lic2, 

GM1, GM2, RDVI, PRI_550, PRI_norm, PRI/NDVI, GNDVI_780, MRESR, RENDVI, 

NDRE, CIgreen, CIrededge, mNDblue_530, gSRa_790 and SRa_790 were among the SRIs 

that responded to P stress (Table 3.7). Additionally, SRIs that were responsive to the 

combined N and P stress effect were NDVI, SR, OSAVI, MCARI, TCARI, ZMI, SPRI, PRI, 

NPCI, Ctr1, Ctr2, Lic1, Lic2, GM1, GM2, RDVI, PRI_550, PRI_norm, PRI/NDVI, 

GNDVI_780, MRESR, RENDVI, NDRE, CIgreen, CIrededge, mNDblue_530, gSRa_790 

and SRa_790 (Table 3.7; Figure 3.11). Generally, the response of SRIs for N was greater 

compared to P (Table 3.7). 

Based on the results presented in Table 3.7, SRIs that were responsive to only N stress were 

G and rDVI_790 which suggests they may be best suited for N-detection. The raw data 

distribution of the different treatments and residual plots of the N-specific SRIs for cowpea 

are shown in Appendix B, Figure B-7. However, no SRI was identified to be useful for P 

stress in cowpea (Table 3.7). The SRIs that showed no response to either N or P and their 

combined effect included MCARI1, TVI, NPQI, SIPI, ARI1, ARI2, CRI1, CRI2 and 

mNDblue_730 (Table 3.7). The NDVI, SR, MCARI, TCARI, ZMI, MRESR, CIrededge were 

among SRIs that were responsive in detecting N×P interaction in cowpea. 
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Table 3.7. Test for main effects of SRIs in response to N and P stress separately and their combined 
effects in cowpea. The responses of the spectral indices to N and P stresses and their interactions were 
tested using the F-statistics and F-Test probability via repeated measures ANOVA (RMA). The RMA 
analysis was done considering all treatment combinations and time points (DAS). The statistically 
significant results (p<0.05) indicating differences between means for levels of N or P are shown in 
bold. Full results are presented in Appendix B, Table B-2. 

Index N P N×P
NDVI F1,12=25.143, p<0.01 F1,12=13.557, p<0.05 F1,12=8.511, p<0.05

SR F1,12=24.744, p<0.01 F1,12=10.751, p<0.05 F1,12=7.666, p<0.05

MCARI1 F1,12=0.003, p=0.955 F1,12=0.004, p=0.953 F1,12=1.308, p=0.275

OSAVI F1,12=9.122, p<0.05 F1,12=7.659, p<0.05 F1,12=3.820, p=0.074

G F1,12=23.461, p<0.01 F1,12=2.429, p=0.145 F1,12=4.343, p=0.059

MCARI F1,12=36.796, p<0.001 F1,12=11.570, p<0.05 F1,12=7.256, p<0.05

TCARI F1,12=16.668, p<0.05 F1,12=15.365, p<0.05 F1,12=6.580, p<0.05

TVI F1,12=0.729, p=0.410 F1,12=0.178, p=0.681 F1,12=0.392, p=0.543

ZMI F1,12=46.102, p<0.001 F1,12=19.752, p<0.01 F1,12=13.619, p<0.05

SPRI F1,12=31.313, p<0.01 F1,12=22.642, p<0.01 F1,12=1.322, p=0.273

NPQI F1,12=1.835, p=0.201 F1,12=0.276, p=0.609 F1,12=0.039, p=0.847

PRI F1,12=39.830, p<0.001 F1,12=21.786, p<0.01 F1,12=2.553, p=0.136

NPCI F1,12=24.277, p<0.01 F1,12=19.903, p<0.01 F1,12=0.750, p=0.404

Ctr1 F1,12=41.462, p<0.001 F1,12=15.159, p<0.05 F1,12=2.678, p=0.128

Ctr2 F1,12=30.144, p<0.01 F1,12=19.676, p<0.01 F1,12=9.259, p<0.05

Lic1 F1,12=5.004, p<0.05 F1,12=6.333, p<0.05 F1,12=3.270, p=0.096

Lic2 F1,12=40.725, p<0.001 F1,12=18.699, p<0.01 F1,12=3.512, p=0.085

SIPI F1,12=4.182, p=0.063 F1,12=2.743, p=0.124 F1,12=3.779, p=0.076

GM1 F1,12=39.312, p<0.001 F1,12=13.747, p<0.05 F1,12=14.016, p<0.05

GM2 F1,12=38.419, p<0.001 F1,12=15.816, p<0.05 F1,12=10.764, p<0.05

ARI1 F1,12=0.045, p=0.835 F1,12=0.606, p=0.451 F1,12=3.191, p=0.099

ARI2 F1,12=0.060, p=0.811 F1,12=1.509, p=0.243 F1,12=8.808, p<0.05

CRI1 F1,12=0.296, p=0.596 F1,12=0.078, p=0.784 F1,12=0.344, p=0.568

CRI2 F1,12=0.415, p=0.710 F1,12=0.001, p=0.973 F1,12=0.629, p=0.443

RDVI F1,12=12.260, p<0.05 F1,12=6.450, p<0.05 F1,12=2.721, p=0.125

PRI_550 F1,12=22.013, p<0.01 F1,12=12.702, p<0.05 F1,12=0.000, p=0.979

PRI_norm F1,12=22.013, p<0.01 F1,12=12.702, p<0.05 F1,12=0.001, p=0.979

PRI/NDVI F1,12=4.962, p<0.05 F1,12=11.827, p<0.05 F1,12=0.015, p=0.905

GNDVI_780 F1,12=45.426, p<0.001 F1,12=14.389, p<0.05 F1,12=5.474, p<0.05

MRESR F1,12=167.352, p<0.001 F1,12=52.680, p<0.001 F1,12=11.288, p<0.05

RENDVI F1,12=55.619, p<0.001 F1,12=20.721, p<0.01 F1,12=4.695, p=0.051

NDRE F1,12=57.549, p<0.001 F1,12=18.749, p<0.01 F1,12=6.782, p<0.05

CIgreen F1,12=54.387, p<0.001 F1,12=15.770, p<0.05 F1,12=5.392, p<0.05

CIrededge F1,12=65.525, p<0.001 F1,12=20.862, p<0.01 F1,12=7.150, p<0.05

mNDblue_530 F1,12=134.749, p<0.001 F1,12=37.657, p<0.001 F1,12=8.687, p<0.05

mNDblue_730 F1,12=0.002, p=0.967 F1,12=0.036, p=0.852 F1,12=0.924, p=0.355

rDVI_790 F1,12=21.864, p<0.01 F1,12=2.757, p=0.123 F1,12=2.757, p=0.123

gSRa_790 F1,12=54.387, p<0.001 F1,12=15.770, p<0.05 F1,12=5.392, p<0.05

SRa_790 F1,12=14.442, p<0.05 F1,12=6.607, p<0.05 F1,12=0.469, p=0.506
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3.3.2.2 Time course response of spectral reflectance indices to N and P variations in 
cowpea

Figures 3.10 and 3.11 show the time course response of the SRIs that were indicative of the 

combined N and P stress and optimal for N stress detection respectively. The results showed 

that SRIs including MCARI, Ctr1 (Figure 3.10) and G (Figure 3.11A) demonstrated the 

earliest detection of N and P nutritional variations with the first response at 23 DAS (early 

vegetative stage) and at different time points during the growing season. These SRIs also 

showed good separation between nutritional treatments. Lower values were obtained for the 

HNHP treatment in MCARI, Ctr1 and G. SRIs such as GNDVI_780, MRESR, RENDVI, 

NDRE, CIrededge, Lic2 and gSRa_790 displayed similar patterns for detecting N and P 

variations with first response at 44 DAS (reproductive stage) and various time points such as 

51, 58, 65, 72, 79, 86, 93, 100, 107 and 114 DAS (Figure 3.10). A good separation between 

treatments was achieved by these SRIs with high values obtained for the HNHP treatment for 

GNDVI_780, MRESR, RENDVI, NDRE, CIrededge, Lic2 and gSRa_790 (Figure 3.10). 

Additionally, rDVI_790 was responsive to detecting N and P variations first at 51 DAS 

(reproductive stage), 58 and 114 DAS but with poor separation between treatments (Figure 

3.11B). SRIs including NDVI, SR, NPCI, PRI, SPRI, Ctr2 and GM2 were responsive to N 

and P variations first at 65 DAS (anthesis) and at multiple time points such as 72, 79, 93, 100, 

107 and 114 DAS with good separation between treatments (Figure 3.10). Except for Ctr2, 

high values were generally obtained for HNHP treatment in NDVI, SR, PRI, SPRI and GM2. 
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Figure 3.10. Time course of SRIs that were indicative of the combined N and P stress effect in cowpea including (A) NDVI, (B) SR, (C) MCARI, (D) SPRI, (E) 
NPCI, (F) Ctr1 (G) Ctr2 (H) PRI, (I) Lic2, (J) GM2, (K) GNDVI_780, (L) MRESR, (M) RENDVI, (N) NDRE, (O) CIrededge and (P) gSRa_790 showing their 
responses to N and P nutritional variations at several days after sowing (DAS) during the crop cycle from 23 to 114 DAS. Mean values represent five replicates 
per treatment condition. Bars indicate the average least significant difference (LSDs) at a 5% significance level. Asterisks (*) indicate significant difference 
between treatments at 5% significance level at different DAS.      
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Figure 3.11. Time course of optimal N stress SRIs including (A) G and (B) rDVI_790 
showing their responses to N and P nutritional variations at different days after sowing (DAS) 
during cowpea crop cycle from 23 to 114 DAS. Mean values represent five replicates per 
treatment condition. Bars indicate the average least significant difference (LSDs) at a 5% 
significant level. Asterisks (*) indicate significant difference between treatments at 5% 
significance level at different DAS.

3.3.2.3 Evaluating the agro-morpho-physiological responses under different N and P 
availabilities in cowpea

3.3.2.3.1 Morpho-physiological responses

The morpho-physiological responses of cowpea under varying N and P availabilities are 

displayed in Figure 3.12. The results showed that the mean values of LNC and LPC increased 

with increasing N and P supply over time with statistically significant differences between 

treatments observed at 44, 72 and 107 DAS (Figure 3.13A-B). High mean values were 

obtained for both variables in the HNHP treatment. The results as shown in Table 3.8 

indicated that LNC responded significantly to N stress (p<0.001) and P stress (p<0.001) with 

significant (p<0.05) N×P interaction. The application of N had a significant (p<0.05) 

interactive effect with DAS on LNC (Table 3.8). Likewise, LPC responded significantly to 

both N (p<0.001) and P stress (p<0.001) but with non-significant N×P interaction (Table 3.8). 

Both N and P fertilisation interacted significantly (p<0.001) and (p<0.001) with DAS 

respectively.

SPAD values increased with increasing N and P fertilisation with significant differences 

between treatments observed over time except 30 and 37 DAS (Figure 3.13C). High SPAD 

values were obtained for HNHP treatment (Figure 3.13C). SPAD values responded 
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significantly to N stress (p<0.001) and P stress (p<0.001) with significant N×P interactions 

(p<0.01) (Table 3.8). SPAD values were significantly impacted by N×P×DAS interactions 

(p<0.05). 

Furthermore, An increased along with an increase in N and P fertilisation with significant 

differences between treatments observed at 44, 72 and 107 DAS (Figure 3.13D). An values 

recorded for HNHP were high compared to the other treatments. The results indicate that An 

responded significantly to only N stress (p<0.001) but not P stress and was impacted 

significantly by DAS (p<0.001) (Table 3.8). The PH increased with increasing N and P 

supply with a significant difference between treatments observed at 37 and 51 DAS (Figure 

3.13E). High values of PH were recorded in HNHP compared to the other treatments. The PH 

responded significantly to only N stress (p<0.001) and was affected significantly by DAS 

(p<0.001) (Table 3.8). 

Figure 3.12. Morpho-physiological responses of cowpea assessed under different N and P 
availabilities. A, B, C and D indicate cowpea plants grown under HNHP, HNLP, LNHP and 
LNLP nutrient conditions respectively. The photograph was taken 74 days after sowing 
(DAS). 

             A                                   B                         C                  D
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Figure 3.13. Morpho-physiological parameters including (A) LNC, (B) LPC, (C) SPAD, (D) 
An and (E) PH to different N and P availability assessed by repeated measures ANOVA 
(RMA). Mean values are untransformed and represent five replicates per treatment condition. 
Bars indicate the average least significant difference (LSD) at a 5% significance level. 
Asterisks (*) indicate significant difference between treatments at 5% significance level at 
different DAS.      
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Table 3.8. Test for fixed and main effects of cowpea morpho-physiological parameters including leaf nitrogen content (LNC), leaf phosphorus concentration 
(LPC), SPAD, photosynthetic net CO2 assimilation (An) and plant height (PH) in response to the combined N and P stress assessed by repeated measures 
ANOVA. The F-statistics and F-Test probabilities were used to test the effects/responses of the morpho-physiological parameters to the combined nutrient 
stress factors as well as their interactions. Significant results are set at p<0.05 and are shown in bold.  

Index N P N×P DAS N×DAS P×DAS N×P×DAS

LNC (%) F1,12=264.951, p<0.001 F1,12=65.707, p<0.001 F1,12=7.995, p<0.05 F2,31.6=125.447, p<0.001 F2,31.6=5.339, p<0.05 F2,31.6=3.049, p=0.062 F2,31.6=2.042, p=0.147

LPC (ppm DM) F1,12=39.591, p<0.001 F1,12=845.892, p<0.001 F1,12=2.617, p=0.132 F1.9,31=127.236, p<0.001 F1.9,31=21.684, p<0.001 F1.9,31=75.563, p<0.001 F1.9,31=0.706, p=0.497

SPAD F1,12=194.851, p<0.001 F1,12=45.860, p<0.001 F1,12=25.748, p<0.01 F5.5,88=32.917, p<0.001 F5.5,88=8.391, p<0.001 F5.5,88=2.683, p<0.05 F5.5,88=3.120, p<0.05

An (µmol CO2 m−2 s−1) F1,12=928.544, p<0.001 F1,12=21.710, p=0.089 F1,12=0.018, p=0.959 F1.4,22.4=133.862, p<0.001 F1.4,22.4=2.428, p=0.073 F1.4,22.4=2.534, p=0.067 F1.4,22.4=0.101, p=0.799

PH (cm) F1.5,24=35.601, p<0.001 F1.5,24=3.826, p=0.074 F1.5,24=0.005, p=0.946 F1.5,24=1446.302, p<0.001 F1.5,24=3.484, p=0.059 F1.5,24=0.330, p=0.660 F1.5,24=1.338, p=0.274
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3.3.2.3.2 Assessment of agronomic parameters

Table 3.9 and Figure 3.14 show the responses of agronomic parameters assessed in cowpea 

under different N and P availabilities. All agronomic variables were responsive to N and P 

stress except for HSW and SY which responded only to N (Table 3.9). Mean values of the 

number of pods, number of seeds, HSW and SY increased with increased N and P supply 

except for FW and DW which had the LNLP treatment slightly higher than LNHP (Table 3.9 

and Figure 3.14). The mean values of all agronomic variables obtained under the HNHP 

treatment were high compared to the other treatments (Table 3.9). Statistically significant 

differences between treatments were observed. N×P interaction was observed only for FW 

and DW agronomic variables (Table 3.9). 

Table 3.9. Mean values and responses of cowpea agronomic parameters including fresh 
weight (FW), dry weight (DW), number of pods, number of seeds, hundred seed weight 
(HSW) and seed yield (SY) to different N and P supply. The mean values of the number of 
pods and number of seeds were transformed based on the log10 scale to achieve homogeneity 
of the residuals. Significant levels of agronomic responses to N, P and their interactions are 
set at p<0.05 and are shown in bold. 

Parameter FW (g plant-1)  DW (g plant-1)  Number of 
pods  Number of 

seeds  HSW (g plant-1)  SY (g pot-1)

Treatment Means  Means  Means  Means  Means  Means

HNHP 251.90 59.55 1.70 2.65 9.01 40.60

HNLP 186.10 47.91 1.57 2.54 8.67 30.40

LNHP 76.30 29.51 1.30 2.30 7.44 14.50

LNLP 76.40 28.44 1.19 2.27 7.68 14.20

N p<0.001  p<0.001  p<0.001  p<0.001  p<0.001  p<0.001

P p<0.05 p<0.05 p<0.001 p<0.05 p=0.820 p=0.032

N×P p<0.05  p<0.05  p=0.513  p=0.113  p=0.196  p=0.042
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Figure 3.14. Responses of cowpea agronomic parameters including (A) FW, (B) DW, 
(C) number of pods, (D) number of seeds, (E) HSW and (F) SY. The mean and plotted 
values of the number of pods and number of seeds were transformed based on the log10 
scale to achieve homogeneity of the residuals. Mean values represent five replicates per 
treatment condition. Bars indicate the average least significant difference (LSD) at a 5% 
significance level.

3.3.2.4 Assessing the relationship between spectral response and agro-morpho-
physiological status in cowpea

To evaluate the relationships between the spectral response and cowpea agro-morpho-

physiological parameters, correlation coefficients were calculated for the SRIs that were 

specific to N and P stress (p<0.05) (Table 3.10). Except for G, several of the SRIs 

significantly correlated with LNC according to the correlation analysis results (Table 

3.10). The highest correlation coefficients with LNC were found among the red-edge 

group indices (i.e., MRESR, RENDVI, CIrededge, CIgreen, NDRE) and PRI (Table 

3.10). A wide range of SRIs significantly correlated with LPC with mNDblue_530, PRI, 

Lic2, PRI/NDVI, GNDVI and including the red-edge group indices (i.e., MRESR, 

RENDVI, CIrededge, CIgreen, NDRE) obtaining the highest correlation coefficients. 

SRIs such as OSAVI, G, Lic1, RDVI, rDVI_790 and SRa_790 non-significantly 

correlated with LPC. 
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Almost all the SRIs significantly correlated with SPAD except for G and rDVI_790. 

The highest correlation coefficient with SPAD was achieved by ZMI, MRESR, Lic2, 

GM1, GM2, Ctr1 and Ctr2. For An, almost all the SRIs significantly correlated with the 

photosynthetic parameter except for G (Table 3.10). The highest correlation with An was 

recorded by the red-edge group indices (i.e., MRESR, RENDVI, CIrededge, NDRE) 

including PRI and mNDblue_530. Several of the SRIs significantly correlated with PH, 

with mNDblue_530, PRI_550, PRI_norm, GNDVI_780 and RENDVI obtaining the 

highest correlations with the plant growth parameter (Table 3.10). The SRIs that non-

significantly correlated with PH included SPRI, NPCI, Ctr1, Lic2, RDVI and 

PRI/NDVI. 

Additionally, most of the SRIs significantly correlated with FW except for G, MCARI, 

PRI_550, PRI_norm, PRI/NDVI and rDVI_790 (Table 3.10). A similar pattern of 

correlation was observed for DW, number of pods, number of seeds and SY with a wide 

range of SRIs significantly correlating with the agronomic variables. The highest 

correlation coefficients were recorded across the agronomic variables by SRIs including 

the red-edge group indices (i.e., MRESR, RENDVI, CIrededge, NDRE, CIgreen), GM1, 

GM2 and ZMI. However, SRIs such as G, MCARI, PRI_550, PRI_norm, PRI/NDVI 

and rDVI_790 non-significantly correlated with the agronomic variables (Table 3.10). 

All SRIs except for mNDblue_530 showed no significant correlation with HSW (Table 

3.10). 
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Table 3.10. Correlation analysis between nutrient stress (N and P) responsive spectral indices and agro-morpho-physiological parameters assessed in cowpea. 
The data from spectral reflectance measurements and sampling points of agro-morpho-physiological parameters measured at the same time were used. For 
LNC, LPC and An, correlations with SRIs were implemented at 44, 72 and 107 DAS. PH and SRIs were correlated using data at 23, 37 and 51 DAS. Correlation 
between SPAD and SRIs were correlated using data from 23 to 114 DAS. Additionally, correlation between agronomic parameters including FW, DW, number 
of pods, number of seeds, HSW and SY and SRIs were achieved at 114 DAS at final harvest. Values are Pearson correlation coefficient (r) between spectral 
reflectance indices and agro-morpho-physiological stress parameters. Significant r values at p<0.05 are indicated in bold.

Index LNC (%) LPC (ppm DM) SPAD An (µmol CO2 m−2 s−1) PH (cm) FW (g plant-1) DW (g plant-1) Number 
of Pods

Number of 
Seeds HSW (g plant-1) SY (g pot-1)

NDVI 0.59 0.33 0.64 0.57 0.68 0.56 0.55 0.58 0.55 0.35 0.54

SR 0.59 0.32 0.61 0.58 0.68 0.59 0.57 0.59 0.57 0.39 0.56

OSAVI 0.52 0.23 0.55 0.48 0.44 0.47 0.47 0.52 0.48 0.26 0.47

G -0.13 -0.21 -0.08 -0.23 -0.35 0.28 0.28 0.37 0.32 0.07 0.30

MCARI -0.36 -0.34 -0.42 -0.41 -0.65 0.07 0.08 0.18 0.15 -0.13 0.13

TCARI 0.40 0.31 0.58 0.38 0.69 0.49 0.49 0.52 0.45 0.34 0.45

ZMI 0.57 0.34 0.74 0.58 0.64 0.60 0.58 0.61 0.58 0.43 0.58

SPRI 0.54 0.34 0.58 0.52 -0.14 0.48 0.49 0.52 0.45 0.23 0.43

PRI 0.65 0.39 0.65 0.60 0.40 0.54 0.54 0.56 0.51 0.29 0.50

NPCI -0.54 -0.34 -0.57 -0.52 0.22 -0.45 -0.46 -0.49 -0.42 -0.21 -0.40

Ctr1 -0.50 -0.36 -0.68 -0.54 -0.16 -0.52 -0.53 -0.50 -0.44 -0.34 -0.43

Ctr2 -0.57 -0.34 -0.68 -0.55 -0.68 -0.55 -0.54 -0.57 -0.54 -0.34 -0.53

Lic1 0.49 0.22 0.52 0.44 0.55 0.47 0.46 0.51 0.47 0.26 0.46

Lic2 0.52 0.37 0.70 0.54 0.24 0.58 0.59 0.58 0.51 0.37 0.50

GM1 0.57 0.32 0.68 0.59 0.71 0.61 0.60 0.60 0.58 0.43 0.57

GM2 0.58 0.33 0.70 0.59 0.67 0.60 0.59 0.61 0.58 0.42 0.58

RDVI 0.51 0.20 0.55 0.49 -0.16 0.46 0.45 0.51 0.47 0.23 0.46

PRI_550 -0.55 -0.35 -0.17 -0.59 0.90 -0.36 -0.39 -0.39 -0.30 -0.10 -0.28

PRI_norm -0.55 -0.35 -0.17 -0.59 0.90 -0.36 -0.39 -0.39 -0.30 -0.10 -0.28

PRI/NDVI 0.58 0.37 0.45 0.52 0.18 0.35 0.36 0.42 0.34 0.14 0.33

GNDVI_780 0.62 0.37 0.18 0.57 0.89 0.58 0.57 0.57 0.54 0.37 0.53

MRESR 0.66 0.42 0.70 0.64 0.72 0.62 0.63 0.62 0.59 0.40 0.58
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RENDVI 0.64 0.39 0.23 0.60 0.88 0.60 0.60 0.60 0.57 0.38 0.56

NDRE 0.63 0.39 0.26 0.59 0.87 0.58 0.57 0.60 0.57 0.38 0.56

CIgreen 0.61 0.36 0.30 0.56 0.88 0.60 0.59 0.58 0.55 0.39 0.54

CIrededge 0.63 0.39 0.30 0.59 0.87 0.59 0.58 0.60 0.57 0.38 0.56

mNDblue_530 -0.59 -0.43 -0.20 -0.62 0.92 -0.54 -0.54 -0.44 -0.41 -0.48 -0.41

rDVI_790 0.44 0.09 0.02 0.35 0.87 0.38 0.38 0.44 0.40 0.12 0.38

gSRa_790 0.61 0.36 0.30 0.56 0.88 0.60 0.59 0.58 0.55 0.39 0.54

SRa_790 0.48 0.23 0.21 0.39 0.88 0.48 0.48 0.51 0.48 0.26 0.46
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3.4 Discussion 

3.4.1 Identification of optimal spectral reflectance indices for N and P status in 
quinoa and cowpea

One of the key objectives of this study was to identify optimal SRIs capable of 

distinguishing between individual and combined N and P stresses in quinoa and 

cowpea. The results revealed a wide range of SRIs including NDVI, SR, OSAVI, G, 

MCARI, TCARI, ZMI, SPRI, PRI, NPCI, Ctr1, Ctr2, Lic1, Lic2, GM1, GM2, 

GNDVI_780, MRESR, RENDVI, NDRE, CIgreen, CIrededge, mNDblue_530, 

gSRa_790 and SRa_790 that were responsive to N stress in both crops (Table 3.3 and 

Table 3.7). The high response of these SRIs to N stress could be explained by their 

sensitivity to the leaf chlorophyll content and the LNC, which is directly related to the 

N status (Prey and Schmidhalter, 2019). As there is less chlorophyll in the leaves when 

there is N deficiency, the spectral reflectance of the leaves is generally higher in the 

green and red edge regions (Tian et al., 2014; Zhao et al., 2018). Most of these SRIs are 

responsive to N stress in several crops (Kanke et al., 2011; Ranjan et al., 2012; Li et al., 

2014; Lu et al., 2023).

SRIs comprising SR, PRI, Ctr1, Lic2, GM1, GM2, PRI_550, MRESR, RENDVI, 

NDRE, CIgreen, CIrededge, mNDblue_530 and gSRa_790 were responsive to P stress 

in both crops (Table 3.3 and Table 3.7). Leaf spectral reflectance in the visible range 

(350-750 nm) may increase when there is a P deficiency (Zhang et al., 2023). One of the 

distinctive responses of plants to P deficiency is the apparent accumulation of 

anthocyanin which enhances the red coloration of the leaf and further alters the spectral 

reflectance characteristics of leaves (Wang et al., 2020; El-Mejjaouy et al., 2023; 

Siedliska et al., 2023). In a study, Kawamura et al. (2011), demonstrated many of the 

SRIs identified in this study to be responsive to P stress in a legume-based pasture. 

According to the authors, the PRI showed the highest coefficient of determination for 

most of the P status variables.

In this study, the combined N and P stress was detected in both crops by similar SRIs 

such as SR, PRI, Ctr1, Lic2, GM1, GM2, MRESR, RENDVI, NDRE, CIgreen, 

CIrededge, mNDblue_530 and gSRa_790 (Table 3.3 and Table 3.7), suggesting that 

these indices could be indicative of both stresses but may not be specific for their 
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detection. Therefore, based on the present results, SRIs that indicate specificity and are 

optimal for N stress detection in quinoa are NDVI, OSAVI, G, MCARI, TCARI, ZMI, 

SPRI, NPQI, NPCI, Ctr2, Lic1, SIPI, CRI1, CRI2, RDVI, GNDVI_780 and SRa_790 

(Table 3.3; Figure 3.5). On the other hand, SRIs that indicated specificity and were 

optimal for N stress detection in cowpea included G and rDVI_790 (Table 3.7; Figure 

3.11). The SRIs including RVI, RDVI and OSAVI were used to determine optimal 

wavebands to discriminate N status in wheat (Lunagaria et al., 2015). The authors 

revealed that the red edge inflection point (REIP) at 733–736 nm was found to be the 

most responsive to N status among all SRIs. Furthermore, the results presented here 

show that the two SRIs that indicated specificity for P stress detection in quinoa 

included mNDblue_730 and PRI_550 (Table 3.3; Figure 3.6). However, no SRI was 

identified to be optimal for P stress detection in cowpea (Table 3.7), necessitating 

further studies. 

In this study, SRIs such as MCARI1, TVI, ARI1 and ARI2 showed no response to N 

and P stresses in both crops (Table 3.3 and Table 3.7) and could be due to the saturation 

of these indices which resulted in insensitivity to both stress factors (Mutanga et al., 

2023). Generally, SRIs may not respond to N and P stress because the changes in crop 

growth, reduced canopy cover, chlorophyll content and biomass production caused by 

nutrient deficiency do not significantly affect the spectral reflectance (Peng et al., 2020). 

However, it is important to note that the effectiveness of responsive SRIs can vary 

depending on factors such as crop type, growth stage and environmental conditions.

3.4.2 Detection of nutritional variations by spectral reflectance indices 

The application of spectral reflectance technologies for early detection of crop 

nutritional status is vital for precision fertilisation management and ensuring sustainable 

and efficient agricultural practices (Huang et al., 2020; Lu et al., 2023). With the use of 

spectral sensors, this method measures crop reflectance at different wavelengths, which 

can be indicative of specific nutrient deficiency at a particular crop growth stage 

(Siedliska et al., 2021). However, there is limited research on the use of this technology 

for monitoring the complex nutritional status of quinoa and cowpea. This present study 

sought to bridge this gap by monitoring both N and P status in these crops during the 

entire growth period using SRIs derived from a contact proximal sensor. The results 

showed the early detection of N and P nutritional variations coupled with better 
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separation between the treatment conditions at the early growth stage in quinoa by SRIs 

including MCARI, GNDVI_780, SRa_790, NDVI, G, TCARI and ZMI from 37-44 

DAS (Figure 3.5). For cowpea, SRIs such as MCARI, Ctr1 and G demonstrated early 

detection of N and P nutritional variations at 23 DAS (Figure 3.10). This result suggests 

that these SRIs could be effective for monitoring the complex nutritional status of these 

crops throughout the growing season and most importantly, at the early growth stages. 

Real-time and early detection of nutritional variations enables growers to fine-tune their 

fertilisation regime, minimise stress conditions, maintain optimal plant growth, reduce 

significant yield losses, and ultimately maximise crop productivity (Huang et al., 2020; 

Lu et al., 2023). Additionally, early detection of nutritional variations is important for 

ensuring efficient use of resources and reducing environmental pollution. In this study, 

detection of N and P nutritional variations by SRIs was faster in cowpea compared to 

quinoa. The ability of leguminous crops to fix atmospheric N could alter spectral 

reflectance to nutrient variations. 

The use of spectral reflectance to detect N and P variations in various crops has been 

reported (Osborne, 1999; Patil et al., 2007; Özyiğit et al., 2013; Cudjoe et al., 2023b). 

For instance, NDVI was effective in detecting early N and P variations in quinoa and at 

various time points during the crop cycle (Cudjoe et al., 2023b).  

This study also revealed the effectiveness of SRIs comprising OSAVI, SPRI, NPCI and 

PRI_550 that detected N and P nutritional variations only at later growth stages, 

especially for quinoa (Figure 3.5). The late detection of crop nutritional stress may limit 

the timely implementation of corrective fertilisation measures, leading to potential yield 

losses and reduced plant health. Therefore, it is crucial to employ effective monitoring 

and detection techniques (i.e., optimal SRIs) to identify and address crop nutritional 

stress promptly to mitigate its implications on crop yield and plant health. The impact of 

late detection of crop nutritional stress can vary depending on the specific nutrient 

deficiency and the stage of plant growth. While SRIs can respond to N and P stress, the 

response is complex and can be influenced by various factors, including the specific 

plant species, growth stage, the nutrients involved and the environmental conditions 

(Peng et al., 2020). Therefore, it is crucial to consider these factors when interpreting 

spectral reflectance data in the context of complex nutrient stress. Further work is 

required to validate the findings beyond the glasshouse settings for wider applicability. 
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3.4.3 Morpho-physiological responses under varying N and P availabilities

These findings showed an overall positive response to the simultaneous application of 

the different levels of N and P treatments, which was mainly reflected in the significant 

increases in morpho-physiological metrics measured in both crops (Figure 3.8; Figure 

3.13). This result can be explained by the fact that there was an increase in N uptake and 

LNA when P levels in the plant were adequate or high while increasing the N supply 

increased the P uptake and concentration (Agren et al., 2012; Duncan et al., 2018a). 

This N-P nutritional interaction influenced the SPAD chlorophyll content and C 

assimilation for photosynthesis. The N:P ratio in plant tissues, particularly leaves, is a 

widely used indicator to predict N or P limitation to plant productivity (Cleveland et al., 

2011; Jiang et al., 2019). A large body of research has proven synergetic plant growth 

responses and N and P uptake on a global scale (Schleuss et al., 2020; Wang et al., 

2022; Xia et al., 2023). The mechanisms that cause synergistic responses of plant 

growth to multiple nutrient addition have been shown that plants and microbes adapt 

mechanisms of nutrient uptake or change allocation patterns, in the way that they trade 

one nutrient they have in excess into the acquisition of a limiting nutrient until their 

growth is co-limited by both nutrients (Jiang et al., 2019; Xia et al., 2023).

Recently, Hu and Chu (2020) assessed the growth performance and N/P utilisation of 

plants under different N–P conditions. The authors demonstrated that due to imbalanced 

N–P nutrition, a high P supply cannot stimulate plant growth under low N conditions. 

However, plant growth can be effectively stimulated by a high P supply in high N 

availability when they receive an optimally balanced N–P nutrition and this reflects the 

results in this present study (Figure 3.8; Figure 3.13). The findings reported in this 

thesis contradict Taaime et al. (2023) where high N and P fertilisation did not result in a 

concomitant increase in chlorophyll content and PH in quinoa grown under semi-arid 

conditions. 

3.4.4 Agronomic responses under varying N and P availabilities

A positive effect of the combined application of N and P was observed on agronomic 

metrics: VB, TPB and GY but not TGW in quinoa (Table 3.5 and Figure 3.9). However, 

no interactive effect of N and P was observed in all these variables probably due to the 

enhanced N limitation. For cowpea, the average values for agronomic metrics such as 
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the number of pods, number of seeds, HSW and SY demonstrated an upward trend with 

higher N and P supply. However, in the case of FW and DW, the treatment with LNLP 

showed marginally higher values compared to the treatment with LNHP with N×P 

interaction (Table 3.9; Figure 3.14). The individual and combined application of N and 

P significantly increased the aboveground biomass with uniformly synergistic 

interaction (Jiang et al., 2019). Likewise, a synergistic interaction of N and P co-

fertilisation on yield in many crops including wheat, millet, rice, sorghum, corn, etc., 

has been reported (Aulakh and Aulakh, 2005; Rietra et al., 2017; Schlegel and Bond, 

2017; Grohskopf et al., 2019). The present results disagree with Taaime et al. (2023) 

who reported a high biomass and GY in quinoa with low N and high P fertilisation in 

the dry areas of Morocco. This highlights the need to maintain an optimally balanced 

nutrient for plant growth, biomass accumulation, tissue nutrient concentrations and crop 

productivity. 

3.4.5 Assessing how well the spectral response reflected the morpho-physiology 
and crop performance

In the present study, SRIs that were optimal for assessing the N and P status separately 

in quinoa and cowpea were evaluated for their relationship with the morpho-

physiological and agronomic parameters through correlation analysis (Table 3.6 and 

Table 3.10). Remarkably, the present findings showed a wide range of significant 

correlations between the SRIs (e.g., NDVI, SR, MCARI, OSAVI, Ctr2, Lic1, Lic2, 

GM1, GM2, PRI_norm RDVI, GNDVI_780, MRESR, RENDVI, NDRE, CIrededge, 

SRa_790, SIPI, SPRI, mNDblue_730 and PRI_550) with LNC, LPC, SPAD, An and PH 

in quinoa and cowpea (Table 3.6 and Table 3.10). 

The sensitivity of these SRIs to the physiological changes in different leaf pigment 

pools (i.e., chlorophyll and anthocyanin) may be the cause of the significant correlations 

between the indices and the morpho-physiological parameters (Sims and Gamon, 2002; 

Hallik et al., 2017). Several of these SRIs have been reported to correlate significantly 

with crop morpho-physiological parameters under different stress conditions (Patil et 

al., 2007; Rodriguez et al., 2006). For instance, NDVI showed a significant relationship 

with morpho-physiological parameters (i.e., chlorophyll content and PH) under multiple 

stress conditions that resulted in the discrimination of stressed and unstressed soybean 

crops (Patil et al., 2007). The present results suggest that many of these SRIs could be 
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used for non-destructive monitoring of quinoa and cowpea morpho-physiological status 

under complex nutrient deficit conditions. 

Furthermore, SRIs comprising NDVI, OSAVI, G, ZMI, Ctr2, Lic1, RDVI, SIPI and 

SPRI correlated significantly with agronomic parameters (VB, TPB and GY) except for 

TGW in quinoa. In cowpea, SRIs such as NDVI, SR, OSAVI, TCARI, ZMI, SPRI, PRI, 

Lic1, Lic2, GM1, GM2, GNDVI_780, MRESR, RENDVI, NDRE, CIrededge and 

gSRa_790 correlated strongly with agronomic parameters: FW, DW, number of pods, 

number of seeds and SY except for HSW. A study on maize varieties with different N 

efficiencies found that N fertilisation significantly increased SRIs such as NDVI and 

GOSAVI, and these indices were highly correlated with yield, dry matter and LNC at 

different grain filling stages (Zhao et al., 2023). The present results suggest that these 

SRIs could be used as predictors to assess the crop performance of quinoa but not for 

TGW and HSW in cowpea. A study on wheat grain development suggested that the 

regulation of carbohydrate levels during development is highly sophisticated and may 

impact grain weight (Whan et al., 2014). Therefore, the relationship between spectral 

indices and TGW and HSW is complex and may be influenced by multiple factors that 

can vary depending on the specific stress conditions and crop types. 

3.5 Conclusions

The potential of SRIs for distinguishing between the N and P nutritional status in quinoa 

and cowpea at the leaf scale using contact PS is demonstrated in this study. The results 

revealed a wide range of SRIs including NDVI, SR, OSAVI, G, MCARI, TCARI, ZMI, 

SPRI, PRI, NPCI, Ctr1, Ctr2, Lic1, Lic2, GM1, GM2, GNDVI_780, MRESR, 

RENDVI, NDRE, CIgreen, CIrededge, mNDblue_530, gSRa_790 and SRa_790 that 

were responsive to N stress in both crops. However, SRIs that indicated specificity and 

optimal for N stress detection in quinoa were NDVI, OSAVI, G, MCARI, TCARI, ZMI, 

SPRI, NPQI, NPCI, Ctr2, Lic1, SIPI, CRI1, CRI2, RDVI, GNDVI_780 and SRa_790. 

On the other hand, SRIs that indicated specificity and were optimal for N stress 

detection in cowpea included G and rDVI_790. For P status, the two SRIs that were 

optimal and showed specificity for their detection in quinoa were mNDblue_730 and 

PRI_550. Contrarily, no SRI was identified to be specific for P status in cowpea 

requiring further research.  
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In this study, the feasibility of applying spectral reflectance data to detect early 

nutritional variations during the crop cycle of quinoa and cowpea was evaluated. The 

results indicated that it was possible to detect early N and P nutritional variations in 

tandem with better separation between the treatment conditions at the early critical 

growth stages by SRIs including GNDVI_780, SRa_790, MCARI, NDVI, G, TCARI, 

Ctr2 and ZMI in quinoa from 37-44 DAS. For cowpea, SRIs such as MCARI, Ctr1 and 

G demonstrated early detection of N and P nutritional variations at 23 DAS. The 

implications for this result are that growers of these crops can adjust their fertilisation 

schedule, reduce stress conditions, maintain optimal plant growth, minimise significant 

yield losses and increase their crop productivity when nutritional variations are detected 

in real-time and at an early stage.

Additionally, the present findings showed that the concurrent application of the various 

levels of N and P nutrients produced an overall positive response. This was primarily 

reflected by the notable increases in morpho-physiological parameters including LNC, 

LPC, SPAD, An and PH in both crops. Again, applying N and P together had a 

beneficial impact on agronomic parameters such as VB, TPB and GY but not for TGW 

in quinoa. For cowpea, the average values for agronomic metrics such as FW, DW, 

number of pods, number of seeds and SY demonstrated an upward trend with higher N 

and P supply. This highlights the need to maintain optimally balanced nutrients for 

tissue nutrient concentrations, chlorophyll content, photosynthetic capacity, plant 

growth, biomass accumulation and crop productivity. 

In the present study, several SRIs that were optimal for assessing the N and P status in 

both crops also showed strong significant relationships with the agro-morpho-

physiological parameters investigated. The strong significant relationships suggest that 

these SRIs hold the potential to accurately estimate different agro-morpho-physiological 

traits in a rapid, low-cost and non-destructive manner under controlled conditions. 

Validation using a spectroradiometer with a wider wavelength range or a RS tool over 

various plant species exposed to varying levels of N and P supplies is necessary to 

ensure the applicability of these findings as a guide for monitoring the nutritional status 

and agro-morpho-physiological crop performance in these crops. Future work on this 

study will focus on scaling up these findings for field phenotyping in Africa, which 
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could be crucial for PA and provide support for the development of portable sensors for 

field phenotyping. 
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Abstract 

Water and nitrogen (N) limitation and their interactions continue to be the key limiting 

factors for the agronomic production of wheat (Triticum aestivum L.). In this study, the 

morpho-physiological responses to drought at high and low Nitrogen (N) conditions and 

the potential of spectral reflectance indices (SRIs) to discriminate drought and N 

stresses at the leaf scale, in spring wheat grown under controlled glasshouse conditions, 

were assessed. Morpho-physiological parameters indicative of water and N stress were 

measured in tandem with SRIs computed from multiple wavelengths using a handheld 

proximal sensor. These responses were analysed using linear mixed models (LMMs) 

fitted using residual maximum likelihood (REML) and with an autocorrelation (AR1) 

model to assess the effects of N and water stress and their interactions. Correlation 

analysis was employed to assess the relationship between effective SRIs and wheat 

morpho-physiological status. The results demonstrated a greater amplitude of drought 

response under HN compared to LN with interactive effects except for leaf N content 

(LNC). In an ensemble of 39 SRIs, only the Renormalised Difference Vegetation Index 
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(RDVI) and Red Difference Vegetation Index (rDVI_790) indicated higher specificity 

for drought stress detection. The results showed that the chlorophyll-sensitive indices 

including the chlorophyll Index (mNDblue_730), Greenness Index (G), Lichtenthaler 

Index (Lic2) and the red-edge indices: Modified Red-Edge Simple Ratio (MRESR), 

chlorophyll Index Red-Edge (CIrededge) and Normalised Difference Red-Edge 

(NDRE) showed higher specificity for N-stress detection. Correlation analysis revealed 

that the morpho-physiological status under water deficit and N availability is best 

estimated using several of the SRIs. The results indicated the feasibility of using a low-

cost handheld proximal sensor for monitoring the morpho-physiological status in a rapid 

and non-destructive manner and discriminating drought and N stresses in spring wheat. 

Keywords: Wheat, water and N interaction, proximal sensor, spectral reflectance indices, 
morpho-physiological status, drought response, N status

4.1 Introduction

Agriculture is currently facing unprecedented challenges due to the increasing human 

population, depleting natural resources and climate change scenarios (FAO, 2023). 

Wheat (Triticum aestivum L.), the third-most important crop after rice and maize and is 

cultivated widely throughout the world to meet global food needs (Ray et al., 2013). 

The improvement of both yields and resource use efficiency (water and nutrient use 

efficiency) presents major challenges. Therefore, the development and adoption of 

innovative technology and optimal management practices, especially for water and N 

input, which are key limiting factors of crop production, are crucial for increasing 

global future food supply and ecological sustainability (Erenstein et al., 2022).  

Water stress (drought) occurs when the plant water requirement cannot be fully met 

through precipitation or irrigation, affecting the normal functioning of the plant (e.g., 

growth and development, photosynthetic rate and stomatal conductance) (Camaille et 

al., 2021). Several knowledge gaps such as understanding the competitive dynamics 

under water stress and elucidating the mechanisms underlying stress tolerance and 

recovery in crops can be identified despite the recent advances in understanding plant 

responses to water stress (dos Santos et al., 2022). Many of these gaps are linked to 

unidentified interactions between various environmental factors. The existence of an 

initial or prior stress that modifies a plant's typical response to a subsequent stress 
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because of an acclimation response is referred to as an ‘interaction’ between the stress 

factors (Atkinson et al., 2012). However, from a pragmatic perspective, research must 

address intricate interactions among complex environmental factors. 

From the perspective of agricultural practice, the most crucial interaction with water 

stress is N availability. N is the main macronutrient for plant growth and function and is 

the principal regulator of many physiological, morphological and biochemical processes 

(Mu and Chen, 2021). Furthermore, spatial variation in the soil and temporal changes in 

meteorological conditions cause spatiotemporal variability in water and N availability. 

Therefore, matching water supply to N availability is critical to ensure optimal crop 

performance, providing opportunities for PA. A robust method that can detect small 

changes in crop growth and physiology in response to water and N availability is 

needed to rapidly monitor heterogeneity, optimise input supply and prevent detrimental 

effects on crop productivity and the environment. 

Recent advancements in spectroscopic techniques for plant phenotyping and phenomics 

offer opportunities to measure spectral reflectance at the leaf scale in response to the 

physiological and biophysical status of crops (Skendžić et al., 2023). This technique 

provides a promising tool to rapidly and non-destructively phenotype plant leaf traits 

(Kothari and Schweiger, 2022). Numerous studies have linked spectral reflectance, 

transmittance or absorption responses in leaves and plant canopies to physiological 

status and plant adaptation to the environment (Kothari and Schweiger, 2022). These 

optical spectra rely on the amount of leaf pigment present at different absorption 

wavelengths and corresponding leaf spectral signatures. Due to the correlation between 

leaf spectral reflectance and leaf chlorophyll concentration, several studies (eg., 

Katsoulas et al., 2016) have linked reflectance in the green and red bands with water 

and nutrient stress. 

Many SRIs have been proposed to remotely estimate the water content of plant tissues 

to offer a measure of the water deficit stress (Zhang and Zhou, 2019; Skendžić et al., 

2023). For example, Zhang and Zhou, 2019 demonstrated the utility of the Green 

Chlorophyll Index (CIgreen), Red-Edge Normalised Ratio (NRrededge) and Red-Edge 

Chlorophyll Index (CIrededge) as the most sensitive SRIs responsive to water variations 

and being optimal for predicting canopy water status in maize.
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Additionally, several studies have focused on determining the appropriate SRIs for the 

estimation of N status in crops (Prey and Schmidhalter, 2019). Among the several SRIs 

investigated, the red-edge region and indices have been proposed as most suitable for 

estimating chlorophyll content and for detecting the N status in crops as they were 

found to be superior to classical NIR/red indices such as the NDVI. For instance, the 

red-edge group indices such as the REIP, CIrededge and CIgreen (Klem et al., 2014; 

Prey and Schmidhalter, 2019) have been proposed as predictors of N status. It has been 

demonstrated that the red-edge region reduces the rapid saturation effects of spectral 

indices based on reflectance in the blue and red bands (Zhang et al., 2022), hence their 

high response to the chlorophyll content and N status. Additionally, the shortwave 

infrared (SWIR) spectral region (around 1000-2500 nm) is strongly correlated with leaf 

N content because the vibrational modes of N-containing organic compounds produce 

distinct absorption features in this spectral region, enabling direct quantification of plant 

N status (Herrmann et al., 2010).

Most of the studies employing SRIs concentrated on identifying water or N stress 

separately. The combined effect of water and N stress on spectral reflectance in crops 

has only been investigated in a few studies using RS (Klem et al., 2018; Sellami et al., 

2022). For instance, Klem et al. (2018) evaluated the interactive effects of water deficit 

and N nutrition in winter wheat under rainout shelter field experiments using remote 

sensing data. The authors demonstrated that stomatal response to water deficit was best 

estimated using the Normalized Pigment Chlorophyll Index (NPCI) and Crop Water 

Stress Index (CWSI). While none of the indices accurately detected N content in plants, 

the total N uptake in wheat grain was reliably estimated using the Transformed 

Chlorophyll Absorption Reflectance Index/Optimized Soil-Adjusted Vegetation Index 

(TCARI/OSAVI).

However, the use of SRIs at the leaf level using PS to simultaneously assess the 

combined impacts of water and N stress and their interactions on morpho-physiological 

responses in wheat has not been widely investigated. Optimising the availability of both 

water and N for wheat cultivation can be extremely challenging due to the interactions 

and confounding factors (Li et al., 2020). This knowledge gap may lead to wrong 

diagnosis in monitoring the impact of water stress and compromise fertilisation 
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management on N nutrition. Since most farmers are confronted with both water and 

nutrient stress management, it is crucial to assess novel and existing SRIs for more 

precise identification and phenotyping of crop status to support PA and improve wheat 

productivity. 

Recently, increased attention has been devoted to the use of handheld PS for field 

phenotyping and stress responses in crops in developing countries because of their ease 

of operation, non-destructive nature, low cost and because they may not require 

substantial pre-processing of spectral data such as soil, geometric and atmospheric 

corrections (Cudjoe et al., 2023a). However, little is known about the potential of using 

this technique in discriminating water and N stresses at the leaf scale. 

Therefore, the overall aim of this study was to assess the morpho-physiological drought 

responses at high and low N conditions and examine the potential of a wide range of 

SRIs measured at the leaf scale to discriminate individual and combined drought and N 

stress effects in spring wheat. The specific objectives were to (1) assess the morpho-

physiological drought responses at high and low N conditions, (2) assess the time-

course response of SRIs to identify early drought responses under high and low N 

conditions, (3) identify effective SRIs specific for discriminating between drought and 

N stress and (4) to examine the relationships between spectral response and morpho-

physiological status.

4.2 Materials and methods 

4.2.1 Plant materials and growth conditions 

A spring wheat (Cadenza cv.) was selected for this study based on its genetic 

background, breeding history and agronomical significance (Fernández-Gómez et al., 

2020). A pot experiment was conducted in the glasshouse at the Plant Growth Facility at 

Cranfield University, United Kingdom; 52° 4' 28.61" N 0° 37' 41.819" W, from October 

2022 to December 2022. The glasshouse conditions were set as: day/night temperature 

24/21±2 °C, RH 50-60 %, and a photoperiod of 14 h with a supplemental light intensity 

of 20 klx (equivalent to 460 µmol m−2 s−1). Before sowing, wheat seeds were soaked in 

tap water and stratified at 4 °C for 3 days. After stratification, four seeds were sowed 

into each pot (13.7×13.3×11 cm). At the growth stage GS13-15 (based on the Zadoks 

scale), (Zadoks et al., 1974) the seedlings were thinned to one plant per pot. Wheat 
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plants were grown on equal volumes of Levington Advance Seed and Modular F1 low 

nutrient compost (ICL, Everris, Ipswich, Suffolk, England, United Kingdom) containing 

96 N, 49 P and 159 K mg/L. All plants were irrigated manually with deionised water 

under well-watered (WW) before the imposition of water stress (WS). Pests and 

diseases (aphids and powdery mildew) were controlled chemically by spraying with 

Talius® fungicide (1.66 ml/L) and following standard greenhouse procedures. The 

experiment was structured in a 3-way (2×2×6) factorial split-plot randomised complete 

block design (RCBD) with twelve (12) replications per treatment. Plants were arranged 

in a 4 by 12 array on a bench with dimensions: 550 cm length and 180 cm width (Figure 

4.1). The intra-row distance between plants was 50 cm. The microclimate data in the 

glasshouse are reported in Figure 4.2.

Figure 4.1. The statistical design used for the trial showing the allocation of the 2×2 
(i.e., N×irrigation) factorial set of treatments according to a randomised complete block 
(BLK) design. The experimental area had dimensions of 550×180 cm with 50 cm inter- 
and intra-row distance between pots. The rectangles are individual pots and those 
coloured in light blue were kept under well-watered (WW) conditions while non-
coloured pots were water-stressed (WS). Pots are numbered from 1 to 48. LN = low N, 
HN = high N. A-D are individual rows. 
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Figure 4.2. The microclimate data showing mean temperature and relative humidity 
every other day in the glasshouse during the experiment. 

4.2.2 Application of nutrient and drought treatments and statistical design

Four treatments based on combinations of two levels of N (high N (HN) and low N 

(LN) and two levels of irrigation; well-watered (WW) and water-stressed (WS) were 

tested. The combined treatments were designated as HN-WW, HN-WS, LN-WW and 

LN-WS. The water and N levels were chosen to create a range in the N-water status and 

test the utility of spectral reflectance sensing to detect these differences. Before the 

imposition of WS, plants were supplied with modified Letcombe nutrient solution in 

accordance with their respective treatments as adopted recently by Cudjoe et al. 

(2023b). A total volume of 900 mL of the nutrient solution was applied to each pot with 

saucers containing 615 g compost in staggered applications. The N concentrations for 

HN and LN were 58.7 mM and 5.8 mM, respectively. Plants grown under HN received 

769.9 mg N per pot while LN plants were supplied with 76.99 mg N per pot. A week 

after the last N application at 50 DAS, WS was imposed during stem elongation (GS33) 

by withholding water for two weeks (14 days). Before the imposition of WS, 91 g of 

plastic poly pellets (Hugge Design Ltd., UK) were added to each pot to cover the soil 

surface to reduce excessive evaporative loss from the soil. WW conditions were 

maintained at 80% field/pot capacity of the soil. To keep the soil moisture constant, pots 

were manually weighed and the weight of the pots was recorded every other day using 

an analytical balance. In parallel, soil moisture content (SMC) was monitored with the 

aid of a two-pin SM150T soil moisture sensor (Delta-T Devices Ltd., Cambridge, 

England, UK). 
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4.2.3 Data collection

4.2.3.1 Spectral reflectance measurements

The PolyPen RP410/UVIS handheld contact spectroradiometer (Photon Systems 

Instruments, Drasov, Czech Republic), capable of measuring the wavelength range of 

320-790 nm of the electromagnetic spectrum at intervals of 1.9 nm, was used to collect 

leaf spectral reflectance data. Spectral reflectance data was collected from the 

uppermost fully expanded leaf of the plants from 11:00 to 16:00 h GMT. Spectral data 

were measured using the same fully expanded leaf of the main stem at GS33 to GS39 

during the 14-d drought period on days 0, 3, 6, 9, 12 and 14. Measurements were 

acquired from five plants for each treatment selected at random from the trial. Three 

readings were made on a single leaf per plant and then averaged. The spectrometer 

sensor was calibrated before measurement and periodically with a diffuse white 

reference standard (Spectralon®, Labsphere, Inc., North Sutton, USA). The PolyPen 

RP410 device integrates a xenon incandescent lamp as an internal light source, with 

radiation emitted between 380-1050 nm. The PolyPen RP410 incorporates pre-defined 

formulae for calculating commonly used SRIs in addition to indices that were manually 

computed. Initially, to detect differences in the spectral signature acquired from the 

various treatment combinations, the spectra from each treatment were averaged and the 

total mean spectrum was examined (Figure 4.3). The SRIs used in this study were 

computed from narrow-band wavelengths and are reported in Table 4.1.
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Figure 4.3. Reflectance spectra of wheat leaves exposed to irrigation and N treatments 
at different numbers of days after water stress (DAWS). It can be observed from the 
reflectance spectra that treatments were resolved at (C) 6 DAWS around 500-600 nm in 
the green region and 700-790 nm in the near-infrared region. By (E) 12 DAWS, a clear 
separation of the treatment spectra was indicated with spectral reflectance peaking at 
550 nm and 790 nm as stressed treatments reflected more pigments (i.e., chlorophyll) to 
obtain high reflectance values except for LN-WW. Resolution of the treatment spectra 
was observed at (F) 14 DAWS with stressed treatments (HN-WS and LN-WS) 
achieving higher reflectance values compared to unstressed treatments (HN-WW and 
LN-WW). A-F = 0, 3, 6, 9, 12, and 14 DAWS, respectively. HN = high N, LN = low N, 
WW = well-watered, WS = water stressed.      
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Table 4.1. List of SRIs computed from narrow-bands and used in this study. 

Spectral Reflectance Index Acronym Formulation/wavebands Traits References

Automatic computed indices from the PolyPen RP410

Normalised Difference Vegetation 
Index

NDVI (R780 - R680)/(R780 + R680)
Leaf greenness, canopy cover, stress 
levels, LAI, biomass,  photosynthetic 
activity, vigor, plant health, N status

Rouse et al., 1974

Simple Ratio SR (R780/R680)                                                                                                      
Leaf greenness, vegetation cover, 
chlorophyll content, vigor, plant health

Chen, 1996

Modified Chlorophyll Absorption in 
Reflectance Index 

MCARI1 1.2 * [2.5 * (R790- R670) - 1.3 * (R790- R550)]
Chlorophyll concentration, vigor, LAI, 
stress levels

Daughtry et al., 2000)

Optimised Soil-Adjusted Vegetation 
Index 

OSAVI (1 + 0.16) * (R790- R670) / (R790- R670 + 0.16)
Greenness, canopy cover, vigor, 
biomass

Huete, 1988

Greenness Index G (R554/R677)
Chlorophyll content, biomass, 
photosynthetic activity, vigor, LAI, 
plant health

Daughtry et al., 2000

Modified Chlorophyll Absorption in 
Reflectance Index 

MCARI [(R700- R670) - 0.2 * (R700- R550)] * (R700/ R670)
Chlorophyll concentration, vigor, LAI, 
stress levels

Daughtry et al., 2000

Transformed Chlorophyll 
Absorption in Reflectance Index 

TCARI
3 × [(R700- R670) − 0.2 * (R700-R550) * 
(R700/R670)]

Chlorophyll concentration, vigor, LAI, 
stress levels

Daughtry et al., 2000

Triangular Vegetation Index TVI 0.5 * [120 * (R750- R550) - 200 * (R670- R550)]
Chlorophyll content, greenness, stress 
levels, nutrient status, photosynthetic 
activity

Zarco‐Tejada et al., 
2005

Zarco-Tejada and Miller Index ZMI (R750 / R710)
Chlorophyll concentration, LAI, stress 
levels, photosynthetic activity

Zarco-Tejada et al., 
2001

Simple Ratio Pigment Index SRPI (R430 / R680)
Chlorophyll concentration, 
photosynthetic activity, LAI, vegetation 
cover, green biomass

Chen, 1996

Normalised Phaeophytinisation 
Index 

NPQI (R415- R435) / (R415+ R435)
Leaf senescence, drought, nutrient 
stress, plant health, vigor, crop maturity

Barnes et al., 1992
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Photochemical Reflectance Index PRI (R531- R570) / (R531+ R570)
Photosynthetic stress, water stress, light 
use efficiency, leaf pigment 
composition

Shrestha et al., 2012

Normalised Pigment Chlorophyll 
Index 

NPCI (R680- R430) / (R680+ R430)
Chlorophyll content, photosynthetic 
activity, stress levels, N status

Daughtry et al., 2000

Carter Indices Ctr1 and Ctr2 Ctr1 = (R695 / R420); Ctr2 = (R695 / R760)
Chlorophyll concentration, vigor, LAI, 
stress levels

Carter and Miller, 1994

Lichtenthaler Indices Lic1 and Lic2
Lic1 = (R790 - R680) / (R790 + R680); Lic2 = 
(R440 / R690)

Chlorophyll content, carotenoid 
content, greenness, photosynthetic 
activity, stress levels

Lichtenthaler et al., 
1996

Structure Intensive Pigment Index SIPI (R790- R450) / (R790+ R650)

Pigment concentration, leaf angle, 
canopy density, canopy structure, 
chlorophyll content, photosynthetic 
activity

Peñuelas et al., 1995

Gitelson and Merzlyak Indices GM1 and GM2 GM1 = (R750/ R550); GM2 = (R750/ R700)
Chlorophyll concentration, greenness, 
plant health status, vegetation biomass

Gitelson and Merzlyak, 
1997

Anthocyanin Reflectance Indices ARI1 and ARI2
ARI1 = (1/R550-1/R700); ARI2 = R790*(1/R550-
1/R700)

Stress levels, phenological stage, 
anthocyanin concentration, leaf 
coloration, fruit maturity

Gitelson et al., 2009

Carotenoid Reflectance Indices CRI1 and CRI2
CRI1 = (1/R510-1/R550); CRI2 = (1/R510-
1/R700)

Carotenoid to chlorophyll ratio, 
photosynthetic efficiency, leaf 
senescence, environmental stress 
response

Gitelson et al., 2002

Renormalised Difference Vegetation 
Index 

RDVI (R780-R670)/((R780+R670) ^ 0.5)
Leaf greenness, canopy cover, stress 
levels, LAI, biomass, photosynthetic 
activity, vigor, plant health

Daughtry et al., 2000

Manually computed indices derived from the PolyPen RP410

Photochemical Reflectance Index 
PRI550 and 
PRInorm

PRI550 = (R549.1- R530.6) / (R549.1+ R530.6); 
PRInorm = PRI550/(RDVI*(R699.9 / R669.4))

Photosynthetic stress, water stress, light 
use efficiency, leaf pigment 
composition

Shrestha et al., 2012; 
Sukhova et al., 2022

Green Normalised Difference 
Vegetation Index

GNDVI780 (R780.7 - R549.1)/(R780.7 + R549.1)
Chlorophyll content, biomass, 
photosynthetic activity, vigor, LAI, 
plant health

Rouse et al., 1974
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Modified Red Edge Simple Ratio MRESR (R749.3 - R444.7)/(R705.2 - R444.7)
Chlorophyll content, LAI, stress levels, 
biomass, canopy density, early signs of 
senescence

Chen, 1996

Red Edge Normalised Difference 
Vegetation Index 

RENDVI (R749.3 - R705.2)/(R749.3 + R705.2)
Chlorophyll concentration, stress levels, 
LAI, vigor, plant health, early growth 
stage monitoring

Rouse et al., 1974

Normalised Difference Red Edge NDRE (R789.4 - R719.4)/(R789.4 + R719.4)
Chlorophyll concentration, stress levels, 
LAI, vigor, plant health, early growth 
stage monitoring

Rouse et al., 1974

Chlorophyll Index Green CIgreen (R791.1/R549.1) – 1
Chlorophyll concentration, stress levels, 
senescence, N status, yield, growth

Daughtry et al., 2000

Chlorophyll Index Red Edge CIrededge (R791.1/R719.4) – 1
Chlorophyll concentration, vigor, LAI, 
stress levels, N status

Daughtry et al., 2000

Chlorophyll Index 
mNDblue530 

and 
mNDblue730

mNDblue530 = (R530.6 - R450.4)/(R791.1 + R450.4); 
mNDblue730 = (R730 - R450.4)/(R791.1 + R450.4)

Chlorophyll concentration, plant stress, 
N status, growth stage, potential yield

Daughtry et al., 2000

Red Difference Vegetation Index rDVI790 (R789.4 - R680.2)
Chlorophyll content, LAI, stress levels, 
biomass, vegetation density, vigor, 
plant health

Rouse et al., 1974

Green Simple Ratio gSRa790 (R789.4/R549.1)
Leaf greenness, vegetation cover, 
chlorophyll content, vigor, plant health

Chen, 1996

Red Simple Ratio SRa790 (R789.4/R680.2)
Chlorophyll content, vegetation cover, 
plant stress, vigor, biomass, LAI

Chen, 1996
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4.2.3.2 Measurement of morpho-physiological indicators

4.2.3.2.1 Leaf-level gas exchange measurement

Gas exchange parameters including An (µmol CO2 m−2 s−1), stomatal conductance (Gs, 

mmol H2O m−2 s−1), transpiration rate (E, mol H2O m−2 s−1) and intrinsic water use 

efficiency (WUEi = An/Gs, µmol CO2 mmol H2O) were measured with a portable 

photosynthesis system LI-6400XT (LI-COR Biosciences Inc., Lincoln, NE, USA), 

equipped with the 6400-40 LCF chamber. Gas exchange measurements were conducted 

from 11:00 to 16:00 h GMT using the uppermost fully expanded leaves of the main 

stem from five plants in each treatment at stem elongation (GS33–GS39) during the 

drought phase at 0, 3, 6, 9, 12 and 14 DAWS. The randomisation order of the 

experimental layout was followed to account for the possible effects of the time of day 

on the measurements. The flow rate was set at 200 µmol s−1, leaf chamber CO2 

concentration was set to 400 µmol mol−1, leaf temperature was maintained at 20 °C, RH 

was adjusted between 60–65% and PAR was controlled to 1800 µmol m−2 s−1 to attain 

maximum photosynthetic capacity. Measurements were taken once gas exchange rates 

had stabilised within five minutes after the reading began. When the leaf was smaller 

than the cuvette, the area of the leaf was adjusted during data processing. 

4.2.3.2.2 SPAD chlorophyll measurement

Chlorophyll content was measured using a SPAD-502 chlorophyll meter (Soil Plant 

Analysis Development, Minolta Camera Co., Ltd., Japan). Three readings were made on 

each leaf and then averaged. SPAD measurements were done synchronously with 

PolyPen RP410 and gas exchange. 

4.2.3.2.3 Leaf area 

Three wheat plants from each treatment were destructively harvested at 0, 9 and 14 

DAWS for leaf area (LA) measurement. LA was measured with the Area Measurement 

System, WinDIAS 3 Image Analysis System (Delta-T Devices Ltd., Burwell, 

Cambridge, England). The video camera shutter speed was set to 10 ms at a resolution 

of 1280×1024. The WinDIAS 3 was calibrated first with a ruler and then a standard of a 

known area. The conveyer and ‘Long Leaf Mode’ were then enabled. Individual 

unfolded leaves were fed carefully through the conveyer one at a time to measure the 

accumulated area (in cm2). 
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4.2.3.2.4 Relative water content 

Relative water content (RWC) was measured in fully expanded leaves of the main stem 

of five plants per treatment at 9 and 14 DAWS. The fully expanded leaves were 

detached, and the FW was recorded using an analytical balance, Mettler PM 4600 Delta 

Range® (Mettler Instrument Ltd., Switzerland). The leaf samples were packed in a 

sealed plastic bag and maintained in a cooler at 5 °C until they reached the laboratory. 

The samples were immersed in a Duran bottle filled with 1000 mL of deionised water 

for 72 h at room temperature to regain turgidity. The samples were removed from the 

Duran bottle, and excess water was blotted with a paper towel and then weighed to 

determine the turgid weight (TW). Finally, leaf samples were oven-dried at 70 °C for 48 

h until constant DW was achieved. RWC was estimated as follows: 

                                  RWC (%) = (FW-DW)/(TW-DW) *100                               (4.1)       

4.2.3.2.5 Shoot fresh weight

For shoot fresh weight (SFW), five wheat plants from each treatment were destructively 

harvested at 0, 9 and 14 DAWS and the FW (g pot-1) was determined by weighing on an 

analytical balance, Mettler PM 4600 Delta Range® (Mettler Instrument Ltd., 

Switzerland). 

4.2.3.2.6 Leaf nitrogen content 

The leaf samples used for SFW were then oven-dried and milled at a speed of 17500 

rpm using the Genogrinder (SPEX SamplePrep®, 2010, USA). The leaf N content 

(LNC) (%) was estimated for each treatment by laboratory chemical analysis employing 

the LECO combustion method (LECO CN628 Analyzer, LECO Corporation, St Joseph, 

Michigan, USA).

4.2.4 Statistical analysis

Spectral and morpho-physiological response variables measured on six successive 

occasions, i.e., at increasing numbers of days after water stress (DAWS), were analysed 

using linear mixed models (LMMs) fitted using residual (or restricted) maximum 

likelihood (REML) (Payne et al., 2011; Bolker, 2015). The repeated measurements over 

time were considered as split-plot measurements within pots of the basic design 

resulting in a 3-stratum nested blocking structure (block/pot/occasion). The fixed model 
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represented the resulting 3-way (2×2×6) factorial treatment structure (D×N×DAWS), 

with drought (D) and N treatments applied to pots (within blocks) and the DAWS 

effects (and interactions) tested within pots. F-statistics were used to test all fixed terms 

(i.e., main effects and interactions), with all tests done at the 5% significance level. Due 

to the non-orthogonality of the sampling protocol, the pot-level fixed model terms (i.e., 

D and N) were fitted in their two possible orders to check for consistency between 

orders of adding these terms into the models. Order of fitting generally had no marked 

effect on the results and so the ‘D then N’ order was adopted for presenting results. 

The basic random model represented the blocking structure of the overall design and the 

split-plot nature of the repeated measurements within pots (i.e., block/pot/occasion, 

sample occasions nested within pots and pots nested within blocks). A pragmatic 

approach was taken to ignore the fact that the last two time points were only two days 

apart rather than three; hence, the time points were assumed to be equally spaced. The 

standard split-plot model was compared to an autocorrelation model with an AR1 

covariance structure for the block.pot.occasion term and the need for this extra 

complexity was assessed via the change in deviance. The extra term was generally 

found to improve the model and hence the autocorrelation model was adopted as the 

final model from which to present all results. For all the analyses, variance components 

(VCs) were constrained to be positive to avoid computational issues. Residuals were 

inspected to check the assumptions of normality (via histograms and Q-Q plots) and 

variance homogeneity (via fitted values plots). 

Means plots were produced and differences between fitted means for the WS and WW 

treatments at each level of N on each sampling occasion were assessed against the 

approximate least significant difference (LSD) at a 5% level of significance. Any of 

these 12 pairwise differences that exceeded the LSD were considered statistically 

significant. The Pearson correlation coefficient (r) was used to relate responsive SRIs 

with morpho-physiological/soil indicators. All analyses and graphics were done using 

GenStat 22nd edition (VSN International Ltd., Hemel Hempstead, United Kingdom).
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4.3 Results

4.3.1 Morpho-physiological drought responses under HN and LN conditions

Under HN, the photosynthetic variables; An, Gs, E and WUEi showed a different 

baseline with higher values for WW plants at 0 DAWS before the irrigation was 

stopped on WS plants (Table 4.2; Figure 4.4A-D). From the 6th DAWS onwards, An and 

E showed lower significant values for the WS plants. Gs showed a statistically 

significant difference between WW and WS plants from 0 DAWS onwards (Table 4.2). 

However, this could not be attributed to the effect of drought as the irrigation was 

stopped on WS plants just after the measurement on day 0. This was due to the 

difference in baseline and the same could be said for the 3rd DAWS as the difference 

was in the same order as 0 DAWS. Apart from this, An, Gs and E showed a similar 

pattern over the 14 days of the drought, displaying a sharp decrease in the values for the 

WS plants from 6 DAWS (Table 4.2). Under LN, a similar pattern is observed for WS 

plants, with a sharp decrease observed later than HN plants from 12 DAWS for An and 

E, and from 9 DAWS for Gs (Table 4.2). Drought had significant interactive effects on 

An at 6, 9, 12 and 14 DAWS (D×DAWS), whereas N showed significant effects earlier 

at 0, 3, 6, 9 and 14 DAWS (N×DAWS) (Appendix C, Table C-1). Drought had a 

statistically significant effect on Gs at 3, 6, 9, 12 and 14 DAWS with an interactive 

effect (D×DAWS), while N had a significant effect earlier at time 0 and later at 14 

DAWS, with an interactive effect (N×DAWS) (Appendix C, Table C-1). Similarly to 

Gs, drought had a statistically significant effect on E at 6, 9, 12 and 14 DAWS with an 

interactive effect (D×DAWS) (Appendix C, Table C-1), while N supply was significant 

at only 6 DAWS, indicating a lesser impact but with an interactive effect (N×DAWS) 

(Appendix C, Table C-1).

WUEi showed a different pattern to the three previous gas exchange variables (Table 

4.2; Figure 4.4D). A sharp increase in WUEi was observed for WS plants from 6 

DAWS for HN plants and from 9 DAWS for LN plants before dropping at 14 DAWS 

(Table 4.2; Figure 4.4D). Statistically significant differences were observed on the 6th, 

9th and 12th DAWS for HN plants while it was only significant at the 12th DAWS for the 

LN plants (Table 4.2). Drought had significant interactions at 6, 9 and 12 DAWS, 

whereas N had a significant interactive effect at 6 and 9 DAWS (Appendix C, Table C-

1).
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The N status indicators: LNC and SPAD showed different drought response patterns 

(Table 4.2). The raw data distribution of the different treatments and residual plots for 

LNC and SPAD are provided in Appendix C, Figure C-1. For LNC, mean values of WS 

plants were slightly higher compared to WW plants except at 14 DAWS, with no 

significant difference observed under HN (Table 4.2; Figure 4.4F). A similar trend was 

observed under LN (Table 4.2). Consequently, drought and N supply did not have any 

significant effect or interaction on LNC (Appendix C, Table C-1). The WW plants 

recorded high mean SPAD values compared to WS plants, except for 0 DAWS under 

HN (Table 4.2; Figure 4.4E). A statistically significant difference between WW and WS 

plants was observed consistently at 3, 6, 9, 12 and 14 DAWS under HN (Table 4.2; 

Figure 4.4E). A similar trend was seen under LN as WW plants recorded high SPAD 

values compared to WS plants except for 0 and 3 DAWS (Table 4.2; Figure 4.4E). A 

significant difference between WW and WS plants was observed at 6, 9 and 14 DAWS 

(Table 4.2). Both drought and N stress had significant interactive effects on SPAD 

values at 6, 9, 12 and 14 DAWS (Appendix C, Table C-1). 

Mean values of SFW recorded in WW plants were high compared to WS plants except 

at 0 DAWS under HN, with significant differences between treatment means indicated 

at 0, 9 and 14 DAWS (Table 4.2; Figure 4.4H). A similar observation was recorded 

under LN conditions with significant differences between treatments observed at 9 and 

14 DAWS (Table 4.2). Both drought and N supply had significant interactions at 9 and 

14 DAWS (Appendix C, Table C-1). Additionally, mean values of LA recorded in WW 

plants were high compared to WS plants except for 0 DAWS under HN, with a 

significant difference between treatments indicated at 14 DAWS (Table 4.2; Figure 

4.4I). A similar trend was observed under LN but with a significant difference between 

treatment means observed at 9 and 14 DAWS (Table 4.2). Both drought and N had 

significant interactive effects on LA at 9 and 14 DAWS (Appendix C, Table C-1). 

Drought stress indicators: RWC and SMC showed similar response trends (Table 4.2). 

Appendix C, Figure C-2 shows the data distribution of the different treatments and 

residual plots of RWC and SMC. Under both HN and LN conditions, mean values of 

RWC in WW plants were high compared to WS plants with a significant difference 

between treatments indicated at 9 and 14 DAWS (Table 4.2; Figure 4.4G). Interestingly, 

WS plants under LN recorded high RWC compared to WS plants under HN at 9 and 14 
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DAWS (Table 4.2). Only drought had significant interactive effects at 9 and 14 DAWS 

(D×DAWS) (Appendix C, Table C-1). The amplitude of drought responses was greater 

under HN compared to LN. 

For SMC, under both HN and LN conditions, mean values of WW plants were high 

compared to WS plants except 0 DAWS with significant differences between treatments 

observed consistently at 3, 6, 9, 12 and 14 DAWS (Table 4.2; Figure 4.4J). Similarly to 

RWC, drought had a significant interactive effect on SMC at 9, 12 and 14 DAWS 

(Appendix C, Table C-1). Generally, the significant difference between treatment means 

observed in the variables discussed under both HN and LN at specific DAWS suggests 

a 3-way interactive effect (D×N×DAWS) (Table 4.2). In parallel, the amplitude of 

drought responses under HN was faster and greater compared to LN conditions in all 

variables except LNC (Table 4.2).
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Table 4.2. Descriptive statistics (predicted means from LMMs and absolute differences between drought (D) and well-watered (WW) means with approximate 
LSD) for morpho-physiological parameters including net CO2 assimilation rate (An), stomatal conductance (Gs), transpiration rate (E), intrinsic water use 
efficiency (WUEi), SPAD, leaf nitrogen content (LNC), relative water content (RWC), shoot fresh weight (SFW), leaf area (LA) and soil moisture content 
(SMC) in response to high nitrogen (HN) and low nitrogen (LN) conditions on six occasions after water stress was applied (DAWS). Absolute difference 
(Absolute Diff.) values greater than the approximate (Approx.) least significant differences (LSDs) are considered statistically significant at the 5% level and 
shown in bold. The full results are shown in Appendix C, Table C-1.

Model term D×N×DAWS
HN LN

Treatment
Drought Well-watered

Absolute 
Diff.

Approx. 
LSD Drought

Well-
watered

Absolute 
Diff. Approx. LSD

Parameter DAWS         
0 23.49 27.59 4.10 4.33 20.75 20.99 0.24 4.33
3 23.49 27.71 4.22 4.33 19.12 20.59 1.46 4.33
6 16.91 28.25 11.34 4.33 19.49 19.29 0.20 4.33
9 14.02 27.04 13.02 4.33 16.29 16.82 0.53 4.33
12 3.24 23.55 20.31 4.33 7.82 13.82 6.00 4.33

An (µmol CO2 m−2 s−1)

14 0.16 22.32 22.16 4.47 1.18 10.92 9.74 4.33
 Mean 13.55 26.08 12.52 4.35 14.11 17.07 3.03 4.33

0 0.27 0.35 0.09 0.06 0.25 0.25 0.01 0.06
3 0.25 0.33 0.08 0.06 0.23 0.27 0.04 0.06
6 0.13 0.36 0.23 0.06 0.25 0.26 0.01 0.06
9 0.11 0.36 0.25 0.06 0.19 0.26 0.07 0.06
12 0.02 0.31 0.29 0.06 0.07 0.21 0.14 0.06

Gs (mmol H2O m−2 s−1)

14 0.01 0.29 0.28 0.06 0.01 0.20 0.18 0.06
 Mean 0.13 0.33 0.20 0.06 0.17 0.24 0.07 0.06

0 0.0034 0.0039 0.0005 0.0006 0.0034 0.0032 0.0001 0.0006
3 0.0032 0.0037 0.0005 0.0006 0.0031 0.0034 0.0003 0.0006
6 0.0020 0.0041 0.0021 0.0006 0.0039 0.0038 0.0001 0.0006
9 0.0012 0.0028 0.0016 0.0006 0.0021 0.0024 0.0004 0.0006
12 0.0003 0.0028 0.0025 0.0006 0.0011 0.0023 0.0013 0.0006

E (mol H2O m−2 s−1)

14 0.0002 0.0032 0.0031 0.0006 0.0002 0.0023 0.0021 0.0006
 Mean 0.0017 0.0034 0.0017 0.0006 0.0023 0.0029 0.0007 0.0006
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Table 4.2 continued

0 88.39 79.21 9.18 23.86 83.45 87.26 3.80 23.86
3 95.14 84.43 10.71 23.86 83.72 76.72 7.01 23.86

6 134.68 80.34 54.35 23.86 78.62 74.02 4.61 23.86
9 140.10 76.56 63.54 23.86 84.87 63.37 21.50 23.86
12 138.22 76.18 62.04 23.86 115.94 66.04 49.90 23.86

WUEi (µmol CO2 mmol 
H2O)

14 73.81 77.12 3.30 25.82 75.49 52.43 23.06 23.86
 Mean 111.72 78.97 33.85 24.19 87.01 69.97 17.04 23.86

0 44.72 44.04 0.68 4.42 43.0 40.2 2.79 4.42
3 41.25 46.66 5.41 4.42 41.9 41.1 0.82 4.42
6 40.10 50.34 10.24 4.42 36.8 42.0 5.22 4.42
9 36.22 51.28 15.06 4.42 35.5 41.7 6.21 4.42
12 34.45 48.48 14.03 4.42 32.0 35.6 3.60 4.42

SPAD

14 31.00 49.04 18.04 4.42 31.1 37.6 6.50 4.42
 Mean 37.96 48.31 10.58 4.42 36.7 39.7 4.19 4.42

0 5.04 4.96 0.09 0.49 3.46 3.42 0.04 0.49
3 - - - - - - - -
6 - - - - - - - -
9 5.15 5.11 0.04 0.55 2.56 2.62 0.06 0.49
12 - - - - - - - -

LNC (%)

14 4.70 4.90 0.20 0.38 2.36 2.29 0.07 0.38
 Mean 4.96 4.99 0.11 0.48 2.79 2.78 0.06 0.46

0 - - - - - - - -
3 - - - - - - - -
6 - - - - - - - -
9 47.86 84.48 36.62 14.00 53.81 74.43 20.62 12.52
12 - - - - - - - -

RWC (%)

14 40.77 87.24 46.47 10.29 47.31 73.87 26.56 10.29
 Mean 44.32 85.86 41.55 12.15 50.56 74.15 23.59 11.41
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Table 4.2 continued

0 6.06 5.62 0.44 0.42 5.42 5.43 0.00 0.42
3 - - - - - - - -

6 - - - - - - - -
9 5.39 6.70 1.30 0.47 5.32 5.87 0.54 0.42
12 - - - - - - - -

SFW (g pot-1)

14 4.38 8.12 3.74 0.33 4.57 5.87 1.30 0.35
 Mean 5.28 6.81 1.83 0.41 5.11 5.72 0.61 0.40

0 32.36 31.01 1.35 2.57 26.58 26.27 0.31 2.76
3 - - - - - - - -
6 - - - - - - - -
9 32.36 33.66 1.30 2.83 25.45 28.31 2.86 2.79
12 - - - - - - - -

LA (cm2)

14 22.14 42.19 20.05 2.01 21.21 28.29 7.08 2.20
 Mean 28.95 35.62 7.57 2.47 24.41 27.62 3.42 2.58

0 41.75 41.43 0.32 7.93 51.48 47.92 3.56 8.32
3 29.0 48.3 19.32 7.93 44.2 61.4 17.15 8.32
6 17.2 29.4 12.20 7.93 23.0 51.7 28.78 8.32
9 10.09 40.47 30.38 7.93 13.22 66.12 52.90 8.32
12 8.9 48.0 39.14 7.93 9.7 74.0 64.29 8.32

SMC (%)

14 6.63 53.07 46.44 7.93 7.04 66.57 59.53 8.32
 Mean 18.92 43.45 24.63 7.93 24.77 61.29 37.70 8.32
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Figure 4.4. Time courses of spring wheat morpho-physiological responses under HN and LN nutrient, and drought-stressed and well-watered conditions: (A) 
An, (B) Gs, (C) E, (D) WUEi, (E) SPAD, (F) LNC, (G) RWC, (H) SFW, (I) LA and (J) SMC. Plotted means are predictions from linear mixed models (LMMs). 
Bars represent average approximate LSDs at the 5% significance level. Asterisks (*) indicate significant difference between drought-stressed and well-watered 
treatments under different N availabilities at 5% significance level.      
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4.3.2 Does drought response measured by spectral reflectance affected by the 
nitrogen input?

Similarly to the morpho-physiological measurements, the estimated means values from 

the 3-way component (D×N×DAWS) (Table 4.3) and 2-way component (D×DAWS) 

and (N×DAWS) (Appendix C, Table C-2) of the REML model were evaluated to look 

at the drought responses of the SRIs under HN and LN. Among all the SRIs, TVI, 

RDVI and rDVI_790 showed the earliest response to drought with a significant 

difference between WW and WS plants observed from 9 DAWS under HN (Table 4.3). 

MCARI1, ARI1, ARI2 and CRI2 showed significant differences from 12 DAWS while 

all other SRIs (e.g., NDVI, SR, G, ZMI, TCARI, PRI, Ctr1, SIPI, NPQI, GM1, GM2, 

CRI1, PRI/NDVI, GNDVI_780, MRESR, RENDVI, NDRE, CIgreen, CIrededge and 

gSRa_790) displayed either a significant difference between WW and WS plants at 14 

DAWS or were not showing any significance difference (OSAVI, SPRI, NPCI, Ctr2, 

PRI_550, PRI_norm and mNDblue_730) (Table 4.3). 

Under LN, the earliest response to drought with a significant difference between WW 

and WS plants was observed by NPQI at 3 DAWS (Table 4.3). TVI showed a 

significant difference between WW and WS from 6 DAWS.  Only rDVI_790 showed a 

statistically significant difference between WW and WS plants from 9 DAWS (Table 

4.3). SRIs including ARI1, Lic1, Lic2 and SRa_790 showed a statistically significant 

difference between treatments from 12 DAWS. ARI2 showed a significant difference 

between WW and WS first at 14 DAWS while all the other SRIs did not show any 

significant differences between WW and WS treatments (Table 4.3). 

Generally, the significant difference between WW and WS treatments observed by SRIs 

under either HN, LN or both at specific DAWS indicates a 3-way interactive effect 

(D×N×DAWS) (Table 4.3). The earliest (D×DAWS) interaction was observed from 9 

DAWS by MCARI1, TVI, RDVI and rDVI_790 (Appendix C, Table C-2). SRIs 

including OSAVI, NPCI, ARI1 and ARI2 showed (D×DAWS) interaction from 12 

DAWS. SR, G, PRI, GMI, CRI1, CRI2, PRI/NDVI, GNDVI_780, CIgreen and 

gSRa_790 showed (D×DAWS) interaction at 14 DAWS (Appendix C, Table C-2). 

The earliest (N×DAWS) interaction was observed from the onset of WS at 0 DAWS by 

GNDVI_780 since N fertilisation was initiated several weeks before the imposition of 
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WS (Appendix C, Table C-2). SRIs that showed (N×DAWS) interaction from 3 DAWS 

include MCARI1, G, TVI, NPCI, GM1, ARI1, ARI2, MRESR, CIgreen and gSRa_790 

(Appendix C, Table C-2). From 6 DAWS, ZMI, Ctr1, Lic2, GM2, PRI_550, NDRE, 

CIrededge, mNDblue_530 and mNDblue_730 showed (N×DAWS) interaction 

(Appendix C, Table C-2). Additionally, TCARI, Ctr2, CRI1 and RENDVI showed 

(N×DAWS) interaction from 12 DAWS while only CRI2 showed (N×DAWS) 

interaction from 14 DAWS (Appendix C, Table C-2). SRIs that showed both 

(D×DAWS) and (N×DAWS) interactions were MCARI1, TVI, ARI1, ARI2, NPCI, 

GM1, CRI2, GNDVI_780 and gSRa_790 (Appendix C, Table C-2).
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Table 4.3. Descriptive statistics (predicted means from LMMs and absolute differences 
between drought (WS) and well-watered (WW) means with approximate LSD) for 
spectral reflectance indices in response to high nitrogen (HN) and low nitrogen (LN) 
conditions on six occasions after water stress was applied (DAWS). Absolute difference 
(Absolute Diff.) values greater than the approximate (Approx.) least significant 
differences (LSDs) are considered statistically significant at the 5% level and shown in 
bold. The full results are shown in Appendix C, Table C-2. 

Model term D×N×DAWS

HN LN

Treatment

Drought Well-watered
Absolute 

Diff.
Approx. 

LSD Drought Well-watered
Absolute 

Diff.
Approx. 

LSD

Index DAWS         

0 0.60 0.60 0.01 0.04 0.60 0.59 0.01 0.04

3 0.60 0.60 0.00 0.04 0.59 0.59 0.00 0.04

6 0.61 0.60 0.00 0.04 0.59 0.58 0.01 0.04

9 0.60 0.60 0.00 0.04 0.59 0.57 0.01 0.04

12 0.59 0.59 0.01 0.04 0.58 0.54 0.03 0.04

NDVI

14 0.54 0.60 0.06 0.04 0.55 0.55 0.00 0.04

 Mean 0.59 0.60 0.01 0.04 0.58 0.57 0.01 0.04

0 3.95 4.03 0.08 0.39 3.96 3.88 0.08 0.39

3 3.98 4.00 0.02 0.39 3.85 3.87 0.02 0.39

6 4.07 4.02 0.05 0.39 3.87 3.80 0.07 0.39

9 4.02 4.00 0.01 0.39 3.86 3.70 0.16 0.39

12 3.83 3.93 0.09 0.39 3.74 3.46 0.28 0.39

SR

14 3.36 3.97 0.61 0.39 3.50 3.47 0.04 0.39

 Mean 3.87 3.99 0.15 0.39 3.80 3.70 0.11 0.39

0 0.70 0.67 0.03 0.05 0.68 0.68 0.00 0.05

3 0.66 0.66 0.00 0.05 0.69 0.71 0.02 0.05

6 0.68 0.68 0.00 0.05 0.69 0.74 0.05 0.05

9 0.70 0.65 0.05 0.05 0.72 0.68 0.04 0.05

12 0.73 0.65 0.08 0.05 0.75 0.75 0.00 0.05

MCARI1

14 0.77 0.67 0.10 0.05 0.78 0.73 0.05 0.05

 Mean 0.71 0.66 0.04 0.05 0.72 0.72 0.03 0.05

0 0.58 0.58 0.00 0.02 0.58 0.57 0.00 0.02

3 0.57 0.57 0.00 0.02 0.57 0.58 0.01 0.02

6 0.58 0.58 0.00 0.02 0.57 0.58 0.00 0.02

9 0.58 0.57 0.01 0.02 0.58 0.56 0.01 0.02

12 0.58 0.57 0.01 0.02 0.58 0.56 0.02 0.02

OSAVI

14 0.56 0.57 0.01 0.02 0.57 0.56 0.01 0.02

 Mean 0.58 0.57 0.01 0.02 0.60 0.60 0.00 0.02

0 1.45 1.39 0.05 0.13 1.49 1.49 0.00 0.13

3 1.38 1.38 0.00 0.13 1.46 1.49 0.03 0.13

6 1.37 1.36 0.01 0.13 1.47 1.52 0.05 0.13

9 1.44 1.34 0.09 0.13 1.48 1.55 0.07 0.13

12 1.47 1.35 0.12 0.13 1.62 1.65 0.03 0.13

G

14 1.55 1.35 0.20 0.13 1.65 1.64 0.01 0.13

 Mean 1.44 1.36 0.08 0.13 1.53 1.56 0.03 0.13

0 0.12 0.10 0.02 0.06 0.12 0.12 0.00 0.06

3 0.10 0.09 0.01 0.06 0.12 0.13 0.01 0.06

6 0.09 0.09 0.00 0.06 0.12 0.14 0.02 0.06

9 0.11 0.09 0.02 0.06 0.13 0.15 0.02 0.06

12 0.12 0.09 0.03 0.06 0.17 0.22 0.05 0.06

MCARI

14 0.15 0.09 0.06 0.06 0.20 0.20 0.00 0.06

 Mean 0.11 0.09 0.02 0.06 0.14 0.16 0.02 0.06

0 -0.15 -0.14 0.01 0.04 -0.15 -0.15 0.00 0.04

3 -0.14 -0.14 0.00 0.04 -0.15 -0.16 0.00 0.04

6 -0.14 -0.14 0.00 0.04 -0.15 -0.17 0.01 0.04

9 -0.15 -0.14 0.01 0.04 -0.16 -0.16 0.00 0.04

12 -0.16 -0.14 0.02 0.04 -0.18 -0.21 0.03 0.04

TCARI

14 -0.19 -0.14 0.05 0.04 -0.20 -0.19 0.01 0.04

 Mean -0.16 -0.14 0.02 0.04 -0.17 -0.17 0.01 0.04
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Table 4.3 continued

0 27.04 25.85 1.19 1.61 25.85 26.00 0.15 1.61

3 25.42 25.47 0.04 1.61 26.49 27.20 0.71 1.61

6 26.10 26.16 0.06 1.61 26.50 28.16 1.66 1.61

9 26.70 25.02 1.68 1.61 27.64 26.11 1.53 1.61

12 27.74 25.13 2.61 1.61 28.65 28.33 0.32 1.61

TVI

14 28.98 25.78 3.20 1.61 29.44 27.65 1.79 1.61

 Mean 27.00 25.57 1.46 1.61 27.43 27.24 1.03 1.61

0 1.86 1.82 0.04 1.61 1.83 1.82 0.02 1.61

3 1.94 1.83 0.11 1.61 1.84 1.83 0.02 1.61

6 1.99 1.79 0.21 1.61 1.84 1.79 0.06 1.61

9 1.93 1.73 0.20 1.61 1.83 1.73 0.10 1.61

12 1.93 1.63 0.29 1.61 1.77 1.63 0.14 1.61

ZMI

14 1.76 1.63 0.13 1.61 1.70 1.63 0.07 1.61

 Mean 1.90 1.74 0.17 1.61 1.80 1.74 0.07 1.61

0 0.84 0.85 0.01 0.03 0.85 0.84 0.00 0.03

3 0.86 0.85 0.01 0.03 0.86 0.86 0.00 0.03

6 0.86 0.86 0.00 0.03 0.84 0.86 0.01 0.03

9 0.83 0.84 0.01 0.03 0.84 0.83 0.01 0.03

12 0.84 0.84 0.00 0.03 0.83 0.81 0.02 0.03

SPRI

14 0.83 0.83 0.00 0.03 0.81 0.81 0.00 0.03

 Mean 0.84 0.84 0.00 0.03 0.84 0.84 0.01 0.03

0 -0.006 -0.005 0.001 0.014 -0.002 -0.003 0.000 0.014

3 -0.003 -0.017 0.014 0.014 0.001 -0.017 0.018 0.014

6 -0.011 -0.004 0.007 0.014 -0.008 -0.006 0.001 0.014

9 0.000 -0.005 0.005 0.014 -0.008 0.004 0.012 0.014

12 -0.014 -0.007 0.007 0.014 -0.008 0.000 0.008 0.014

NPQI

14 -0.024 -0.009 0.015 0.014 -0.009 -0.005 0.004 0.014

 Mean -0.010 -0.008 0.008 0.014 -0.006 -0.005 0.007 0.014

0 0.033 0.032 0.000 0.006 0.032 0.032 0.000 0.006

3 0.028 0.031 0.003 0.006 0.031 0.031 0.000 0.006

6 0.030 0.029 0.001 0.006 0.030 0.031 0.001 0.006

9 0.028 0.028 0.000 0.006 0.029 0.030 0.001 0.006

12 0.025 0.027 0.002 0.006 0.029 0.029 0.000 0.006

PRI

14 0.017 0.030 0.013 0.006 0.027 0.026 0.001 0.006

 Mean 0.027 0.030 0.003 0.006 0.029 0.030 0.001 0.006

0 0.086 0.081 0.005 0.016 0.084 0.085 0.001 0.016

3 0.078 0.083 0.005 0.016 0.075 0.078 0.003 0.016

6 0.075 0.074 0.001 0.016 0.084 0.077 0.008 0.016

9 0.095 0.088 0.007 0.016 0.085 0.090 0.005 0.016

12 0.089 0.087 0.002 0.016 0.092 0.103 0.011 0.016

NPCI

14 0.095 0.093 0.002 0.016 0.108 0.108 0.000 0.016

 Mean 0.086 0.084 0.004 0.016 0.088 0.090 0.005 0.016

0 1.54 1.49 0.05 0.15 1.52 1.54 0.02 0.15

3 1.48 1.46 0.02 0.15 1.51 1.55 0.04 0.15

6 1.42 1.43 0.01 0.15 1.54 1.57 0.03 0.15

9 1.54 1.45 0.09 0.15 1.51 1.63 0.12 0.15

12 1.56 1.44 0.11 0.15 1.63 1.79 0.15 0.15

Ctr1

14 1.63 1.47 0.16 0.15 1.78 1.76 0.02 0.15

 Mean 1.53 1.46 0.07 0.15 1.58 1.64 0.06 0.15

0 0.31 0.31 0.01 0.05 0.32 0.32 0.00 0.05

3 0.31 0.30 0.01 0.05 0.32 0.32 0.00 0.05

6 0.30 0.30 0.00 0.05 0.32 0.33 0.01 0.05

9 0.31 0.30 0.00 0.05 0.32 0.34 0.02 0.05

12 0.32 0.31 0.01 0.05 0.33 0.38 0.05 0.05

Ctr2

14 0.36 0.31 0.05 0.05 0.37 0.37 0.00 0.05

 Mean 0.32 0.30 0.01 0.05 0.33 0.35 0.01 0.05

0 0.609 0.610 0.001 0.023 0.611 0.607 0.004 0.023

3 0.606 0.608 0.002 0.023 0.601 0.606 0.004 0.023

6 0.612 0.608 0.004 0.023 0.604 0.604 0.000 0.023

9 0.613 0.603 0.010 0.023 0.602 0.594 0.008 0.023

12 0.606 0.599 0.007 0.023 0.609 0.583 0.026 0.023

Lic1

14 0.578 0.602 0.023 0.023 0.586 0.584 0.002 0.023

 Mean 0.604 0.605 0.008 0.023 0.602 0.596 0.007 0.023
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Table 4.3 continued

0 0.768 0.789 0.021 0.042 0.769 0.763 0.006 0.042

3 0.785 0.791 0.006 0.042 0.779 0.775 0.003 0.042

6 0.802 0.793 0.009 0.042 0.764 0.764 0.000 0.042

9 0.754 0.787 0.034 0.042 0.766 0.736 0.030 0.042

12 0.755 0.773 0.018 0.042 0.736 0.688 0.048 0.042

Lic2

14 0.740 0.772 0.032 0.042 0.680 0.691 0.012 0.042

 Mean 0.767 0.784 0.020 0.042 0.749 0.746 0.017 0.042

0 0.64 0.64 0.00 0.02 0.64 0.64 0.00 0.02

3 0.64 0.64 0.00 0.02 0.63 0.63 0.01 0.02

6 0.64 0.64 0.01 0.02 0.63 0.63 0.00 0.02

9 0.64 0.64 0.01 0.02 0.63 0.63 0.00 0.02

12 0.63 0.63 0.00 0.02 0.64 0.62 0.02 0.02

SIPI

14 0.60 0.64 0.04 0.02 0.62 0.62 0.00 0.02

 Mean 0.63 0.64 0.01 0.02 0.63 0.63 0.01 0.02

0 2.79 2.91 0.11 0.29 2.73 2.71 0.02 0.29

3 2.90 2.93 0.03 0.29 2.72 2.70 0.02 0.29

6 2.98 2.96 0.02 0.29 2.72 2.63 0.09 0.29

9 2.86 2.95 0.09 0.29 2.70 2.55 0.16 0.29

12 2.73 2.91 0.17 0.29 2.54 2.36 0.18 0.29

GM1

14 2.40 2.92 0.52 0.29 2.38 2.36 0.02 0.29

 Mean 2.78 2.93 0.16 0.29 2.63 2.55 0.08 0.29

0 2.59 2.70 0.11 0.27 2.55 2.52 0.02 0.27

3 2.67 2.71 0.04 0.27 2.55 2.53 0.03 0.27

6 2.77 2.74 0.03 0.27 2.54 2.46 0.08 0.27

9 2.67 2.73 0.06 0.27 2.52 2.38 0.15 0.27

12 2.63 2.69 0.06 0.27 2.43 2.21 0.23 0.27

GM2

14 2.35 2.69 0.34 0.27 2.28 2.20 0.08 0.27

 Mean 2.61 2.71 0.11 0.27 2.48 2.38 0.10 0.27

0 0.37 0.39 0.02 0.09 0.36 0.37 0.01 0.09

3 0.45 0.43 0.02 0.09 0.32 0.34 0.02 0.09

6 0.40 0.41 0.02 0.09 0.35 0.32 0.03 0.09

9 0.36 0.45 0.09 0.09 0.33 0.34 0.01 0.09

12 0.19 0.42 0.23 0.09 0.20 0.29 0.10 0.09

ARI1

14 0.09 0.44 0.35 0.09 0.18 0.31 0.13 0.09

 Mean 0.31 0.43 0.12 0.09 0.29 0.33 0.05 0.09

0 0.21 0.21 0.00 0.05 0.19 0.19 0.00 0.05

3 0.24 0.23 0.01 0.05 0.17 0.18 0.01 0.05

6 0.22 0.23 0.01 0.05 0.19 0.18 0.01 0.05

9 0.19 0.24 0.04 0.05 0.19 0.18 0.01 0.05

12 0.11 0.22 0.12 0.05 0.11 0.16 0.05 0.05

ARI2

14 0.05 0.24 0.19 0.05 0.10 0.17 0.07 0.05

 Mean 0.17 0.23 0.06 0.05 0.16 0.18 0.02 0.05

0 2.47 2.44 0.03 0.32 2.68 2.65 0.03 0.32

3 2.42 2.35 0.07 0.32 2.45 2.51 0.05 0.32

6 2.30 2.26 0.04 0.32 2.53 2.43 0.10 0.32

9 2.49 2.35 0.14 0.32 2.43 2.69 0.26 0.32

12 2.19 2.35 0.16 0.32 2.62 2.45 0.17 0.32

CRI1

14 1.96 2.32 0.36 0.32 2.36 2.55 0.18 0.32

 Mean 2.30 2.35 0.13 0.32 2.51 2.54 0.13 0.32

0 2.84 2.83 0.01 0.36 3.03 3.00 0.03 0.36

3 2.87 2.79 0.09 0.36 2.76 2.83 0.07 0.36

6 2.69 2.67 0.02 0.36 2.87 2.74 0.13 0.36

9 2.85 2.80 0.05 0.36 2.76 3.03 0.26 0.36

12 2.38 2.77 0.39 0.36 2.81 2.73 0.08 0.36

CRI2

14 2.05 2.76 0.71 0.36 2.54 2.85 0.31 0.36

 Mean 2.61 2.77 0.21 0.36 2.80 2.86 0.15 0.36

0 0.51 0.50 0.01 0.02 0.50 0.50 0.00 0.02

3 0.50 0.50 0.00 0.02 0.50 0.51 0.01 0.02

6 0.51 0.51 0.00 0.02 0.50 0.51 0.01 0.02

9 0.51 0.47 0.04 0.02 0.51 0.48 0.03 0.02

12 0.52 0.49 0.03 0.02 0.52 0.49 0.03 0.02

RDVI

14 0.50 0.50 0.00 0.02 0.51 0.49 0.02 0.02

 Mean 0.51 0.50 0.01 0.02 0.51 0.50 0.01 0.02
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Table 4.3 continued

0 0.031 0.032 0.002 0.005 0.035 0.035 0.001 0.005

3 0.033 0.031 0.002 0.005 0.032 0.035 0.003 0.005

6 0.029 0.029 0.000 0.005 0.033 0.036 0.003 0.005

9 0.032 0.031 0.001 0.005 0.034 0.037 0.002 0.005

12 0.032 0.032 0.000 0.005 0.039 0.035 0.004 0.005

PRI_550

14 0.034 0.029 0.005 0.005 0.035 0.038 0.003 0.005

 Mean 0.032 0.031 0.002 0.005 0.035 0.036 0.003 0.005

0 0.038 0.042 0.004 0.006 0.043 0.044 0.001 0.006

3 0.043 0.041 0.002 0.006 0.041 0.043 0.002 0.006

6 0.038 0.039 0.001 0.006 0.041 0.043 0.001 0.006

9 0.040 0.043 0.003 0.006 0.042 0.045 0.003 0.006

12 0.040 0.044 0.004 0.006 0.044 0.040 0.004 0.006

PRI_norm

14 0.042 0.039 0.002 0.006 0.039 0.044 0.004 0.006

 Mean 0.040 0.041 0.003 0.006 0.042 0.043 0.003 0.006

0 0.055 0.054 0.001 0.009 0.054 0.054 0.000 0.009

3 0.047 0.052 0.005 0.009 0.052 0.053 0.001 0.009

6 0.049 0.048 0.001 0.009 0.050 0.053 0.003 0.009

9 0.047 0.047 0.000 0.009 0.049 0.052 0.003 0.009

12 0.043 0.046 0.004 0.009 0.050 0.052 0.003 0.009

PRI/NDVI

14 0.030 0.049 0.019 0.009 0.047 0.047 0.001 0.009

 Mean 0.045 0.049 0.005 0.009 0.051 0.052 0.002 0.009

0 0.48 0.50 0.01 0.05 0.47 0.47 0.01 0.05

3 0.50 0.50 0.00 0.05 0.47 0.46 0.00 0.05

6 0.51 0.50 0.00 0.05 0.47 0.46 0.02 0.05

9 0.49 0.50 0.01 0.05 0.47 0.44 0.03 0.05

12 0.47 0.50 0.02 0.05 0.44 0.40 0.04 0.05

GNDVI_780

14 0.42 0.50 0.08 0.05 0.41 0.41 0.00 0.05

 Mean 0.48 0.50 0.02 0.05 0.45 0.44 0.01 0.05

0 3.11 3.35 0.23 0.43 3.05 3.01 0.04 0.43

3 3.41 3.46 0.05 0.43 3.12 3.01 0.10 0.43

6 3.59 3.56 0.03 0.43 3.06 2.89 0.17 0.43

9 3.28 3.54 0.26 0.43 3.05 2.71 0.33 0.43

12 3.31 3.43 0.12 0.43 2.81 2.47 0.34 0.43

MRESR

14 2.87 3.49 0.62 0.43 2.56 2.47 0.10 0.43

 Mean 3.26 3.47 0.22 0.43 2.94 2.76 0.18 0.43

0 0.36 0.38 0.02 0.05 0.36 0.36 0.00 0.05

3 0.38 0.39 0.00 0.05 0.36 0.36 0.01 0.05

6 0.40 0.39 0.00 0.05 0.36 0.34 0.01 0.05

9 0.38 0.39 0.01 0.05 0.36 0.33 0.03 0.05

12 0.38 0.38 0.01 0.05 0.34 0.29 0.05 0.05

RENDVI

14 0.33 0.39 0.06 0.05 0.31 0.30 0.01 0.05

 Mean 0.37 0.39 0.02 0.05 0.35 0.33 0.02 0.05

0 0.20 0.21 0.01 0.03 0.19 0.18 0.01 0.03

3 0.21 0.21 0.00 0.03 0.19 0.18 0.01 0.03

6 0.22 0.22 0.01 0.03 0.19 0.18 0.01 0.03
9 0.21 0.22 0.01 0.03 0.19 0.17 0.02 0.03

12 0.21 0.22 0.00 0.03 0.17 0.15 0.03 0.03

NDRE

14 0.18 0.21 0.04 0.03 0.16 0.14 0.01 0.03

 Mean 0.21 0.21 0.01 0.03 0.18 0.17 0.01 0.03

0 1.88 1.98 0.10 0.30 1.81 1.77 0.03 0.30

3 1.97 2.01 0.04 0.30 1.80 1.76 0.04 0.30

6 2.06 2.06 0.00 0.30 1.79 1.68 0.11 0.30

9 1.94 2.03 0.09 0.30 1.76 1.59 0.18 0.30

12 1.81 1.98 0.18 0.30 1.58 1.38 0.20 0.30

CIgreen

14 1.47 2.01 0.54 0.30 1.40 1.39 0.01 0.30

 Mean 1.86 2.01 0.16 0.30 1.69 1.59 0.10 0.30

0 0.49 0.52 0.03 0.10 0.47 0.45 0.02 0.10

3 0.54 0.54 0.01 0.10 0.48 0.46 0.02 0.10

6 0.58 0.56 0.01 0.10 0.48 0.44 0.04 0.10

9 0.53 0.56 0.03 0.10 0.47 0.40 0.07 0.10

12 0.55 0.55 0.01 0.10 0.42 0.34 0.08 0.10

CIrededge

14 0.44 0.56 0.11 0.10 0.37 0.34 0.03 0.10

 Mean 0.52 0.55 0.03 0.10 0.45 0.41 0.04 0.10
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Table 4.3 continued

0 0.10 0.09 0.01 0.03 0.10 0.11 0.00 0.03

3 0.09 0.09 0.00 0.03 0.10 0.11 0.01 0.03

6 0.08 0.08 0.00 0.03 0.10 0.11 0.01 0.03

9 0.10 0.08 0.01 0.03 0.10 0.12 0.02 0.03

12 0.10 0.09 0.02 0.03 0.13 0.15 0.02 0.03

mNDblue_530

14 0.12 0.09 0.04 0.03 0.15 0.14 0.01 0.03

 Mean 0.10 0.09 0.01 0.03 0.11 0.12 0.01 0.03

0 0.52 0.51 0.01 0.02 0.52 0.53 0.01 0.02

3 0.50 0.50 0.00 0.02 0.51 0.52 0.01 0.02

6 0.49 0.50 0.00 0.02 0.52 0.52 0.01 0.02

9 0.51 0.49 0.02 0.02 0.52 0.54 0.02 0.02

12 0.50 0.50 0.00 0.02 0.54 0.55 0.01 0.02

mNDblue_730

14 0.50 0.50 0.00 0.02 0.55 0.55 0.00 0.02

 Mean 0.51 0.50 0.00 0.02 0.53 0.53 0.01 0.02

0 0.419 0.407 0.013 0.018 0.400 0.396 0.004 0.018

3 0.400 0.404 0.004 0.018 0.407 0.413 0.006 0.018

6 0.414 0.414 0.000 0.018 0.407 0.425 0.018 0.018

9 0.417 0.397 0.019 0.018 0.420 0.391 0.029 0.018

12 0.428 0.395 0.032 0.018 0.426 0.406 0.020 0.018

rDVI_790

14 0.432 0.404 0.028 0.018 0.420 0.398 0.021 0.018

 Mean 0.418 0.404 0.016 0.018 0.413 0.405 0.016 0.018

0 2.87 2.99 0.11 0.30 2.81 2.76 0.05 0.30

3 2.98 3.01 0.04 0.30 2.79 2.75 0.04 0.30

6 3.07 3.04 0.03 0.30 2.79 2.68 0.11 0.30

9 2.95 3.04 0.09 0.30 2.76 2.60 0.16 0.30

12 2.80 2.97 0.17 0.30 2.59 2.39 0.20 0.30

gSRa_790

14 2.46 2.99 0.53 0.30 2.40 2.39 0.02 0.30

 Mean 2.86 3.01 0.16 0.30 2.69 2.60 0.10 0.30

0 4.12 4.15 0.03 0.26 4.16 4.09 0.07 0.26

3 4.08 4.11 0.03 0.26 4.03 4.08 0.05 0.26

6 4.16 4.11 0.05 0.26 4.06 4.03 0.02 0.26

9 4.19 4.05 0.14 0.26 4.01 3.95 0.07 0.26

12 4.09 3.98 0.11 0.26 4.13 3.83 0.31 0.26

SRa_790

14 3.76 4.00 0.24 0.26 3.87 3.80 0.07 0.26

 Mean 4.07 4.07 0.10 0.26 4.04 3.96 0.10 0.26

4.3.3 Evaluation of spectral reflectance indices for drought and nitrogen stress 
responses detected individually

All the SRIs assessed in this work (Table 4.1) were subjected to F-statistics and F-Test 

probabilities via the LMM/REML with an autocorrelation (ARI) model fitted in the D-

N order of factors to show their responsiveness to drought (D) and N stress and the 

underlying interactions (Appendix C, Figure C-3). The results which are summarised in 

part in Table 4.4 and in greater detail in Appendix C, Table C-3 indicated that SRIs 

comprising RDVI, rDVI_790, MCARI1, TVI, ARI1 and ARI2 were responsive to 

drought (Table 4.4). The time course of the drought responsive SRIs under HN and LN 

nutrient conditions are shown in Figure 4.5A-F. Drought responses were generally 

significant first at 9 DAWS except TVI which was significant at 6 DAWS under LN 

(Figure 4.5A-F). Drought responses for ARI1 and ARI2 were significant from 12 

DAWS. Additionally, MCARI1, TVI, ARI1 and ARI2 were also responsive to N stress 

and hence may not be specific to drought or N stress (Table 4.4). Therefore, RDVI and 
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rDVI_790 are the only SRIs that have a specificity to drought detection (Table 4.4; 

Figure 4.5 A-B). Appendix C, Figure C-4 shows the raw data distribution of the 

different treatment conditions for RDVI and rDVI_790. Additionally, the residual plots 

are shown in Appendix C, Figure C-6. 

There was a wide range of SRIs including the pigment (i.e., chlorophyll) based and red-

edge group indices such as G, PRI_550, mNDblue_730, Lic2, MRESR, CIrededge, 

Ctr1, NDRE, mNDblue_530, ZMI, MCARI, CIgreen, gSRa_790, GM1, GM2, 

RENDVI, CRI1, GNDVI_780 and Ctr2 that showed high responses to only N and may 

be specific for their detection based on F-statistics and F-test probabilities (p<0.05) as 

shown in Table 4.4. The time course of the most responsive N specific SRIs under HN 

and LN nutrient conditions are shown in Figure 4.6A-F. Drought responses for G, 

MRESR, Ctr1 and NDRE were significant at 14 DAWS while PRI_550 and 

mNDblue_730 showed no significant difference under HN and LN nutrient conditions 

(Figure 4.6A-F). The raw data distribution of the different treatment conditions of some 

N stress-specific SRIs are shown in Appendix C, Figure C-5. Additionally, the residual 

plots for these SRIs are shown in Figure C-7. SRIs that did not show any responses to 

either drought or N stress included NDVI, SR, OSAVI, TCARI, SPRI, NPQI, PRI, 

NPCI, Lic1, SIPI, CRI2, PRI_norm, PRI/NDVI and SRa_790 (Table 4.4). No 

significant D×N interaction was observed across all SRIs (Table 4.4). 

Table 4.4. F-tests from repeated measures ANOVA (RMA) for the main effects of 
drought (D) and nitrogen (N) on SRIs. The RMA analysis was done considering all 
treatment combinations and days after water stress (DAWS). Statistically significant 
results (p<0.05) indicating differences between means for levels of D or N are shown in 
bold. Full results are given in Appendix C, Table C-3. 

Index D N                   D×N
NDVI F1,13.17=0.86, p=0.371 F1,13.17 =1.79, p=0.203 F1,13.2=1.72, p=0.213

SR F1,13.0=1.05, p=0.325 F1,13.0=2.08, p=0.173 F1,13.0=2.50, p=0.138

MCARI1 F1,14.0=9.86, p<0.05 F1,14.0=10.58, p<0.05 F1,14.0=4.42, p=0.054

OSAVI F1,13.8=1.29, p=0.276 F1,13.8=0.40, p=0.538 F1,13.8=0.36, p=0.559

G F1,15.7=3.67, p=0.074 F1,15.7=18.69, p<0.001 F1,15.7=3.13, p=0.096

MCARI F1,14.4=1.22, p=0.287 F1,14.4=9.66, p<0.05 F1,14.4=1.72, p=0.210

TCARI F1,16.6=1.91, p=0.185 F1,16.6=4.23, p=0.056 F1,16.6=1.77, p=0.201

TVI F1,14.0=10.72, p<0.05 F1,14.0=11.09, p<0.05 F1,14.0= 4.39, p=0.055

ZMI F1,11.8=0.93, p=0.353 F1,11.8=10.93, p<0.05 F1,11.8=3.13, p=0.103

SPRI F1,23.7=0.03, p=0.856 F1,23.7=1.87, p=0.184 F1, 23.7=0.47, p=0.500

NPQI F1,24.1=0.33, p=0.572 F1,24.1= 2.91, p=0.101 F1, 24.1=0.05, p=0.818
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PRI F1,14.9 =1.85, p=0.194 F1,14.9=1.09, p=0.313 F1,14.9=2.06, p=0.172

NPCI F1,23.5=0.04, p=0.853 F1,23.5=2.01, p=0.170 F1, 23.5=0.48, p=0.495

Ctr1 F1,15.7=1.17, p=0.295 F1,15.7=12.52, p<0.05 F1,15.7=3.13, p=0.096

Ctr2 F1,13.1=0.72, p=0.411 F1,13.1=4.93, p<0.05 F1,13.1=1.30, p=0.275

Lic1 F1,13.9=0.02, p=0.878 F1,13.9=1.02, p=0.330 F1,13.9=0.79, p=0.388

Lic2 F1,16.4=1.22, p=0.285 F1,16.4=14.98, p<0.05 F1,16.4=2.30, p=0.148

SIPI F1,13.8=0.34, p=0.567 F1,13.8=0.41, p=0.534 F1,13.8=1.02, p=0.330

GM1 F1,12.0=3.00, p=0.109 F1,12.0=8.66, p<0.05 F1,12.0=3.79, p=0.075

GM2 F1,11.4=1.23, p=0.291 F1,11.4=8.54, p<0.05 F1,11.4=3.08, p=0.106

ARI1 F1,14.0=16.59, p<0.05 F1,8.2=8.98, p<0.05 F1,10.0=3.98, p=0.074

ARI2 F1,13.8=15.16, p<0.05 F1,8.7=8.90, p<0.05 F1, 10.6=3.71, p=0.081

CRI1 F1,11.8=0.09, p=0.775 F1,10.5=8.13, p<0.05 F1,12.7=0.01, p=0.916

CRI2 F1,12.4=1.38, p=0.262 F1,10.3=2.77, p=0.126 F1,12.4=0.31, p=0.590

RDVI F1,24.9=10.31, p<0.05 F1,24.9=0.51, p=0.482 F1,24.9=0.06, p=0.802

PRI_550 F1,13.8=0.33, p=0.573 F1,9.9=43.50, p<0.001 F1,11.5=3.00, p=0.110

PRI_norm F1,13.8=0.99, p=0.338 F1,10.7=2.31, p=0.157 F1,12.2=0.00, p=0.969

PRI/NDVI F1,16.1=2.18, p=0.160 F1,16.1=4.29, p=0.055 F1,16.1=1.40, p=0.253

GNDVI_780 F1,12.4=1.88, p=0.194 F1,12.4=7.13, p<0.05 F1,12.4=2.50, p=0.139

MRESR F1,12.2=2.05, p=0.178 F1,12.2=18.10, p<0.05 F1,12.2=4.15, p=0.064

RENDVI F1,11.7=0.97, p=0.345 F1,11.7=8.06, p<0.05 F1,11.7=2.26, p=0.159

NDRE F1,11.9=0.49, p=0.499 F1,11.9=12.45, p<0.05 F1,11.9=2.59, p=0.134

CIgreen F1,12.1=2.79, p=0.121 F1,12.1=9.91, p<0.05 F1,12.1=3.59, p=0.082

CIrededge F1,12.5=0.75, p=0.403 F1,12.5=14.92, p<0.05 F1,12.5=2.84, p=0.117

mNDblue_530 F1,13.9=1.59, p=0.229 F1,13.9=12.27, p<0.05 F1,13.9=2.14, p=0.166

mNDblue_730 F1,22.5=0.03, p=0.861 F1,22.5=55.64, p<0.001 F1,22.5=2.81, p=0.108

rDVI_790 F1,16.4=18.86, p<0.001 F1,29.9=0.45, p=0.507 F1,28.6=1.60, p=0.216

gSRa_790 F1,11.8=2.59, p=0.134 F1,11.8=9.65, p<0.05 F1,11.8=3.73, p=0.078

SRa_790 F1,14.0=0.15, p=0.702 F1,14.0=1.09, p=0.313 F1,14.0=0.90, p=0.358
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Figure 4.5. Time course of the drought-responsive SRIs comprising (A) RDVI, (B) rDVI_790, (C) MCARI1, (D) TVI, (E) ARI1 and (F) ARI2 under HN and 
LN nutrient conditions. Plotted means are estimations from the Autocorrelation (AR1) model. Bars represent average approximate LSDs significant at a 5% 
level of REML means in each treatment combination and days after water stress (DAWS). Asterisks (*) indicate significant difference between drought-
stressed and well-watered treatments under different N availabilities at 5% significance level.      
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Figure 4.6. Time course of N responsive SRIs including (A) G, (B) PRI_550 (C) mNDblue_730, (D) MRESR, (E) Ctr1, (F) NDRE, and their drought responses 
under HN and LN nutrient conditions. Plotted means are estimations from the Autocorrelation (AR1) model. Bars represent average approximate LSDs with 
default significance set at a 5% level of REML means in each treatment combination and days after water stress (DAWS). Asterisks (*) indicate significant 
difference between drought-stressed and well-watered treatments under different N availabilities at 5% significance level.      
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4.3.4 Correlation between spectral reflectance indices and morpho-physiological 
status

The SRIs that were responsive to drought and N stress based on the F-statistics and F-

test probabilities (p<0.05) (Table 4.4) were used for correlations with the morpho-

physiological parameters indicative of water and N stress to assess their relationships 

(Table 4.5). The results of the correlation analysis showed that all SRIs significantly 

correlated with An and E regardless of water stress or N availability (Table 4.5). The 

SRIs with the highest values of correlation coefficient (r) with An and E were ARI1 and 

ARI2.

Almost all SRIs correlated significantly with SPAD values except for RDVI and CRI1 

(Table 4.5). Except for RDVI, rDVI_790 and CRI1, all SRIs showed significant 

correlations with LNC (Table 4.5). The highest r with LNC was achieved by the 

chlorophyll and red-edge group indices, including mNDblue_730, G, MRESR, NDRE, 

CIrededge, CIgreen, RENDVI, etc., while RDVI and rDVI_790 recorded the lowest r 

(Table 4.5). For Gs, all SRIs showed significant correlations except for CRI1. 

A similar pattern of correlation was observed for LA and SFW where most SRIs 

showed strong significant correlations with both parameters except for RDVI, 

rDVI_790 and CRI1 (Table 4.5). The only two SRIs that did not show a significant 

correlation with RWC were RDVI and mNDblue_730. Most of the SRIs significantly 

correlated with WUEi with GM2 recording the highest value of correlation coefficient 

(Table 4.5). However, only a few SRIs correlated significantly with SMC, particularly 

RDVI and rDVI_790 recording the highest value of correlation, while the chlorophyll 

and red-edge group SRIs showed poor and non-significant correlations with SMC 

(Table 4.5). Altogether, it is evident that the two morpho-physiological parameters that 

indicated drought and N stress based on their relationships with responsive SRIs are 

SMC and LNC respectively, and therefore are the potential indicators of water and N 

status in this study. 
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Table 4.5. Pearson correlation analysis between SRIs that were responsive to either drought, N stress or both and spring wheat morpho-physiological stress 
indicators. The data from spectral reflectance measurements and sampling points of morpho-physiological parameters measured at the same time were used. 
For An, Gs, E, WUEi, SPAD and SMC, correlations with SRIs were done at 0, 3, 6, 9, 12 and 14 DAWS. Correlation between LNC, LA and SFW and SRIs 
were implemented using data at 0, 9 and 14 DAWS. Additionally, correlation between RWC and SRIs were achieved at 9 and 14 DAWS. Values are Pearson 
correlation coefficient (r) between SRIs and morpho-physiological stress parameters. Significant r values at p<0.05 are indicated in bold. 

 Morpho-physiological stress parameters
Responsive 
indices

 
An (µmol CO2 m−2 s−1) Gs (mmol H2O m−2 s−1) E (mol H2O m−2 s−1) WUEi (µmol CO2 mmol H2O) SPAD LNC (%) RWC (%) SFW (g pot-1) LA (cm2) SMC (%)

RDVI -0.20 -0.28 -0.21 0.31 -0.16 -0.02 -0.13 -0.13 -0.10 -0.39

rDVI_790  -0.39 -0.41 -0.36 0.12 -0.34 -0.07 -0.44 -0.32 -0.28 -0.45

MCARI1 -0.73 -0.64 -0.57 -0.18 -0.73 -0.43 -0.59 -0.51 -0.52 -0.26

G -0.68 -0.55 -0.47 -0.25 -0.75 -0.59 -0.49 -0.54 -0.58 -0.02

MCARI -0.60 -0.47 -0.42 -0.32 -0.67 -0.53 -0.40 -0.42 -0.46 0.04

TVI -0.71 -0.62 -0.56 -0.16 -0.70 -0.42 -0.59 -0.50 -0.50 -0.28

ZMI 0.55 0.39 0.32 0.41 0.65 0.54 0.42 0.46 0.49 -0.14

Ctr1 -0.61 -0.49 -0.45 -0.29 -0.65 -0.51 -0.40 -0.42 -0.45 0.04

Ctr2 -0.57 -0.42 -0.40 -0.40 -0.62 -0.42 -0.37 -0.36 -0.39 0.06

Lic2 0.62 0.49 0.50 0.25 0.60 0.56 0.38 0.37 0.42 -0.03

GM1 0.68 0.52 0.47 0.38 0.72 0.51 0.51 0.50 0.53 -0.01

GM2 0.59 0.42 0.38 0.42 0.66 0.52 0.42 0.42 0.46 -0.10

ARI1 0.82 0.74 0.69 0.09 0.73 0.34 0.71 0.65 0.65 0.38

ARI2 0.82 0.74 0.69 0.10 0.73 0.33 0.70 0.66 0.65 0.36

CRI1 0.21 0.17 0.24 0.18 0.11 -0.22 0.29 0.04 0.02 0.28

PRI_550 -0.31 -0.25 -0.21 -0.13 -0.33 -0.54 -0.42 -0.46 -0.48 0.10

GNDVI_780 0.65 0.50 0.46 0.38 0.70 0.48 0.47 0.46 0.49 -0.02

MRESR 0.58 0.42 0.35 0.36 0.67 0.61 0.47 0.52 0.55 -0.12

RENDVI 0.56 0.40 0.35 0.40 0.64 0.51 0.40 0.43 0.46 -0.12

NDRE 0.52 0.37 0.30 0.41 0.63 0.55 0.38 0.42 0.45 -0.16

CIgreen 0.68 0.52 0.47 0.38 0.73 0.54 0.51 0.50 0.54 -0.02

CIrededge 0.53 0.38 0.31 0.39 0.64 0.58 0.41 0.47 0.50 -0.15

mNDblue_530 -0.64 -0.50 -0.46 -0.31 -0.69 -0.53 -0.42 -0.45 -0.48 0.04
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mNDblue_730 -0.40 -0.29 -0.22 -0.19 -0.51 -0.65 -0.23 -0.37 -0.39 0.19

gSRa_790  0.68 0.52 0.47 0.39 0.72 0.52 0.50 0.49 0.52 -0.02
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4.4 Discussion

4.4.1 Morpho-physiological drought responses under HN and LN conditions

Plant physiological responses to either drought or N stress are well known, while their 

interactions remain less well understood. In this study, the morpho-physiological status 

of spring wheat was assessed to understand the complex drought responses under HN 

and LN nutrient conditions. Principal indicators of plant physiological status that were 

assessed were gas exchange parameters such as the An, Gs, E and WUEi (Table 4.2; 

Figure 4.4A-D). Drought effects on An under HN were coupled much earlier with 

greater amplitude of responses compared to LN (Table 4.2). The greater drought 

responses in An under HN compared to LN could be explained by the higher LNC 

attributable to N supply enhancing photosynthetic activity and leaf carboxylation 

efficiency (Ullah et al., 2019). These results are consistent with Shi et al. (2014) where 

the authors reported enhanced leaf photosynthesis under HN treatments compared to LN 

treatments during water deficit stress in wheat. It is also evident that the application of 

N had a rapid positive response on An at 0, 3, 6, 9 and 14 DAWS, while water stress 

(drought) was gradual at 6, 9, 12 and 14 DAWS (Appendix C, Table C-1). This may be 

explained by the fact that N treatments were applied several weeks before the 

imposition of water stress, even though N treatments were withheld a week before water 

stress. Moreover, the significant (D×N×DAWS) interaction observed suggests the 

positive impact of all the factors on An under the different N availabilities (Table 4.2). 

The Gs measures the extent of stomatal opening and serves as an indicator of the water 

status of plants (Huang et al., 2021). The stomata impose a large limitation on the rate 

of CO2 assimilation or water vapor exiting through the stomata and is more severe in 

stressed plants (Urban et al., 2017). In this present study, a very rapid response to 

drought was observed in Gs at 0, 3, 6, 9, 12 and 14 DAWS under HN, compared to LN 

which delayed until 9, 12 and 14 DAWS (Table 4.2; Figure 4.4B), suggesting that N 

availability influenced the rapidity of the response. Meanwhile, the significant 

difference observed on day 3 may be attributed to the WS. The Gs in wheat plants 

subjected to drought under HN was lower after 3 DAWS compared to droughted plants 

under LN (Table 4.2). These results are in line with the findings of Medici et al. (2007) 

who reported lower Gs in maize plants under drought and high N compared to plants 

under drought and low N in field conditions which indicated drought tolerance in maize. 
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This observation was reported by Li et al. (2020) for oats. The consistent effect of 

drought on Gs compared to N stress observed in this study indicates the greater impact 

of drought on wheat plants.

Transpiration is a physiological mechanism that allows plants to absorb water from the 

soil through the root and it is then evaporated at leaf level through the stomata and other 

plant surfaces (Yoo et al., 2009). The rate at which water moves through the plant due 

to transpiration plays a vital role in maintaining plant water balance, nutrient uptake, 

evaporative cooling under increasing air temperature, and maintaining optimal leaf 

temperature for photosynthesis (Houshmandfar et al., 2018). In this study, the consistent 

statistically significant difference observed between WW and WS plants in E under HN 

compared to LN suggests a greater amplitude of response in the former which may be 

influenced by a higher N supply (Table 4.2; Figure 4.4C). This observation conforms 

with those of Shi et al. (2014) who reported significantly higher transpiration under high 

water treatments compared to low water treatments, which further increased with 

increased N supply, especially in well-irrigated plants. Drought significantly reduced 

the E irrespective of N supply (Appendix C, Table C-1) suggesting that it was the most 

limiting factor. This observation is in support of Wang et al. (2016) and Akram et al. 

(2014) who both reported a noticeable decrease in E and Gs in wheat exposed to drought 

under different N levels. A significant interaction between drought, N stress and DAWS 

was found suggesting the influence of all factors on E in this study (Appendix C, Table 

C-1). 

The observed significant difference between treatments on WUEi under HN compared 

to LN indicates a greater drought response which may be influenced by a higher N 

supply that impacted positively on Rubisco activity and stomatal regulation (Table 4.2; 

Figure 4.4D). In parallel, the increase in WUEi in response to drought was greater for 

HN plants than for LN. During drought stress, a sufficient supply of N can minimise the 

detrimental effects of the drought, maximise water use efficiency and speed up the 

recovery process (Gessler et al., 2017). These findings corroborate Shangguan et al. 

(2000) who reported a significantly higher WUEi in wheat plants under high N than in 

low N exposed to drought conditions. The authors discovered that depending on the 

availability of water, the effects of N nutrition on photosynthetic parameters differ. The 
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significant effect of both drought and N stress on WUEi indicates a synergistic effect 

with a significant water-by-N availability interaction. 

This study noted high SPAD values in response to drought under HN compared to LN 

particularly at 6, 9 and 12 DAWS suggesting the influence of high N application that 

minimally raised the relative leaf chlorophyll content in HN plants (Table 4.2; Figure 

4.4E). These results partly agree with Basal and Szabó (2020), who found that whereas 

drought significantly reduced SPAD values at the late reproductive stage, increasing N 

fertilisation rate was associated with increases in SPAD values in the early reproductive 

stage in soybean. The present findings indicate a greater amplitude of drought response 

in SPAD values under HN compared to LN (Table 4.2; Figure 4.4E). The significant 

effect of both drought and N stress indicates that SPAD values were sensitive to water 

deficit and N stress.

This study observed a non-significant drought response in LNC regardless of N 

availability and consequently, no significant drought and N effects and interactions 

(Table 4.2; Figure 4.4F). This observation suggests that the LNC was unaffected by 

both combined stress factors. According to the findings of Radin and Boyer (1982), the 

water relations of plants under drought stress are altered by N content and this could 

account for the results observed in this study. The RWC of leaves is a crucial marker of 

plant water status since it shows how well water is supplied to the leaf tissue while also 

reflecting the rate of transpiration (Lugojan and Ciulca, 2011). The greater drought 

response in RWC under HN compared to LN suggests the influence of high N supply. 

However, the overall effects of a high N supply on leaf RWC seem unclear Feng et al., 

2009. Querejeta et al. (2022) reported that N supply can improve plant water relations 

and drought tolerance. Therefore, it is challenging to draw broad conclusions about how 

a high N supply affects leaf RWC without considering the specific context (i.e., plant 

species, N form and level and water availability). It is clear from the data presented in 

(Table 4.2; and Figure 4.4G) that only drought significantly affected the leaf RWC with 

no effect by N stress. A similar observation has been reported (Akram et al., 2014). 

The SFW is considered a valuable measure of plant physiological status as it reflects 

light use efficiency and growth and is useful for C stock accumulation and assessment 

(Huang et al., 2022). The SFW in response to drought under HN was greater compared 
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to LN probably due to the influence of high N supply that increased the photosynthetic 

activities leading to more C stock accumulation in the leaf which could increase 

sensitivity to water stress (Huang et al., 2022). The interactive effect of drought and N 

stress indicates the co-limitation of both stress factors on SFW (Appendix C, Table C-

1). 

The LA growth determines the light interception capacity of a crop stand and is 

arguably the most frequently measured phenotypic feature of crop canopies in high-

throughput phenotyping systems (Haghshenas and Emam, 2022). The observed greater 

drought response in LA under HN compared to LN (Table 4.2; Figure 4.4I) may be 

attributed to high N supply that influenced CO2 assimilation resulting in LA expansion, 

increased crop photosynthesis and rate of water loss through transpiration (Lawson and 

Milliken, 2023). The data presented in (Appendix C, Table C-1) showed that both 

drought and N stress co-limited LA expansion. The interactive effect of co-occurring 

water and N stress on LA reduces LA development and can accelerate leaf senescence 

(Ghani et al., 2000). 

The observed SMC in this study indicated that under HN, water was drawn faster than 

in LN to the root zone to facilitate photosynthesis and CO2 assimilation for biomass 

production and LA expansion, resulting in higher water demand and thereby reducing 

the SMC significantly (Table 4.2; Figure 4.4J).

4.4.2 Spectral reflectance indices responses to drought under HN and LN 
conditions

There is limited information on how N availability affects spectral reflectance to 

drought stress. The SRIs response to drought under HN and LN differed among several 

indices (Table 4.3; Appendix C, Table C-2). Drought responses in SRIs were generally 

significant on the last day of water stress (14 DAWS) under HN compared to LN except 

for NPQI, Lic1, Lic2, and SRa_790. This finding indicates that the duration of water 

stress and N availability had a profound impact on plants responses to drought. Drought 

responses for SRIs such as MCARI1, G, TCARI, TVI, PRI, Ctr1, GM1, GM2, ARI1, 

ARI2, CRI1, CRI2, PRI/NDVI, GNDVI_780, MRESR, RENDVI, NDRE, CIgreen, 

CIrededge, mNDblue_530, rDVI_790 and gSRa_790 were significant with first 

response from either 9, 12 or 14 DAWS under HN compared to LN (Table 4.3). The 
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findings demonstrate that adding a high concentration of N before the onset of drought 

increased the sensitivity of wheat spectral reflectance of these SRIs to water stress. 

However, SRIs such as NPQI, TVI, RDVI, rDVI_790, Lic1, Lic2 and SRa_790 

responded to water stress under LN supply with the earliest response from either 3, 9, 

12 or 14 DAWS (Table 4.3). The findings also revealed no influence of N availability 

for some SRIs including OSAVI, MCARI, ZMI, SPRI, NPCI, Ctr2, RDVI, PRI_550, 

PRI_norm and mNDblue_730 on responses to water stress, suggesting that the stress 

effect was only dictated by water stress (Table 4.3). The findings also revealed some 

SRIs whose drought responses were not directly affected by either HN or LN and 

N×DAWS (e.g., SPRI and PRI_norm). However, SRIs such as OSAVI, MCARI, ZMI, 

NPCI, Ctr2, PRI_550 and mNDblue_730 were impacted by N×DAWS, yet drought 

responses were not influenced by HN or LN. 

There was no significant D×N interaction observed by the SRIs (Table 4.4). The 

interaction between drought and N levels in wheat involves complex physiological and 

biochemical processes that may affect spectral reflectance of the crop. High N 

availability can enhance plant growth and increase water demand, potentially 

exacerbating water depletion under drought conditions. Conversely, low N levels may 

limit growth, reducing water use but also potentially decreasing drought resilience due 

to insufficient resources for stress response mechanisms (Wan et al., 2022). Drought 

stress reduces water availability, affecting nutrient uptake, including N which is crucial 

for protein synthesis and plant growth (Camaille et al., 2022). The interaction between 

drought and N levels influences wheat’s ability to manage water efficiently and 

maintain productivity under adverse conditions (Sallam et al., 2019).

4.4.3 Assessment of spectral reflectance indices for discriminating between drought 
and nitrogen stress

SRIs were found to be useful tools for discriminating between drought and N stress in 

two recent studies (Rubo and Zinkernagel, 2021; Colovic et al., 2022). In the present 

study, the F-statistics and F-Test probabilities (p<0.05) were conducted to assess SRIs 

that were responsive for discriminating the combined drought and N stress during the 

stem elongation stage of spring wheat and further identify SRIs specific to these stress 

factors (Table 4.4; Appendix C, Table C-3). The present findings showed that RDVI, 

rDVI_790, MCARI1, TVI, ARI1 and ARI2 were responsive to drought (Table 4.4). The 
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results also showed that MCARI1, TVI, ARI1 and ARI2 were responsive to N stress 

and therefore they may be indicative of both stresses but may not be specific to none. 

On the other hand, RDVI and rDVI_790 were the only indices responsive to drought 

and therefore may show specificity for detection (Table 4.4; Figure 4.5A-B). Drought 

treatment impacted these drought-responsive indices with D×DAWS interaction 

(Appendix C, Table C-3).  

The short wavelength range (320 to 790 nm) of the PolyPen RP410 spectroradiometer 

used for collecting spectral reflectance data in this study, limits its use for water stress 

detection. Therefore, a spectroradiometer with a wider wavelength range may be more 

appropriate.  Generally, the spectral region from 800 to 2500 nm is more sensitive to 

plant water stress. This region encompasses the short-wave infrared (SWIR) range from 

800 nm to 1600 nm (Kim et al., 2015) as well as wavelengths between 1300 and 2500 

nm (Maimaitiyiming et al., 2017). Again, the shorter period of water stress might have 

affected spectral response to drought. Plants may employ photo-protection techniques in 

response to short-time water stress, such as reducing photosynthesis while increasing 

heat emission and chlorophyll fluorescence (Zhang and Zhou et al., 2019).

A wide range of SRIs including G, mNDblue_730, PRI_550, MRESR, Lic2, CIrededge, 

NDRE, RENDVI, CIgreen, GNDVI_780, mNDblue_530, gSRa_790, ZMI, Ctr1, GM1, 

GM2, Ctr2 and CRI1 showed high responses to only N stress and would be effective for 

N stress detection (Table 4.4; Figure 4.6). From the results presented in Table 4.4, the 

high response of these SRIs to N seems to be impacted heavily by HN supply coupled 

with N×DAWS interaction (Appendix C, Table C-3). The specific SRIs suitable to 

detect the combined drought and N stress in plants may vary depending on the plant 

species, the type and severity of stress conditions and the measurement technique used 

(Saud et al., 2017).

4.4.4 Linking the spectral reflectance responses to the morpho-physiological status

In the present study, the effectiveness of SRIs that were responsive for assessing the 

water and N status were evaluated for their relationship with the morpho-physiological 

indicators through correlation analysis (Table 4.5). The results of this study indicated a 

large range of significant correlations of the SRIs (e.g., ARI1, ARI2, GMI, 

GNDVI_780, CIgreen, MRESR, CIrededge, etc.) with gas exchange parameters such as 
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An, E, Gs and WUEi regardless of water stress or N availability and DAWS (Table 4.5). 

The strong relationship between SRIs and An observed could be explained by non-

saturation of the indices especially their wavebands which made them more sensitive to 

changes in photosynthetic pigments (i.e., chlorophylls and carotenoids), plant tissues 

and absorption and scattering of light during photosynthesis, leading to corresponding 

changes in the spectral reflectance (Hejtmánek et al., 2022).

The significant correlation of the SRIs with E, Gs and WUEi could be accounted for by 

the sensitivity of the indices to variations of stomatal closure and water loss through 

transpiration (El-Hendawy et al., 2017; Ihuoma and Madramootoo, 2019a) which may 

be dictated by the photosynthetic efficiency, nutrient and water availability and plant 

water status. Several of these SRIs have been reported to correlate significantly with 

leaf gas exchange parameters in many studies (Sellami et al., 2022; Colovic et al., 2022; 

Hejtmánek et al., 2022). For instance, Colovic et al. (2022) demonstrated a significant 

correlation between the red-edge group indices (e.g., CIrededge and NDRE) with leaf 

gas exchange parameters which was influenced by responsiveness to the chlorophyll 

concentration. These results partly agree with Maimaitiyiming et al. (2017) who also 

reported a strong relationship between SRIs mostly from the red-edge region with Gs 

and An because of their sensitivity to subtle changes in chlorophyll. These findings 

suggest that most of the SRIs can be effective and non-destructive tools for evaluating 

plant leaf gas exchange parameters offering useful data for stress monitoring and plant 

growth. 

A wide range of the SRIs correlated significantly with SPAD values which are proxies 

for relative chlorophyll content except for RDVI and CRI1 (Table 4.5). The highest 

correlation was achieved by chlorophyll indices (e.g., G, MCARI, CIgreen, GMI) and 

anthocyanin-based indices such as ARI1 and ARI2. The chlorophyll and anthocyanin-

based indices correlated strongly with SPAD values under drought and N stress 

probably because they are all related to the leaf pigments (Sukhova et al., 2022). There 

have been strong relationships found between the SPAD index and leaf pigments 

(Hlavinka et al., 2013). 

In the present study, almost all the SRIs significantly correlated with the LNC except 

for RDVI, rDVI_790 and CRI1 (Table 4.5). The highest correlation of the SRIs with 
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LNC was achieved by the chlorophyll-sensitive indices (e.g., mNDblue_730, G and 

Lic2) and the red-edge group indices (e.g., MRESR, CIrededge, NDRE, etc.,) (Table 

4.5). These findings could be explained by the fact that the chlorophyll indices use 

wavelengths in the red-edge region due to their close relationship with chlorophyll 

content. The red edge is a spectral region between the visible red (e.g., 670 nm) and 

NIR (e.g., from 750 nm with the PolyPen RP410) wavelengths, and it is sensitive to 

changes in chlorophyll content, which is closely related to LNC (Kanke et al., 2012). As 

chlorophyll absorbs less in the red-edge region, the saturation effect is reduced using 

these wavelengths (Zhang et al., 2022).

The linkage between the red-edge region and plant N status explains why the red-edge 

indices correlated significantly with LNC (Kanke et al., 2012). The significance of 

employing red-edge indices to assess plant N deficiency and N requirement is 

highlighted by the great sensitivity to the leaf chlorophyll content. According to Sellami 

et al. (2022), the red-edge indices could separate different levels of water and N stress at 

the mid-season stage in maize. The authors observed a shift in the red-edge position 

(REP) which was attributed to variations in the width of the maximum chlorophyll 

absorption in the red spectral region due to reduced chlorophyll content and lower 

photosynthetic efficiency due to low N supply. Additionally, other studies reported the 

variations in REP (up to 10 nm) as the consequence of different factors, including plant 

disease (Gazala et al., 2013), nutrient deficit (Zhao et al., 2005) and water stress (Zhang 

and Zhou, 2019; Ballester et al., 2019). 

Furthermore, Meer and De Jong (2006) have reported that the REP is affected by 

chlorophyll concentration, leaf mesophyll structure and LAI. The results in the present 

study are consistent with Colovic et al. (2022) who reported a higher sensitivity to N 

levels by the red-edge-based indices compared to the structural and water band indices 

in sweet maize. The significance of the chlorophyll and red-edge group indices which 

were identified by the F-statistics and F-Test probabilities is supported by this result and 

makes them optimal indices for N stress detection.

In this study, a wide range of SRIs (e.g., ARI1, ARI2, G, MRESR, CIgreen, MCARI1, 

GM1, gSRa_790, etc.,) showed a consistent trend of a strong relationship with the 

destructive morpho-physiological parameters (i.e., LA, SFW and RWC) (Table 4.5). 
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This result suggests that several SRIs examined in this study could be used to indirectly 

assess the growth and water status based on LA, SFW and RWC in a rapid, low-cost 

and non-destructive manner. However, for water status, they may not be specific in their 

assessment. The results also showed a few SRIs (e.g., RDVI, rDVI_790, ARI1, ARI2, 

MCARI1, TVI, CRI1 and mNDblue_730) that significantly correlated with SMC (Table 

4.5). RDVI and rDVI_790 showed the strongest correlation with SMC but a very poor 

relationship with LNC (Table 4.5). It is evident that among all the morpho-

physiological parameters assessed in this study, SMC and LNC clearly distinguish SRIs 

that indicate specificity for drought and N stress respectively. By this observation, 

RDVI and rDVI_790 are the only indices that indicate specificity for drought stress 

which confirms the earlier findings. Both RDVI (R780–R670)/((R780+R670)1/2) and 

rDVI_790 (R790–R680) are narrow-band greenness SRIs that compare reflectance 

measurements from the reflectance peak in the NIR region to reflectance in the red 

region, including the red-edge where chlorophyll absorbs light energy for 

photosynthesis (Roujean and Breon, 1995). These combinations of reflectance 

measurements make them sensitive to the combined effects of chlorophyll content and 

canopy LA. 

These findings are supported by Ihuoma and Madramootoo (2019a) who demonstrated 

the utility of RDVI and other SRIs for detecting water stress levels in greenhouse-based 

tomato plants where it showed a good correlation with SMC and other water stress 

indicators such as canopy temperature and RWC. In another study, RDVI was found to 

be one of the most useful SRIs for detecting water stress in bell pepper under 

greenhouse conditions (Ihuoma and Madramootoo, 2019b). 

Rosa et al. (2023) explored many leaf-level spectroradiometer indices for their response 

to early drought stress in tomatoes. However, RDVI was not responsive to drought 

probably because their work was field-based which may have influenced spectral 

reflectance and the authors did not consider SMC as a water stress indicator. The 

present findings indicate that RDVI and rDVI_790 are the most sensitive indices for 

drought stress in spring wheat and may be specific for detection regardless of N stress 

using the low-cost handheld proximal sensor. 
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Collectively, the findings of this study suggest that the chlorophyll-sensitive and red-

edge group SRIs including mNDblue_730, G, Lic2, MRESR, CIrededge, CIgreen and 

NDRE are the key mechanistic SRIs for N stress detection and may be related to 

autocorrelation because they capture spatial patterns in the leaf/vegetation that are often 

influenced by environmental factors like precipitation and nutrient availability which 

equally exhibit spatial autocorrelation. The RDVI and rDVI_790 are the key 

mechanistic SRIs for drought stress detection and may potentially relate to 

autocorrelation. The findings could inform better nutrient management strategies under 

drought conditions, leading to more resilient cropping systems. However, a validation in 

the field with a spectrometer of a wider wavelength range and crop varieties under 

multiple stress conditions may be required for generalisability of the findings.

To prioritise SRIs that best explain crop traits variations linked to the morpho-

physiological status, further work should consider exploiting a more robust statistical 

analysis methods such as forward stepwise regression analysis. This method involves 

adding variables one at a time to a regression model based on their statistical 

significance in explaining the variation in crop traits (Saed-Moucheshi et al., 2013; 

Sardoei et al., 2023). This analysis method would help identify the most relevant SRIs 

by evaluating their contribution to the model incrementally (Naik et al., 2020; Wang et 

al., 2022). Additionally, Principal Component Analysis (PCA) reduces the 

dimensionality of spectral data by transforming it into a set of uncorrelated variables 

called principal components. These components capture the most variance in the data, 

allowing for the identification of key SRIs that could influence crop traits (Beattie and 

Esmonde-White, 2021). These methods would provide a robust framework for selecting 

and prioritising SRIs that are most informative for analysing crop traits variations under 

drought and N stress scenarios. 

4.5 Conclusions

This study assessed the morpho-physiological drought responses at high and low N 

supplies and examined the feasibility of using SRIs at the leaf scale to discriminate the 

combined drought and N stress effects in spring wheat. A short period of water stress 

had a negative impact on the morpho-physiological parameters investigated and the 
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spectral reflectance of wheat plants. The results of this study demonstrated a faster 

response to drought for the HN plant compared to LN with a larger amplitude of 

response in morpho-physiological parameters including gas exchange parameters, 

SPAD values, RWC, SFW, LA and SMC with interactive effects except for LNC. 

These findings imply that in water-limited scenarios, plants with an adequate or surplus 

of N may be more sensitive to drought stress; hence, N fertiliser management could be a 

key component in increasing water productivity during dry spells. The result of this 

study collectively indicates that N status is likely to have an impact on how spring 

wheat responds to water stress. It is suggested that SRIs can be used in wheat breeding 

programmes to quantify the morpho-physiological status quickly and non-destructively 

because of their close relationships.

This study demonstrated that the combined drought and N stress could be discriminated 

against using a low-cost handheld proximal sensor and identified key SRIs that were 

more responsive to drought and N stress. The narrow-band greenness SRIs which also 

use red-edge wavelengths (RDVI and rDVI_790) are the only indices that indicate 

higher specificity for drought stress detection. For N stress, the chlorophyll-sensitive 

indices (mNDblue_730, G and Lic2) and most importantly the red-edge group indices 

(e.g., MRESR, CIrededge and NDRE) showed higher specificity for their detection. 

Therefore, the application of SRIs in wheat during the stem elongation stage could 

improve PA by detecting stress patterns and helping growers make wise decisions, such 

as the optimisation of agricultural water use and crop fertilisation to reduce the negative 

effects of stress.

The applicability of these findings as a guide or methodology for monitoring the 

morpho-physiological status of crops in a rapid and non-destructive manner and 

discriminating the combined drought and N stress requires validation with a 

spectroradiometer of wider wavelength range, or RS tool over different plant species 

exposed to different levels of water stress and N availabilities. Scaling up these findings 

for field phenotyping in developing countries such as Africa is the future work of this 

research and may play a pivotal role in PA. 
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Abstract

In contemporary agricultural research, the integration of cutting-edge technologies has 

become imperative for precise and efficient crop management. The present study 

focused on multiscale assessment, employing a comprehensive approach that compares 

aerial drone imagery and ground-based proximal sensors. The primary objective of this 

study was to evaluate the nitrogen (N) status and agronomic performance in winter 

wheat through the quantitative comparison of aerially sensed Normalised Difference 

Vegetation Index (NDVI) and a ground-based proximally sensed NDVI derived at both 

canopy and leaf scales. This study used data collected from the Wheat Genetic 

Improvement Network (WGIN) diversity field trial at Rothamsted Research during the 

2020/2021 growing season. N fertiliser treatments were applied as ammonium nitrate 

(NH4NO3) at 3 N levels –100, 200 and 350 kg N ha-1 applied as 50:50 (N1), 50:100:50 

(N2) and 50:250:50 (N3) splits respectively. The trial was structured in 3-fold 

replication in a split-plot randomised design. Aerially sensed NDVI was acquired using 

an RGB/NIR adapted camera fitted to a drone whereas the canopy and leaf scales NDVI 

were measured using a handheld TEC5 spectrometer and handheld contact spectrometer 

(PolyPen RP410) respectively. Crop parameters indicative of N status including the leaf 

N content (LNC) and SPAD chlorophyll were measured. Additionally, agronomic 

parameters such as leaf area index (LAI), number of tillers, straw yield and grain yield 
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(GY) were determined. F-tests from repeated measures ANOVA (RMA) were used to 

assess the sensitivity of the sensors to N treatments. Linear Pearson correlation analysis 

was employed to assess the relationships between sensors (NDVI) to the N status and 

agronomic parameters. The findings showed that NDVI (PolyPen) was more sensitive 

than NDVI (Drone) and NDVI (TEC5) to the N status and for evaluating the agronomic 

performance of wheat. The results indicated that NDVI (PolyPen) demonstrated the 

earliest detection of nutritional N variations compared to NDVI (Drone) and NDVI 

(TEC5). At the early to mid-season stage (anthesis), the NDVI (PolyPen) is a good leaf-

level indicator for wheat LNC and SPAD chlorophyll content estimation. However, at 

the late wheat growth stage, NDVI (Drone) was more sensitive to the LNC and SPAD 

chlorophyll content. The NDVI (Drone), NDVI (PolyPen) and NDVI (TEC5) were 

strongly correlated to each other validating their alternative use and effectiveness for N 

status monitoring in winter wheat during the growing season. This study demonstrated 

that the LAI, number of tillers and straw yield of winter wheat could be effectively 

assessed non-destructively at mid-season with NDVI (Drone) and NDVI (PolyPen) but 

more limited with NDVI (TEC5). However, all derived NDVIs irrespective of their 

proximity showed promise as effective predictors of GY early in the season. The results 

presented in this study will be useful for understanding and integrating NDVI data 

across various spatial scales. Overall, the findings of this study may form the basis for 

developing a decision support tool for farmers, leading to better N management and 

improved N use efficiency.

Keywords: Aerial drone imagery, remote sensing, proximal sensors, N status, winter 

wheat
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Figure 5.1. Graphical abstract. 

5.1 Introduction

Winter wheat (Triticum aestivum L.), a major staple food crop, is vital to global food 

security and sustainable agriculture. N plays a crucial role in determining wheat growth, 

development and a sufficient supply is fundamental to maximising grain yield and 

quality (She et al., 2023; Wang et al., 2023). However, optimising N management to 

achieve high crop yield and high N use efficiency (NUE) is a major challenge in the 

production of winter wheat. Additionally, excessive N fertiliser application in wheat and 

other crops has been linked to lower yields, reduced farm economic benefits and 

detrimental effects on the environment (Li et al., 2018; Shakoor et al., 2018; Wu and 

Ge, 2019; Hou et al., 2023). Therefore, matching N fertiliser supply to crop needs is 

essential to ensure optimal crop performance and safeguard the environment. 

In agricultural practice, farmers or practitioners frequently estimate the crop N status 

employing traditional methods that involve destructive sampling and plant tissue 

chemical analysis or leaf colour charts (Witt et al., 2005). However, despite these 

manual methods often producing accurate results, they are laborious and time-

consuming. Additionally, laboratory results are often delayed which hampers decision 

making. Moreover, given the extreme spatial and temporal variability of the crop N 

status within and between fields, these manual methods are not appropriate for 
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evaluating the crop N status at large scales (Fu et al., 2020). A detailed assessment of 

the crop N status across time and space using PRS techniques has become the frontier of 

plant phenotyping and PA (Sishodia et al., 2020; Gordillo-Salinas et al., 2021; Ruan et 

al., 2023). 

PRS are valuable techniques for informing sustainable agronomic management as they 

allow for quick and accurate assessment of the status of developing crops non-

destructively in a dynamic way (Hatfield et al., 2008; Mezera et al., 2021; Yoosefzadeh-

Najafabadi et al., 2023). The basis of agricultural PRS is the gathering of crop leaf or 

canopy reflectance spectra at specific electromagnetic spectrum wavelengths, which 

typically correspond to areas of the leaf/canopy that strongly absorb or reflect incoming 

radiation (Xue et al., 2017). A popular technique for interpreting leaf/canopy reflectance 

data is to use the wavelengths to develop SRIs, which is a mathematical combination of 

wavelengths associated with specific biophysical characteristics of the plant (Zou and 

Mõttus, 2017). The NDVI is one of the SRIs that has been widely explored for assessing 

the biophysical status of developing crops to quantify various agronomic parameters, 

e.g., nutrient status, LA, crop canopy cover, biomass, crop type and yield (Viña et al., 

2011; Tenreiro et al., 2021; Farias et al., 2023). It is calculated using the ratio of red and 

NIR wavelengths from proximally or remotely sensed data, providing an 

index/indication of crop vegetation health, vigour, photosynthetic activity or greenness 

(Huang et al., 2021).

Notably, the NDVI is a commonly used SRI for assessing the N status of crops 

(Rehman et al., 2019). Based on the physiological intercorrelation between N and 

chlorophylls, the spectral reflectance of crop leaves or canopies can be used to 

determine the N status. In wheat, NDVI has been used for assessing the N status, 

helping to optimise N application, improve nutrient uptake and predict yield (Mitra et 

al., 2023). The use of NDVI sensors for N management in wheat has been associated 

with improved economic NUE, particularly with lower rates of N application, indicating 

the potential for significant N savings (Mitra et al. 2023). Additionally, the NDVI can 

be used to improve NUE by estimating in-season crop needs and addressing nutrient 

management through variable-rate applications (Ali et al., 2022; Miller et al., 2023). 

Therefore, by estimating the early to mid-season N requirement, the NDVI could act as 

a framework for rational N management in cereals. Despite its limitations in dealing 
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with soil background, atmospheric and saturation effects, NDVI is still the most adopted 

SRI due to its simplicity of use and interpretation (Huang et al., 2021). Thus, correlates 

with the status of a broad array of vegetation properties, making it easier to classify and 

quantify vegetation. Again, it is readily available from most satellite and other RS 

platforms which is valuable in commercial agriculture and precision farming (Scheftic 

et al., 2014). 

NDVI data can be collected using a variety of platforms, including proximal handheld 

sensors and aerial sensors mounted on aircraft, satellites or UAVs (Toth and Jóźków, 

2016; Rehman et al., 2022). The use of proximal sensors, particularly those that make 

use of an active light source, has been the main focus of agricultural RS research over 

the past 20 years (Saberioon et al., 2014). NDVI values obtained from PS tools have 

been used to track the crop N status throughout the wheat growing season and predicted 

yield, aiding in finding the balance between crop N requirements and fertiliser 

application (Aranguren et al., 2020).  

Moreover, a growing number of studies are using low-altitude UAV-based platforms 

due to the recent development of low-cost and small aerial sensors that are simple to 

mount to a UAV (e.g., drone) (Colomina and Molina, 2014; Sørensen et al., 2017; Lu et 

al., 2019; Fu et al., 2020; Liu et al., 2022). Among studies that solely used aerial sensors 

to evaluate N status, Dunn et al. (2016) reported strong correlations between NDVI and 

NDRE and N uptake in rice. The authors found that NDVI saturated more than NDRE. 

In recent times, numerous studies have embarked on a novel exploration within the 

realm of PA, focusing on the comparative analysis of aerially sensed and proximally 

sensed SRI measurements to assess the N status of crops. For instance, Rehman et al. 

(2023) compared the sensitivity of proximally sensed NDVI and aerially sensed NDRE 

to crop N status and predicted GY in rice. The authors reported that despite the 

differences between the sensors used for measurement, both the proximally and aerially 

measured SRIs can be used to assess the in-season crop N status and predict the GY 

response to top-dress N with similar precision. When proximal NDVI and aerial NDRE 

were measured in maize, Sumner et al. (2021) discovered that they were both more 

responsive to variations in N fertiliser rate than aerial NDVI.
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Furthermore, Rehman et al. (2022) quantitatively compared the sensitivity of aerially 

sensed NDVI and NDRE and proximally sensed NDVI for assessing total N uptake at 

panicle initiation and predicting GY in a rice cropping system. The authors concluded 

that both proximally sensed NDVI and aerially sensed NDRE produced measurements 

sensitive enough to inform N fertiliser management in this system, whereas aerially 

sensed NDVI was more limited.

Although numerous studies have demonstrated the ability of NDVI and other SRIs (e.g., 

NDRE) to assess crop N status and predict yields using either a proximal sensor, aerial 

sensor or both, few studies have directly compared NDVI measured from proximal and 

aerial sensors side-by-side at different scales. Among the few studies that have, Zheng 

et al. (2018) reported that NDVI measured with a proximal sensor correlated more 

strongly with rice N concentration than aerial NDVI. In another study, Ryu et al. (2020) 

evaluated the performance of garlic and onion using data from a leaf spectrometer, field 

spectrometers, ground-installed spectral reflectance sensors, a multispectral camera 

onboard a UAV and Sentinel-2 satellites. The authors reported that the ground-based 

NDVI data can be used to validate UAV-derived NDVI data without further processing 

and UAV-derived NDVI data can be used to validate Sentinel-2 NDVI data after 

upscaling to the Sentinel-2 pixel size. While Duan et al. (2017) reported that aerial 

NDVI measurements were limited to a narrower range than proximal NDVI, Duan et al. 

(2017) and Hassan et al. (2018) both found that proximal and aerial NDVI 

measurements were well-correlated to each other across a wide range of growth stages 

in wheat.

Given the backdrop of increasing demands for precision in agricultural management, the 

present study is positioned at the intersection of technological advancement and 

agronomic necessity. The primary objective is to quantitatively compare the sensitivity 

and effectiveness of NDVI derived from two distinct scales: aerial imagery and ground-

based proximal sensors. This comparison is aimed at assessing their respective 

capabilities in evaluating the N status and overall agronomic performance of winter 

wheat, a staple crop with significant global importance.

The rationale for this research stems from the recognition that while both aerial and 

proximal sensing technologies have individually shown promise in PA, there is a 
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paucity of studies that systematically compare their performance, especially in the 

context of NDVI for winter wheat cultivation. Aerial imagery, facilitated by UAVs, 

offers broad-scale observations, whereas proximal sensors provide high-resolution data 

at a closer range, potentially capturing more detailed information about the crop canopy 

and leaf characteristics (Ryu et al., 2020; Alexopoulos et al., 2023). 

This study seeks to bridge this gap by employing a multiscale approach to sensor data 

analysis, hypothesising that integrating insights from both aerial RS and PS modalities 

could lead to a more accurate, comprehensive understanding of winter wheat N status 

and agronomic performance. Such an integrated approach could not only enhance the 

precision of N management strategies but also contribute to the broader goals of 

sustainable agriculture by optimising resource use and minimising environmental 

footprint.

5.2 Materials and methods

5.2.1 Plant material and field site

A winter wheat cultivar (Triticum aestivum L. cv. KWS Zyatt) was chosen from an 

existing long-term diversity field trial (Figure 5.2; Appendix D, Figure D-1), Wheat 

Genetic Improvement Network (WGIN, funded by Defra grant CH0109) at West 

Barnfield, Rothamsted Experimental Farm, Harpenden, UK (51°48'34.56"N, 

0°21'22.68"W). The soil is a well-drained, silty clay loam surface (25% clay) overlying 

clay with flints (50% clay) at a depth of several metres. According to the UK Soil 

Classification, the soil at Rothamsted is designated as "Batcombe Series", "Aquic 

Paleudalf," in the USDA system and "Chromic Luvisol" in the FAO system (Avery and 

Catt, 1995). Poulton et al. (2003) have provided a thorough description of the 

experimental site.

The WGIN diversity field trial constitutes a wide range of wheat germplasm which are 

tested under multiple levels of N inputs (https://www.rothamsted.ac.uk/projects/wheat-

genetic-improvement-network). The choice for selecting cv. KWS Zyatt for this study 

was due to its breeding history, response to N fertilisation, nutritional and bakery 

quality as well as its agronomical significance. This study used data collected over the 

WGIN diversity field trial during the 2020/2021 growing season on cv. KWS Zyatt 

sown on 28th September 2020 and harvested in August 2021. 



                 Chapter 5 – Multiscale assessment of aerial drone imagery and ground-based proximal 
sensors

215

Figure 5.2. WGIN diversity field trial. The photograph was taken at post-anthesis. QGIS 
software version 3.0.0-Girona was used to prepare maps. Coordinates are displayed in 
the WGS 1984 Coordinate System.

5.2.2 Agro-climatic conditions of the growing season

Daily measures of meteorological data were collected by the Rothamsted Research 

weather station and made available by the electronic Rothamsted Archive (Perryman et 

al., 2018). From this, daily rainfall (mm), daily sunshine (hrs) and average minimum 

and maximum daily temperatures (°C) were extracted throughout the growing season 

and used to assess and understand variability in environmental conditions between 

seasons. At Rothamsted, annual rainfall is typically 700 mm, which is dispersed 

throughout the year. Rainfall in October 2020 was the highest (200 mm) throughout the 

experiment (Figure 5.3). The lowest was recorded in April 2021. Sunshine hours in 

April and July 2021 were extremely high in the UK (Figure 5.3). The highest maximum 

temperature was 29.4 °C and was recorded in July 2021 whereas the lowest minimum 

temperature was -4.9 °C recorded in February 2021 (Figure 5.4).
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Figure 5.3. Cumulative monthly rainfall and sunshine hours between October 2020 and 
August 2021 during the experimental period. 

-10

-5

0

5

10

15

20

25

30

35

O
ct

ob
er

-2
02

0

N
ov

em
be

r-
20

20

D
ec

em
be

r-
20

20

Ja
nu

ar
y-

20
21

F
eb

ru
ar

y-
20

21

M
ar

ch
-2

02
1

A
pr

il-
20

21

M
ay

-2
02

1

Ju
ne

-2
02

1

Ju
ly

-2
02

1

A
ug

us
t-

20
21

Max Temperature Min Temperature

Month of the year

T
em

pe
ra

tu
re

 (
°C

)

Figure 5.4. Daily minimum (min) and maximum (max) temperatures were recorded 
between October 2020 and August 2021 during the experimental period. 

5.2.3 Experimental treatments, field design and farm practice
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N treatments were applied as ammonium nitrate (NH4NO3) at 3 N levels-100, 200 and 

350 kg N ha−1 applied in 50:50 (N1), 50:100:50 (N2) and 50:250:50 (N3) 

splits respectively (Table 5.1; Figure 5.5). The N levels were varied to create a range in 

the N nutritional status and test the suitability of sensors to detect these differences. The 

trial was structured in 3-fold replication in a split-plot randomised design. The plot 

dimensions were 9 m×1.8 m, at a planting density of ~350 plants m−2. A 2.5 m×1.8 m 

sampling plot was used for destructive sampling. All plots were separated by 0.5 m 

uncropped buffer zones. There was an additional treatment of standard farm practice 

with the applications of pesticides (fungicides) to control disease and insect pest 

pressure. 

Table 5.1. Details of the three (3) N fertiliser treatments applied as ammonium nitrate 
(NH4NO3) in splits to the field plots.

Nitrogen treatment level Total Nitrogen 
Application (Kg N ha-1)

Application 
Dates

Amount of Nitrogen 
Applied (Kg N ha-1)

N1 100 25/02/2021 50

19/04/2021 50

  25/05/2021 0

N2 200 25/02/2021 50

19/04/2021 100

  25/05/2021 50

N3 350 25/02/2021 50

19/04/2021 250

  25/05/2021 50

Figure 5.5. Digital images highlighting the impact of 100 kg N ha−1 (N1), 200 kg N ha−1 
(N2) and 350 kg N ha−1 (N3) N fertiliser application on canopy development of winter 
wheat. Images were acquired 2 m above Triticum aestivum L. cv. KWS Zyatt canopies 
on 2nd June 2021. 
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5.2.4 Data collection

5.2.4.1 Acquisition of aerial drone imagery

In the 2021 season, 14 flight campaigns were conducted at the WGIN diversity field 

trial (by March Castle, Rothamsted Research) from 02 March 2021 to 27 July 2021 

which commenced at stem elongation to physiological maturity. A DJI S900 UAV (Da-

Jiang Innovations, Shengzhen, China) (Figure 5.6) equipped with a DJI flight controller 

was flown at 25 m altitude over the field site according to a pre-established flight plan. 

The flight plan was designed to guarantee that an 80% overlap between concurrent 

images was obtained. Two Sony RGB/NIR α5100 mirrorless adapted cameras (Tokyo, 

Japan) (Table 5.2) mounted on the UAV were used to capture RGB and NIR images as 

previously deployed by Holman et al. (2020). Both cameras have 20 mm F2.8 Sony 

prime lenses, and complementary metal-oxide semiconductor (CMOS) sensors with a 

resolution of 24.3 MP. The NIR-adapted camera had its internal blocking filter replaced 

with a long-range 830 nm wavelength filter to prevent capturing visible light and enable 

the acquisition of NIR waveband imagery (Berra et al., 2017; Holman et al., 2019). The 

RGB camera captures from around 400 to 800 nm and generates 3 bands (Red, Green 

and Blue) of the electromagnetic spectrum compared to the single band of the NIR-

adapted camera. 

The cameras were programmed to shutter priority to capture images at 1-sec intervals 

and in raw format, with the focus set to 25 m to correspond with the UAV flight height. 

Shutter speed was fixed at 1/1000 sec while ISO and aperture were left on automatic 

mode to reduce motion blur. The DJI S900 was flown at a speed of 4 m/s providing a 

total flight time of 12 minutes to cover the whole field. All UAV imagery over the field 

site was collected close to solar noon under clear sky conditions with image collection 

taken between 10:00 am to 1:30 pm. 

The DJI S900 relies on Ground Control Points (GCPs) whose positions were measured 

and recorded with a Trimble Geo 7 DGPS (Trimble, Inc., Sunnyvale, CA, USA) for 

ortho-rectification. Twelve GCPs (100 cm2) each made of concrete painted with circular 

patterns, mounted on 5 mm foamboard with a weatherproof lamination, which can be 

automatically detected by the software were used for georeferencing final RGB and NIR 

orthomosaics (Figure 5.7; Figure 5.8). The Tec5 HandySpec Field Spectrometer (Tec5, 
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Oberursel, Germany) equipped with a cosine-corrected downwelling optic was placed at 

a fixed point next to the field and programmed to measure at 1-second intervals to 

produce measurements of the total incoming solar irradiance to adjust for variation in 

ambient light during the flight. Spectral measurements were acquired at 10 nm spectral 

resolution within 360–1000 nm wavelength range. 

Figure 5.6. The DJI S900 UAV (drone) with RGB/NIR adapted camera used for 
collecting aerial images. 

Table 5.2. Sensitivities of Sony α5100 mirrorless adapted camera band. A double 
monochromator equipped with an integrating sphere was used to measure the 
sensitivities. Adapted from Holman et al., 2019.  

Model Channel Number of 
Channels Waveband Range (nm)

RGB camera Red 580-660

Green 420-610

Blue

3

410-540

NIR camera NIR (Blue channel) 1 800-900
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Figure 5.7. Orthomosaic of the experimental field, showing the location of Ground 
Control Points (GCPs) as white squares, measured plots marked in orange colour and 
the UAV flight trajectory used in black arrows. Coordinates are displayed in the WGS 
1984 Coordinate System. 

Figure 5.8. UAV imagery (orthomosaic) collected at a flying height of 25 m of (A) N1 
(100 kg N ha-1) fertiliser treatment plots compared to (B) N3 (350 kg N ha-1) fertiliser 
treatment plots. Wheat cultivar Zyatt compared in both scenarios. 
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5.2.4.2 UAV image processing and data extraction

To process UAV images, both sets of images (RGB and NIR) were corrected using the 

ground-based Tec5 HandySpec Field spectrometer data (collected at the same time as 

the images were taken). The Tec5 HandySpec uses a downwelling optic with a cosine 

diffuser to compensate for variations in sun illumination between measurements 

(Holman et al., 2019). This is done using the ‘Image Calibration’ tool contained within 

the ‘UAVImageConverter’ software. The camera captures the data in ‘RAW’ format 

and outputs as ‘TIF’ format. This means that no compression algorithms are used and 

that all image data is preserved. The images (either RGB or NIR) were aligned using the 

Agisoft Metashape Professional version 2.0.0 (Agisoft LLC, St. Petersburg, Russia). 

The global positioning system (GPS) data captured with the Trimble Geo7 DGPS 

logger (Trimble, Inc., Sunnyvale, CA, USA) was manually assigned to the GCPs shown 

within image data (http://www.agisoft.com/downloads/user-manuals/). This will 

‘orthorectify’ to give scale and location information to the orthomosaic with precision 

or georeferenced (Ruiz et al., 2013). A dense point cloud is generated from SfM at high 

quality and using mild depth filtering to prevent removing points representing plant 

canopies to produce a georeferenced orthomosaic (image orthomosaic) and digital 

elevation model (DEM) in the case of height data. 

The data extraction tool from the ‘UAVImageConverter’ software was used to extract 

the data from each plot. This data extraction step requires, a bare soil DEM (height data 

from the first flight of the season showing bare soil or newly established canopy), RGB 

and NIR orthomosaics, a DEM generated from data captured at the same time as the 

RGB/NIR image data. Furthermore, ‘shapefiles’–which in this case are several 

‘polygons’ that define the identity, size and location of each plot from the trial from 

which the image data was collected (Sangjan et al., 2022) are constructed using the 

ArcMap version 10.4 (ESRI®, Germany) and QGIS software version 3.0.0-Girona 

(http://qgis.org). Once processing is complete the ‘UAVImageConverter’ software 

generates an Excel file with Red, Green, Blue and NIR channel mean values, as well as 

NDVI and height data for each plot as outputs of the RGB/NIR orthomosaics as 

described in Table 5.3. Orthomosaics were generated at a ground sampling distance 

(GSD) of approximately 1 cm/pixel. Image processing and regression analysis were 

performed using the statistical software R version 3.5.1 (R Core Team, 2018). The 
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parameter settings used for the UAV imagery and Agisoft Metashape software are 

summarised in Table 5.4. The workflow used for processing the UAV images is also 

summarised in Figure 5.9.

NDVI (Drone) orthomosaics were generated using Equation 5.1.

NDVI (Drone) = RNIR – RR/RNIR + RR                                                                     (5.1)

Where RR is the measured reflectance in the red waveband and RNIR is the measured 

reflectance in the NIR waveband. The wavebands for the NIR and R were 780 nm and 

680 nm respectively. 

Table 5.3. Definitions of parameters derived from orthomosaics of the UAV imagery. 

Model Description

NDVI NDVI calculated from the red and NIR reflectance imagery wavebands

NIR NIR extracted from the near-infrared reflectance spectrum with values > 0

R R channel (colour space) by pixels classified as the red spectrum of the 
vegetation with values > 0

G G channel (colour space) by pixels classified as green spectrum of the 
vegetation with values > 0

B B channel (colour space) by pixels classified as the blue spectrum of the 
vegetation with values > 0
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Table 5.4. Parameters of the UAV flights, camera settings and Agisoft Metashape 
processing parameters.

Process Parameter Setting

Altitude (m) 25 m
Overlaps (front and side) 80% overlaps
Speed 4 m/s
Flight time 12 min
Number of GCPs 12
Size of GCPs 100 cm2

UAV flight

Coordinate system
WGS 1984 
Coordinate System

Accuracy Highest
Adapted camera model Yes
Resolution (both cameras) 24.3 MP
Aperture (both cameras) f/2.8
ISO (both cameras) 100
Shutter speed (Sony RGB) 1/3 s
Shutter speed (Sony NIR) 8 s
Light range (Sony RGB) 350-850 nm

Cameras (Sony RGB/NIR)

Light range (Sony NIR)
Storage format 

750-1150 nm
16 bits TIFF

DEM parameters Dense cloud
DEM resolution (m) 0.02 m
Dense point cloud High disabled
Alignment accuracy Highest
Mesh High
GSD (m) 0.01m/pixel

Agisoft metashape processing

Orthomosaic Blending disabled
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Figure 5.9. Workflow for processing the UAV imagery and extracting NDVI and NIR 
values for each plot. Adapted from Holman, 2020. 

5.2.4.3 Ground-based proximal sensor measurements

5.2.4.3.1 Canopy scale NDVI measurement

For canopy reflectance measurements, a radiometrically calibrated portable Tec5 

HandySpec Field Spectrometer (Oberursel, Germany) was used. It provides 

hyperspectral point measurements in the range of 360-1000 nm with a spectral 

resolution of 10 nm. To collect the spectrometer measurements, a single scan of each 

plot canopy was collected with the spectrometer optic held approximately 1 m above the 

plot (Holman et al., 2019). Each scan produced one spectral reflectance measure for the 

plot at 10 nm spectral resolution across the wavelength range 360–1000 nm. The 

canopy reflectance was measured weekly starting from stem elongation and continuing 

through to physiological maturity. NDVI (TEC5) was extracted from the same 

wavebands as in NDVI (Drone). The spectra from each treatment were first averaged 

and the total mean spectrum was examined to detect differences in the spectral signature 

acquired from the different N treatments (Figure 5.10).
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Figure 5.10. Reflectance spectra of winter wheat leaves exposed to different N levels 
and measured with the TEC5 spectrometer at anthesis. N1, N2 and N3 represent 100, 
200 and 350 kg N ha−1 respectively.

5.2.4.3.2 Leaf level NDVI measurement 

The PolyPen RP410/UVIS handheld contact spectroradiometer (Photon Systems 

Instruments, Drasov, Czech Republic), capable of measuring the wavelength range of 

320-790 nm of the electromagnetic spectrum at intervals of 1.9 nm, was used to collect 

leaf spectral reflectance data as employed in Chapters 3 and 4. Spectral reflectance data 

was collected from the uppermost fully expanded leaf of the plants from 11:00 to 16:00 

h GMT. Spectral data were measured weekly using the fully expanded leaf of the main 

stem from stem elongation to physiological maturity. Measurements were acquired from 

five plants for each treatment selected at random from the plot. Three readings were 

made on a single leaf per plant and then averaged. The spectrometer sensor was 

calibrated before measurement and periodically with a diffuse white reference standard 

(Spectralon®, Labsphere, Inc., North Sutton, USA). The PolyPen RP410 device 

integrates a xenon incandescent lamp as an internal light source, with radiation emitted 

between 380-1050 nm. The PolyPen RP410 incorporates pre-defined formulae for 

calculating commonly used SRIs. NDVI (PolyPen) was derived from similar 

wavelengths used for NDVI (Drone) and NDVI (TEC5) to set a baseline for all the 

derived NDVIs. To detect differences in the spectral signature acquired from the 
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different N treatments, the spectra from each treatment were first averaged and the total 

mean spectrum was examined as in NDVI (TEC5) (Figure 5.11).

Figure 5.11. Reflectance spectra of winter wheat leaves exposed to different N levels 
and measured with the PolyPen RP410 spectrometer at anthesis. N1, N2 and N3 
represent 100, 200 and 350 kg N ha−1 respectively.

5.2.4.4 Determination of N status

5.2.4.4.1 SPAD measurement

The SPAD-502 chlorophyll meter (Soil Plant Analysis Development, Minolta Camera 

Co., Ltd., Japan) was used to measure the relative leaf chlorophyll content. Five 

measurements were made on each plot with three readings taken from each leaf and 

then averaged. SPAD measurements were done synchronously with the PolyPen RP410. 

5.2.4.4.2 Leaf nitrogen content

The fully expanded leaves of five wheat plants from each treatment plot were 

destructively harvested for the LNC. The leaf samples were then oven-dried and milled 

at a speed of 17500 rpm using the Genogrinder (SPEX SamplePrep®, 2010, USA). The 

LNC was determined for each treatment by laboratory chemical analysis employing the 

LECO combustion method (LECO CN628 Analyzer, LECO Corporation, St Joseph, 

Michigan, USA) at anthesis and post-anthesis growth stages.
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5.2.4.5 Measurement of agronomic parameters

5.2.4.5.1 Leaf area index

The LAI-2200C Plant Canopy Analyzer (LI-COR, Biosciences, Lincoln, NE, USA) 

employs a non-destructive method and was used to measure the LAI. The LAI was 

measured at anthesis. Before LAI measurement, the LAI-2200C optical sensor (wand) 

was levelled and placed closely over the canopy with a 90° view restricting cap. One 

above-canopy reading followed by two below-canopy readings were taken at a short 

time interval under a uniform overcast (clear, blue sky) early in the morning. 

Measurements made above and below the canopy were used to calculate canopy light 

interception at five zenith angles, from which LAI was computed using a model of 

radiative transfer in vegetative canopies within a wavelength range (320-490 nm).

5.2.4.5.2 Number of tillers

The number of tillers was determined by counting the number of side shoots (tillers) 

formed around the main stem within an m2 area of treatment plots. The counting was 

performed along the 1 m rule at 3 random locations within the plot and the average was 

recorded.

5.2.4.5.3 Straw and grain yield

Before harvest, preharvest sampling of 100 stems was collected at plot level and the 

harvested samples were threshed to separate the grains and straw. The FW of the straw 

was recorded and oven-dried for 48 h at 105 °C. The DW was determined and 

extrapolated to straw yield in tonnes per hectare (t ha−1). At the final harvest, plots were 

harvested, and fresh grains were weighed using a Haldrup GMbH C-85 specialist plot 

combine harvester (Haldrup, Ilshofen, Germany). The GY (85% dry matter) in tonnes 

per hectare (t ha−1) was also determined. 

5.2.5 Statistical analysis

Spectral responses and variables measured on successive occasions were analysed using 

repeated measures ANOVA (RMA) that incorporates an adjustment for the presence of 

autocorrelation between sample occasions (Greenhouse and Geisser, 1959; Keselman et 

al., 2000). F-statistics were employed to test all fixed terms (i.e., main effects and 

interactions), with all tests conducted at the 5% significance level. Pearson’s correlation 

coefficient was used to assess the linear relationships between pairs of variables. All 
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analyses and visualisations were conducted using GenStat 22nd edition (VSN 

International Ltd., Hemel Hempstead, United Kingdom).

5.3 Results

5.3.1 Detection of nutritional variations across sensors

Figure 5.12 demonstrates the time course response of NDVI derived from the drone 

imagery, PolyPen and TEC5 spectroradiometer to detect N nutritional variations from 

the stem elongation to the physiological maturity growth stages of winter wheat.  The 

results showed the early response of NDVI (PolyPen) to detecting N nutritional 

variations first at 252 DAS (anthesis) and consistently from 266 to 301 DAS except for 

273 DAS along with good separation between treatments (Figure 5.12B). Two weeks 

post-anthesis, NDVI (Drone) detected N nutritional variations at 266 DAS (14 DPA) 

and consistently to 301 DAS (Figure 5.12A). A good separation between treatments was 

observed at these time points by NDVI (Drone). Contrarily, NDVI (TEC5) only showed 

the detection of N nutritional variations at 294 DAS during physiological maturity 

(Figure 5.12C). Generally, higher NDVI values were obtained for the N3 treatment 

compared to N2 and N1 across the three sensors. 

Additionally, the F-tests from RMA showed a higher sensitivity (p<0.001) of the NDVI 

(PolyPen) to N stress followed by NDVI (Drone) (p<0.05) with corresponding 

(N×DAS) interaction (Table 5.5). However, the NDVI (TEC5) did not show sensitivity 

to N stress and was only affected by DAS. Based on the results, the sensitivity of the 

three sensors to N treatment is ranked as NDVI (PolyPen) > NDVI (Drone) > NDVI 

(TEC5) (Table 5.5).

     



                 Chapter 5 – Multiscale assessment of aerial drone imagery and ground-based proximal sensors

229

Figure 5.12. Time course responses of (A) NDVI (Drone), (B) NDVI (PolyPen) and (C) NDVI (TEC5) spectroradiometers to N nutritional variations at specific 
days after sowing (DAS) during the crop cycle from 210 to 301 DAS. Mean values represent three replicates per N treatment. Bars indicate the average least 
significant difference (LSD) at the 5% significance level. Asterisks (*) indicate significant difference between treatments at 5% significance level. N1, N2 and 
N3 represent 100, 200 and 350 kg N ha−1 respectively.
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Table 5.5. F-tests from repeated measures ANOVA (RMA) to assess the sensitivity or 
main effects of (and interactions between) N and days after sowing (DAS) on NDVI 
derived from the drone imagery, PolyPen and TEC5 spectroradiometers. Statistically 
significant results (p<0.05) are shown in bold.

Parameter N DAS N×DAS

NDVI (Drone) F2,4=22, p<0.05 F2,13=680.3, p<0.001 F2,26=8.5, p<0.001

NDVI (PolyPen) F2,4=464, p<0.001 F2,13=167.8, p<0.001 F2,26=4.5, p<0.05

NDVI (TEC5) F2,4=0.63, p=0.578 F2,13=128.6, p<0.001 F2,26=0.85, p=0.518

5.3.2 Correlation with N status indicators

5.3.2.1 Correlation with LNC

Figure 5.13 shows the linear relationship between LNC and the derived NDVI from the 

drone, PolyPen and TEC5 assessed by Pearson’s correlation. The results showed a 

strong correlation (r=0.84) between LNC and NDVI (PolyPen) at 252 DAS (Figure 

5.13A). A good correlation (r=0.59) was observed between LNC and NDVI (Drone) at 

the same time. However, the lowest correlation (r=-0.02) was observed between LNC 

and NDVI (TEC5) due to the high variability of the N2 and N3 treatments. Generally, 

higher data variation was seen for the lower values of LNC and NDVI across all sensors 

especially for N1 treatment, reflecting the observations on the linear relationship.

At 266 DAS, the linear relationship between LNC and NDVI (Drone) recorded the 

highest correlation (r=0.91) (Figure 5.13B). A good correlation (r=0.68) was observed 

between LNC and NDVI (PolyPen) and was driven by a high variability among N1 and 

N2 treatments during the same period. A negatively poor correlation (r=-0.17) was 

observed between LNC and NDVI (TEC5) probably due to the high variability among 

the N2 and N3 treatments. 

Additionally, a strong correlation (r=0.85) was recorded between LNC and NDVI 

(Drone) at 273 DAS with variability shown among N1 and N2 treatments (Figure 

5.13C). The linear relationship between LNC and NDVI (PolyPen) showed a good 

correlation (r=0.63) but with high variations among N1 and N2 treatments. A low linear 

relationship was observed between LNC and NDVI (TEC5) with a negatively poor 

correlation (r=-0.23) due to the high variability among treatments. 
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Similarly, at 280 DAS a strong correlation (r=0.85) was observed between LNC and 

NDVI (Drone) (Figure 5.13D). A good correlation (r=0.73) was observed between LNC 

and NDVI (PolyPen) with high variability among N1 and N2 treatments. A negatively 

poor correlation (r=-0.11) was observed between LNC and NDVI (TEC5) due to high 

variability among N2 and N3 treatments. Generally, higher data variation was seen for 

the lower values of LNC and NDVI across all sensors, reflecting the observations on the 

linear relationship.
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Figure 5.13. Linear association assessed by Pearson’s correlation coefficient between NDVI derived from the drone imagery, PolyPen and TEC5 
spectroradiometers and leaf nitrogen content (LNC) at (A) 252 DAS, (B) 266 DAS, (C) 273 DAS and (D) 280 DAS. Each N treatment represents three 
replicates from 3 blocks. N1, N2 and N3 represent 100, 200 and 350 kg N ha−1 respectively. 
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5.3.2.2 Correlation with SPAD

The linear relationship between SPAD and the derived NDVI from the drone imagery, 

PolyPen and TEC5, as determined by Pearson's correlation, are shown in Figure 5.14. 

The results showed a strong correlation (r=0.89) between SPAD and NDVI (PolyPen) at 

231 DAS (Figure 5.14A). Concurrently, a good correlation (r=0.63) was found between 

SPAD and NDVI (TEC5). The high variability of the N2 and N3 treatments, however, 

resulted in the lowest correlation (r=0.07) between SPAD and NDVI (Drone).

A strong correlation (r=0.74) was observed at 238 DAS in the linear relationship 

between NDVI (PolyPen) and SPAD (Figure 5.14B). At the same time, a good 

correlation was observed between SPAD and NDVI (Drone) (r=0.38) and NDVI 

(TEC5) (r=0.51). A similar pattern of variability was more pronounced in N2 and N3 

treatments across sensors at 238 DAS. At 266 DAS, the linear relationship between 

NDVI (Drone) and SPAD recorded the strongest correlation (r=0.95) (Figure 5.14C). 

The NDVI (PolyPen) and SPAD showed a good correlation (r=0.53) along with high 

variability in N1 treatments. A negatively poor correlation was observed between NDVI 

(TEC5) and SPAD with high variability among N treatments over the same time.

A similar trend of linear relationship was demonstrated at 273 DAS with a strong 

correlation (r=0.86) between NDVI (Drone) and SPAD with little variations among 

treatments (Figure 5.14D). A good correlation (r=0.69) was seen between NDVI 

(PolyPen) and SPAD with high variability especially among N1 treatments. At the same 

time, a negatively poor correlation (r=-0.17) was observed between NDVI (TEC5) and 

SPAD with high variability found among the N3 treatments. 

Altogether, the NDVI (PolyPen) showed a stronger relationship with SPAD at the early 

growth stages (231 DAS and 238 DAS) (Figure 5.14A-B) while NDVI (Drone) 

demonstrated a stronger relationship with SPAD at the late growth stages (266 DAS and 

273 DAS) (Figure 5.14C-D). Additionally, NDVI (TEC5) showed a good correlation 

with SPAD at the early growth stage (231 DAS and 238 DAS) (Figure 5.14A-B) but 

poorly at the later stage (266 DAS and 273 DAS) (Figure 5.14C-D). Higher data 

variation was seen for the lower values of NDVI and SPAD across all sensors especially 

for N1 treatment, reflecting the observations on the linear relationship (Figure 5.14). 
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Figure 5.14. Linear association assessed by Pearson’s correlation coefficient between NDVI derived from the drone imagery, PolyPen and TEC5 
spectroradiometers and SPAD at (A) 231 DAS, (B) 238 DAS, (C) 266 DAS and (D) 273 DAS. Each N treatment represents three replicates from 3 blocks. N1, 
N2 and N3 represent 100, 200 and 350 kg N ha−1 respectively.
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5.3.3 Assessment of relationships among sensors

To examine the relationships among aerial drone imagery and ground-based spectral 

reflectance (PolyPen and TEC5) spectroradiometers, correlation analysis was conducted 

with their derived NDVI values (Figure 5.15). Generally, strong correlations were 

recorded between the various derived NDVIs across sensors. The highest linear 

relationship was observed between NDVI (Drone) and NDVI (PolyPen) with a 

correlation coefficient (r=0.94) (Figure 5.15A). Similarly, a strong linear relationship 

(r=0.92) was observed between NDVI (Drone) and NDVI (TEC5) (Figure 5.15B). The 

linear relationship between NDVI (PolyPen) and NDVI (TEC5) also showed a strong 

correlation (r=0.89) (Figure 5.15C). Generally, a high variation is observed across N1, 

N2 and N3 treatments at lower NDVI values across sensors as data points are spread 

and hence confidence in the correlation is likely to be low. However, at higher NDVI 

values, tight clustering of data points drives a stronger confidence in the correlation 

reflecting in the r values. Additionally, the relative sensitivity of the sensors to N1, N2 

and N3 may be proportional as each treatment seem to contribute equally to the 

variations in the data. 
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Figure 5.15. Linear relationships between (A) NDVI (Drone) and NDVI (PolyPen), (B) 
NDVI (Drone) and NDVI (TEC5) and (C) NDVI (PolyPen) and NDVI (TEC5) 
spectroradiometers assessed by Pearson’s correlation. Spectral reflectance data from all 
time points were correlated. N1, N2 and N3 correspond to 100, 200 and 350 kg N ha−1 

respectively.

5.3.4 Assessment of effectiveness of aerial drone imagery and proximal sensors in 
determining crop performance

Figure 5.16 shows the linear relationship between agronomic parameters and the 

derived NDVI values from the drone imagery, PolyPen and TEC5, as assessed by 

Pearson's correlation. The results showed a strong correlation (r=0.86) between NDVI 

(PolyPen) and LAI at 259 DAS (anthesis) with variability found among N2 and N3 

treatments (Figure 5.16A). At the same time, a good correlation (r=0.65) was observed 

between NDVI (Drone) and LAI with high variability found among N1 and N2 

treatments. A very low correlation (r=0.07) was found between NDVI (TEC5) and LAI 

with high variations observed among treatments, especially in N3. At the same time 
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(259 DAS), a strong correlation (r=0.82) was indicated between NDVI (PolyPen) and 

the number of tillers with N1 and N2 showing high variability (Figure 5.16B). An 

equally strong correlation (r=0.70) was observed between NDVI (Drone) and the 

number of tillers with high variability found among N1 and N2 treatments. However, a 

poor correlation (r=-0.11) was observed between NDVI (TEC5) and the number of 

tillers with widespread variations found among treatments.

Additionally, at final harvest, both NDVI (Drone) and NDVI (PolyPen) had similar 

correlations (r=0.46 and r=0.40) respectively with straw yield with widespread 

variations among N2 and N3 treatments (Figure 5.16C). NDVI (TEC5) correlated 

poorly (r=0.14) with straw yield and showed widespread nutritional variations among 

N2 and N3 treatments. For GY, NDVI (PolyPen) and NDVI (TEC5) showed a similarly 

strong correlation (r=0.85) with the agronomic parameter and showed a high variation 

in N2 and N3 treatments (Figure 5.16D). NDVI (Drone) also showed a good correlation 

(r=0.69) with GY but exhibited high variability among treatments, particularly in N2 

and N3. 
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Figure 5.16. Linear association assessed by Pearson’s correlation coefficient between NDVI values derived from the drone imagery, PolyPen and TEC5 
spectroradiometers and (A) leaf area index (LAI) at 259 DAS during anthesis, (B) number of tillers at 259 DAS (anthesis), (C) NDVI (drone imagery, PolyPen 
and TEC5) at 245 DAS and straw yield at final harvest and (D) NDVI (drone imagery, PolyPen and TEC5) at 238 DAS and grain yield (GY) at harvest. Each N 
treatment represents three replicates from 3 blocks. N1, N2 and N3 represent 100, 200 and 350 kg N ha−1 respectively. 



                 Chapter 5 – Multiscale assessment of aerial drone imagery and ground-based proximal 
sensors

239

5.4 Discussion

5.4.1 Detection of nutritional variations and sensitivity of sensors to the N status

In this study, the response of NDVI derived from the PolyPen, TEC5 and drone imagery 

at the leaf, canopy and aerial scales respectively was assessed for their detection of 

nutritional N variations. The findings showed NDVI (PolyPen) showing the earliest 

detection of nutritional N variations first at 252 DAS (anthesis) compared to NDVI 

(Drone) and NDVI (TEC5) (Figure 5.12). The results are reflected in the higher 

sensitivity of NDVI (PolyPen) to nutritional N variations compared to NDVI (Drone) 

and NDVI (TEC5) (Table 5.5).  

The NDVI is more sensitive to the N status at the leaf level compared to canopy and 

aerial scales due to the influence of factors such as LAI and the composition of the 

vegetation. Research suggests that NDVI is generally sensitive to LAI between 0 and 

4.0 and becomes saturated as the LAI continues to increase (Quan et al., 2014). This 

means that at the canopy and aerial scales, where the LAI is higher, NDVI may become 

saturated and less sensitive to small changes in N status. As leaves are added to a 

canopy, there are changes in chlorophyll and structural complexities, leading to 

variations in red reflectance and NIR reflectance, which can affect the sensitivity of 

NDVI (Raper and Varco 2015; Sumner et al., 2021). A study on rice cropping systems 

found that proximal NDVI and aerial NDRE were more sensitive to changes in N 

compared to canopy-level measurements (Rehman et al., 2022) which aligns closely 

with the results found in this study.  

Therefore, these factors contribute to the higher sensitivity of NDVI at the leaf level 

compared to canopy and aerial scales. The measurement of NDVI at the leaf level 

allows for a more direct and sensitive assessment of N status, as it is not affected by the 

saturation effect observed at higher LAI levels. Additionally, the use of SRIs at the leaf 

level, such as red edge indices, has been shown to differentiate N levels more 

effectively compared to canopy-level measurements (Prey and Schmidhalter, 2019). On 

the other hand, NDVI derived aerially, and at canopy level is affected by atmospheric 

conditions such as cloud cover, which can impact the reflectance of the wavelengths 

used in its calculation, leading to inaccurate values. 
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The NDVI measured at the leaf level directly captures the reflectance of leaves and is 

less affected by these factors, making it a more accurate measure of vegetation health 

and density at a local level (Perry and Davenport, 2007; Caruso et al., 2023). However, 

NDVI derived aerially using a drone is useful for large-scale monitoring of vegetation 

cover, such as changes in canopy cover, LAI and biomass, while NDVI measured at leaf 

level provides a more detailed and precise assessment of vegetation health at a smaller 

scale. This characteristic, along with the opportunity to quickly monitor large areas, 

enables fertilisation in accordance with crop spatial variability, enhancing farm-scale N 

fertilisation management. Therefore, the direct assessment of leaves using a handheld 

proximal sensor can provide a more sensitive indicator of early nutritional variations 

compared to the more general information obtained from the canopy and aerial level 

measurements.

5.4.2 Correlation with N status indicators

To assess the relationship between the different NDVIs with the N status, correlation 

analyses were done at critical stages of growth with the LNC and SPAD chlorophyll 

content which are reliable indicators of the N status (Figures 5.13 and 5.14). The high 

correlation between NDVI (PolyPen) measured at the leaf level and LNC, compared to 

NDVI (Drone) measured aerially and NDVI (TEC5) at the canopy scale during the early 

growth stage of winter wheat, can be attributed to the direct relationship between leaf-

level physiological processes and NDVI. At the early growth stage, the NDVI measured 

at the leaf level is more closely linked to the LNC due to the active physiological 

processes in the leaves, which are directly related to N uptake and photosynthetic 

activity (Yang et al., 2017). This direct relationship diminishes as the plant matures and 

other factors start influencing NDVI measurements, such as canopy structure and 

density as discussed previously. Research studies on maize and winter wheat have 

shown that the correlation between spectral reflectance and LNC is significant at early 

growth stages, indicating the strong relationship between SRIs and leaf-level N content 

during this period (Jiang et al., 2020; Miller and Adkins, 2021; Zhao et al., 2023). 

Additionally, studies on maize and field pea have demonstrated the use of NDVI 

measures for estimating early season growth and biomass, further supporting the 

relevance of NDVI at the early growth stage of crops (Liebisch et al., 2015; Tefera et 

al., 2022). The findings of this study also showed a stronger correlation between NDVI 
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(Drone) and LNC at the later growth stages of winter wheat compared to NDVI 

(PolyPen) and NDVI (TEC5) (Figure 5.13B-D). This observation could be explained by 

the ability of aerial NDVI to capture the overall plant health and N status more 

effectively than NDVI measured at leaf and canopy levels. This is supported by research 

findings that showed significant correlations between NDVI measured from UAV and 

LNC during the late growth stages of wheat (Hassan et al., 2018; Miller and Adkins, 

2021). Aerial NDVI provides a comprehensive view of the entire crop, integrating 

information from multiple plants, and can therefore better reflect the overall N status 

and health of the crop compared to measurements at the leaf and canopy levels (Hassan 

et al., 2018; Miller and Adkins, 2021).

The linear relationship between NDVI (Drone), NDVI (PolyPen) and NDVI (TEC5) 

with SPAD chlorophyll followed a similar pattern as observed with LNC (Figure 5.14). 

The high correlation between NDVI (PolyPen) with SPAD chlorophyll content, 

compared to NDVI (Drone) and NDVI (TEC5) during the early growth stage of winter 

wheat can be attributed to the direct relationship between leaf chlorophyll content and 

NDVI (Boiarskii and Hasegawa, 2019). At the early growth stage, the chlorophyll 

content in the leaves plays a crucial role in determining the future growth rate and final 

yield of wheat (Wang et al., 2022; Yin et al., 2023). This direct relationship between 

leaf chlorophyll content and NDVI makes the correlation higher when measured at the 

leaf level compared to the aerial scale and canopy levels. The relationship between 

NDVI and chlorophyll content has been widely studied and utilised for precision N 

management and yield prediction in various crops, including wheat (Kizilgeci et al., 

2021). This correlation is significant for understanding the physiological status of the 

crop and can be leveraged for PA practices, such as targeted nutrient management and 

yield prediction. However, it is important to consider other factors that can influence 

NDVI measurements, such as soil background, crop structure, and sensor characteristics 

when interpreting the results (Kizilgeci et al., 2021). On the other hand, the high 

correlation between NDVI (Drone) and SPAD chlorophyll content at the late growth 

stage of wheat compared to NDVI (PolyPen) and NDVI (TEC5) can be attributed to the 

comprehensive assessment of the entire plot/field vegetation health and chlorophyll 

content provided by aerial NDVI measurements. This allows for a more holistic 

understanding of crop physiological status and consequently, N requirements. Aerial 
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NDVI measurements capture the overall plant health and can reflect variations in 

chlorophyll content across the entire plot or field, making them more indicative of the 

crop's N status compared to measurements at leaf and canopy levels, which may not 

capture the full variability across the field. The correlation between NDVI and SPAD 

chlorophyll content has been studied widely. For instance, a study on durum wheat 

cultivars under semi-arid conditions revealed that N fertilisation significantly influenced 

the SPAD and NDVI-attributed traits of durum wheat, highlighting the relationship 

between NDVI and chlorophyll content (Kizilgeci et al., 2021). Another study on winter 

wheat demonstrated a significant correlation between SPAD values and the chlorophyll 

content of wheat leaves, emphasising the relationship between these two parameters 

(Wang et al., 2022). 

Additionally, a study on spring wheat based on multi-temporal UAV monitoring also 

focused on the estimation of relative chlorophyll content, further supporting the 

relationship between NDVI and chlorophyll content (Wu et al., 2023). Moreover, the 

correlation between stay-green (a trait related to chlorophyll content and plant health) 

and yield in spring wheat has been demonstrated in previous studies, further 

emphasising the importance of chlorophyll content to crop productivity (Lopes and 

Reynolds, 2012).

The findings of this study demonstrated a strong intercorrelation between NDVI 

(Drone), NDVI (PolyPen) and NDVI (TEC5) (Figure 5.15). The effectiveness of the 

proximally and remotely sensed NDVIs for monitoring N status in winter wheat during 

the growing season is validated by the strong intercorrelation that has been observed. 

The results demonstrate that NDVI (Drone), NDVI (PolyPen) and NDVI (TEC5) are 

comparable for accuracy in detecting differences in crop N status. However, as shown 

earlier, NDVI (PolyPen) can be useful to identify important N variations and can detect 

these variations at an early crop stage such as anthesis, when the N rate can still be 

adjusted by a further application of N fertiliser. Using NDVI (PolyPen) represents a 

low-cost approach for N fertilisation management compared to NDVI (Drone). This 

finding suggests that the NDVIs derived from the different sensors can be used 

alternatively for the assessment of crop N status, depending on the context where to use 

them (e.g., growth stage, crop type, cost, sensor, platform, weather, land size, etc.). 

Additionally, effective crop N status assessment across many sensors offers end-users a 
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distinct benefit by granting them the flexibility to select the sensor that best suits their 

needs.

5.4.3 Assessment of the relationship between NDVI and agronomic parameters

To assess how well the different NDVIs reflected crop performance, linear relationships 

were performed with agronomic parameters (Figure 5.16). The strong correlation 

between NDVI (PolyPen) with LAIccompared to NDVI (Drone) and NDVI (TEC5) can 

be attributed to the sensitivity of NDVI to the structural properties of the plant canopy, 

such as LAI, light interception and biomass as explained previously. This is also 

reflected in the correlation with the number of tillers. NDVI is useful for measuring 

these properties at the leaf level, as it reflects the amount of chlorophyll and the overall 

health of the vegetation. This sensitivity diminishes at the aerial and canopy levels due 

to saturation effects and interference from other factors such as soil and background 

reflectance. The spectral and spatial differences in the response to different 

measurement scales, as well as the limitations of NDVI, support the idea that NDVI 

measured at the leaf level is more closely related to LAI. Gracia-Romero et al. (2017) 

showed that NDVI measured at ground level with an active sensor correlates better with 

plant properties such as LAI and biomass compared to aerial or satellite-based 

measurements. It should be emphasised that although NDVI (PolyPen) correlates best 

with LAI and numbers of tillers in the present study compared to NDVI (Drone) and 

NDVI (TEC5), this may not be the case in other experiments with more genotypes 

and/or N treatments as NDVI (PolyPen) does not fully take account of canopy 

size/architecture effects.

 

For straw yield, both NDVI (Drone) and NDVI (PolyPen) showed similar correlations 

with the agronomic parameter (Figure 5.16C). This observation can be explained by the 

sensitivity of NDVI to various plant parameters such as LAI, green biomass and 

nutrient (particularly N) uptake. Research has shown that NDVI measured at the leaf 

level can efficiently predict crop yield and nutrient uptake, making it a valuable tool for 

PA (Aranguren et al., 2020). For example, a study on winter wheat demonstrated that 

NDVI sensor-based N management led to improved GY and nutrient use efficiency 

(Quebrajo et al., 2015). Additionally, the relationship between NDVI and GY, as well 

as straw yield, has been reported to be strong (Memon et al., 2019), further supporting 



                 Chapter 5 – Multiscale assessment of aerial drone imagery and ground-based proximal 
sensors

244

the use of NDVI for yield estimation. This sensitivity of NDVI to plant parameters at 

the leaf level makes it a more accurate indicator of crop health and productivity 

compared to NDVI measured at the canopy level (Walsh et al., 2020; Mitra et al., 2023). 

The findings of this study demonstrated a strong correlation between NDVI (Drone), 

NDVI (PolyPen) and NDVI (TEC5) at the early growth stage (238 DAS) with GY at 

harvest (Figure 5.16D). Research has shown that NDVI at the leaf level and aerial scale 

during the early growth stage is strongly correlated with GY. For example, a study 

observed a strong correlation between NDVI and GY in the early season, indicating that 

an increase in NDVI during this period led to a significant increase in GY (Panek and 

Gozdowski, 2020). Similarly, other studies have reported a very strong correlation 

between NDVI and GY, with regression coefficients ranging from 0.77 to 0.89 

(Belmahi et al., 2023). This sensitivity of NDVI at early growth stages to predict GY is 

further supported by research that evaluated the relationship between corn GY and early 

season NDVI, showing a strong correlation (Teal et al., 2006). Additionally, the NDVI 

at an early growth stage has been positively correlated with the final GY, indicating its 

utility for developing in-season yield predictions (Rehman et al., 2019). The sensitivity 

of NDVI at early growth stages to predict GY is further emphasised by a study that 

revealed a high correlation between NDVI and GY, indicating its potential for 

predicting GY in various crops (Walsh et al., 2020; Zhao et al., 2022). The present 

findings agree with Rehman et al. (2023) who reported that aerial and proximal sensor 

reflectance measurements showed comparable precision in forecasting the rice yield 

response to mid-season N applications. The findings of this study indicate that NDVI 

(Drone), NDVI (PolyPen) and NDVI (TEC5) could effectively be used as predictors of 

GY early in the season when N fertilisation could still be adjusted.  

Overall, this study adopts a multiscale approach by combining aerial drone imagery 

with ground-based proximal sensors to evaluate N stress in winter wheat. This chapter 

focuses on the largest scale of analysis, linking leaf-level NDVI to canopy and aerial 

NDVI, which cover larger field areas. The use of drone technology enables more 

extensive and efficient field phenotyping, making it practical for large-scale agricultural 

applications. While leaf-level sensing offers detailed insights, this chapter demonstrates 
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that scaling up to drone imagery provides field-wide monitoring, making it a more 

viable option for larger operations.

5.5 Conclusions

A multiscale approach was used to assess the responses of NDVI derived from aerial 

drone imagery and ground-based proximal sensors at leaf and canopy scales in this 

study. Results indicated a stronger sensitivity of NDVI (PolyPen) to the N status and for 

assessing the agronomic performance of winter wheat compared to NDVI (Drone) and 

NDVI (TEC5). The findings showed NDVI (PolyPen) demonstrating the earliest 

detection of nutritional N variations compared to NDVI (Drone) and NDVI (TEC5). At 

the early to mid-season stage (anthesis), the NDVI (PolyPen) is a good leaf-level 

indicator for winter wheat LNC and SPAD chlorophyll content estimation. The results 

indicate that the measurement of NDVI at the leaf level allows for a more direct and 

sensitive assessment of winter wheat N status, as it is not affected by the saturation 

effect observed at higher LAI levels, atmospheric conditions and soil background. 

Therefore, the direct evaluation of leaves using a handheld proximal sensor can offer a 

low-cost and more sensitive indicator of early nutritional N variations in winter wheat. 

The findings of this study also revealed that at the late winter wheat growth stage, 

NDVI (Drone) was more sensitive to the LNC and SPAD chlorophyll content as the 

plant canopy develops and matures. This suggests that drone-derived NDVI will be 

appropriate for large-scale monitoring of vegetation cover for N status estimation at the 

late wheat growth stage. The NDVI (Drone), NDVI (PolyPen) and NDVI (TEC5) were 

strongly correlated to each other validating their alternative use and effectiveness for N 

status monitoring in wheat during the growing season. The ability to assess crop status 

effectively across various sensors offers a unique benefit for end-users as it allows 

flexibility to choose the sensor most suitable for their needs, considering factors such as 

cost, expertise, weather, platform, crop type, growth stage, etc. The results further 

suggest that RS could be a helpful technique to extrapolate handheld measurements 

spatially throughout winter wheat growth and development, given the strong 

intercorrelations observed. 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9197342/
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This study demonstrated that the LAI, number of tillers and straw yield of winter wheat 

could be effectively assessed mid-season with NDVI (Drone) and NDVI (PolyPen) but 

more limited with NDVI (TEC5). However, all derived NDVIs irrespective of their 

proximity to winter wheat plants showed promise as effective predictors of GY early in 

the season. Altogether, these results indicate that the ability of NDVI to inform crop 

management decisions depends on the measurement platform, sensor and time of 

measurement. Both NDVI (PolyPen) and NDVI (Drone) produced measurements 

sensitive enough to inform N fertiliser management, whereas NDVI (TEC5) was more 

limited. Future work into this study will explore different SRIs, platforms and sensors 

and, concentrate on applying these findings for field phenotyping in Africa. 
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CHAPTER 6

6 GENERAL DISCUSSION, SUMMARY OF FINDINGS AND FUTURE 
OUTLOOK 

6.1 Overview

This chapter provides an analytical synthesis of the thesis focused on the three research 

chapters (Chapters 3, 4 and 5) highlighting the general discussion, summary of key 

findings and scientific and practical applications of the findings. The chapter reviews 

how well the findings achieved the main research aims and objectives, makes 

recommendations for future research and gives concluding remarks for the PhD thesis. 

To achieve the set research objectives, a substantial amount of data was collected from 

different glasshouse and field experiments utilising quinoa, cowpea and wheat. New and 

untested experimental designs and phenotyping methodologies were employed in 

tandem with software tools for data processing and analysis. Collectively, this work 

produced findings that were not previously published in the scientific literature. The 

findings have implications for future research in PRS and plant physiology. 

Additionally, the findings hold the potential for the development of diagnostic tools to 

estimate the nutritional and water status of the studied crops. 

6.2 General discussion

6.2.1 Nitrogen and phosphorus stress interactions in crops: focus on quinoa and 
cowpea

Crop growth and cultivation may be co-limited by N and P (Agren et al., 2012; Dong et 

al., 2023). Therefore, understanding how plants respond to nutrient availability, their 

synchronised uptake and biological interactions are crucial for attaining nutritional 

equilibrium and maximising growth amid varying nutrient fluctuations, thereby 

minimising or optimising fertiliser application in agriculture (Luo et al., 2016; Medici 

et al., 2019; Alvar-Beltrán et al., 2021).

So far, research has mostly examined the impact of N and P fertilisation on crops 

independently, but recent findings indicate that these macronutrients may interact with 

each other across various levels of integration (Agren et al., 2012; Grohskopf et al., 

2019; Krouk and Kiba, 2020; Xia et al., 2023). Interactions between N and P are 

important for plant growth and ecosystem C sequestration (Wang et al., 2022). Plants 
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may use one element to acquire another (i.e., trading N for P and P for N) resulting from 

synergistic growth responses to NP addition (Schlegel and Bond, 2017). The 

mechanisms that cause synergistic responses of plant growth to multiple element 

addition have been shown that plants and microbes adapt mechanisms of element 

uptake or change allocation patterns, in the way that they trade one element they have in 

excess into the acquisition of a limiting element until their growth is equally limited by 

both elements (Davidson and Howarth, 2007; Schleuss et al., 2020; Wang et al., 2022; 

Xia et al., 2023). 

There is an increase in N uptake and accumulation when P levels in the plant are 

adequate or high while increasing the N supply increases the P uptake (Agren et al., 

2012; Duncan et al., 2018a). Therefore, there is a synergistic interaction between N and 

P. A synergistic interaction of N and P co-fertilisation on yield in many crops including 

wheat, millet, rice, sorghum, corn and cotton has been reported (Aulakh and Aulakh, 

2005; Rietra et al., 2017; Schlegel and Bond, 2017; Grohskopf et al., 2019).

On the other hand, additive and antagonistic interactions can occur (Crain et al., 2008; 

Grohskopf et al., 2019; Jiang et al., 2019). For instance, P deficiency in the soil could 

limit the plant response to N fertilisation (Setiyono et al., 2010) and negatively affect N 

uptake and assimilation resulting in antagonistic interactions (Gniazdowska and 

Rychter, 2000; Gan et al., 2016). The main sources of N and P for plants are nitrate and 

phosphate, and they also function as signal molecules to initiate downstream N or P 

responses. In both Arabidopsis and rice, their respective signalling pathways have been 

well studied (Hu and Chu, 2020). Recently, Hu and Chu (2020) assessed the growth 

performance and N/P utilisation of plants under different N and P conditions (Figure 

6.1). 
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Figure 6.1. The growth performance and N/P uptake of plants under different N and P 
supplies. LN, low N; HN, high N; LP, low P; HP, high P. Source: Hu and Chu, 2020.

The interaction of N and P on the spectral reflectance of crops is a crucial aspect in 

determining the nutrient status and growth of plants non-destructively. Changes in N 

and P levels in plants can lead to variations in leaf pigments, affecting the spectral 

characteristics during plant growth (Okyere et al., 2023). In recent times, hyperspectral 

imaging systems have been utilised to collect spectral data at different growth stages of 

plants, enabling the identification of N and P status in cowpea, quinoa, grape leaves and 

tomato crops (Elvanidi et al., 2018; Siedliska et al., 2021; Peng et al., 2022; Okyere et 

al., 2023). However, these studies were limited in assessing the interaction of N and P 

on the spectral reflectance of these crops. Another key research gap is finding SRIs that 

can discriminate between N and P stress. This work has demonstrated the utility of SRIs 

to identify the N and P interactions (N×P) in quinoa and cowpea at leaf scale using a 

handheld proximal sensor (Chapter 3; Appendix B, Table B-1 and Table B-2). In 

quinoa, SRIs including NDVI, SR, OSAVI, G, TCARI, ZMI, Ctr2, Lic1, Lic2, SIPI, 

GM1, GM2, ARI1, ARI2, CRI1, CRI2, RDVI, GNDVI_780, MRESR, RENDVI, 

NDRE, CIgreen, CIrededge, mNDblue_530, mNDblue_730, rDVI_790, gSRa_790 and 

SRa_790 showed N×P interactions (Chapter 3; Appendices B, Table B-1). Also, 

morpho-physiological parameters; LNC and SPAD showed N×P interactions but no 
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interaction was observed for agronomic parameters (Chapter 3; Table 3.4 and Table 

3.5). 

For cowpea, SRIs including NDVI, SR, MCARI, TCARI, ZMI, Ctr2, GM1, GM2, 

ARI2, GNDVI_780, MRESR, NDRE, CIgreen, CIrededge, mNDblue_530 and 

gSRa_790 showed N×P interactions (Chapter 3; Appendix B, Table B-2). Similarly to 

quinoa, LNC and SPAD showed N×P interactions in cowpea (Chapter 3; Table 3.8). 

Further, the findings showed N×P interactions in FW and DW in cowpea (Chapter 3; 

Table 3.9). 

This work therefore presents pertinent and valid research and provides a useful 

contribution to the body of work on N and P interactions. The findings suggest that 

these SRIs could non-destructively detect subtle changes in N and P variations due to 

their sensitivities to the leaf pigments which is essential for determining the nutrient 

status of these crops. Thus, the findings provide a physiological and agronomic basis for 

crop management, focusing on improving the nutrient status of quinoa and cowpea. 

6.2.2 Delineating the complex drought and nitrogen stress responses and 
interactions in wheat using proximal sensing techniques

The interaction between drought and N availability in wheat evokes complex 

physiological and morphological responses and their combined impact can affect 

growth, development, yield and quality traits (Shi et al., 2014). The drought and N 

interaction can either mitigate or exacerbate the effects of each other on wheat. Drought 

stress reduces water availability, leading to physiological drought in plants, which 

affects various growth processes such as photosynthesis, stomatal conductance and 

nutrient uptake (Sallam et al., 2019; Ru et al., 2022; Ullah et al., 2022). N, being a vital 

nutrient for plant growth, influences the plant response to drought stress by affecting 

metabolic processes. Adequate N supply can mitigate the adverse effects of drought on 

wheat growth by maintaining cellular hydration, sustaining photosynthetic activity and 

promoting root growth to enhance water uptake (Abid et al., 2016; Ru et al., 2022; 

Biswas et al., 2023). However, a high N supply can increase the sensitivity of the plant 

to drought stress (Zhong et al., 2019). 

Due to the complexity of drought and N interactions, PRS techniques are pivotal in 

understanding and managing the complex interactions between these two stress factors 
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in wheat. Several studies have shown the significance of PRS tools in assessing water 

and N status in wheat, aiding in reducing environmental impacts by detecting crop N 

levels and water status (Klem et al., 2018; Pancorbo et al., 2021). 

In recent times, the selection of spectral bands and SRIs that are sensitive to the 

physiological and biochemical changes associated with drought and N stress in wheat 

has been investigated (Bandyopadhyay et al., 2014; Kusnierek and Korsaeth, 2015; Li et 

al., 2021). This selection has involved considering specific wavelengths known to be 

related to the chlorophyll content, leaf water status, N concentration, photosynthetic 

activity and other relevant parameters.

In the quest to look for new or existing SRIs to distinguish between drought and N 

stress and their interactions in wheat, this work attempted to identify novel wavelengths, 

but this goal did not look promising (Chapter 4). The shorter wavelength range of the 

PolyPen RP410 spectrometer used for measuring the spectral reflectance of the leaf 

limited its exploration for drought-sensitive wavelengths. Additionally, the statistical 

method used was not robust enough to identify effective wavelengths. Hence, 39 

existing SRIs were explored for their response to the combined drought and N stress 

(Chapter 4; Table 4.1). 

In Chapter 4; Table 4.3, it was demonstrated that the spectral reflectance of wheat at the 

leaf scale could be used to assess the interaction between drought (D) and N at different 

days after water stress (D×N×DAWS) using several SRIs. The findings showed that 

NPQI and TVI demonstrated the earliest (D×N×DAWS) interaction at 3 and 6 DAWS 

respectively, driven by LN (Chapter 4; Table 4.3). RDVI and rDVI_790 showed 

(D×N×DAWS) interaction at 9 DAWS and was driven by both HN and LN (Chapter 4; 

Table 4.3). At 12 DAWS, MCARI1, ARI1, ARI2 and CRI2 showed (D×N×DAWS) 

interaction mostly under HN. The majority of the SRIs including NDVI, SR, G, ZMI, 

TCARI, PRI, Ctr1, SIPI, GM1, GM2, CRI1, PRI/NDVI, GNDVI_780, MRESR, 

RENDVI, NDRE, CIgreen, CIrededge and gSRa_790 indicated (D×N×DAWS) 

interaction at 14 DAWS (Chapter 4; Table 4.3). In most cases, the (D×N×DAWS) 

interactions were driven by HN supply with a bigger amplitude of response compared to 

LN (Chapter 4; Table 4.3). The findings indicate that these SRIs could detect subtle 

changes in the water and N status due to their sensitivities to the chlorophyll content, 
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leaf water status and N concentration, providing valuable insights into plant stress 

responses (Muñoz-Huerta et al., 2013; Elsayed et al., 2021; El-Hendawy et al., 2022). 

However, SRIs such as OSAVI, SPRI, NPCI, Ctr2, PRI_550, PRI_norm and 

mNDblue_730 did not show any (D×N×DAWS) interaction either under HN or LN. 

Additionally, the findings showed (D×N×DAWS) interaction in morpho-physiological 

parameters: An, Gs, E, WUEi, SPAD, RWC, SFW, LA, SMC except for LNC (Chapter 

4; Table 4.2) reflecting their usefulness for assessing the physiological status of wheat 

and how they respond to stress conditions. 

Collectively, this study is one of the few instances, if not the first in PS, where SRIs 

demonstrated utility in unravelling the complex drought and N interactions in spring 

wheat at the leaf scale. These advancements in PS techniques offer valuable insights 

into the responses of wheat crops to drought and N stress, enabling more informed 

agricultural practices for improved crop management. 

6.2.3 Integrating aerial imagery (remote sensing) and proximal sensing for high-
throughput phenotyping of the N status in winter wheat

The incorporation of cutting-edge technologies is essential to improving precision, 

accuracy, efficiency, throughput and productivity in modern agriculture (Shi et al., 

2016). Among these technologies, aerial drone imagery and ground-based proximal 

sensors have emerged as powerful tools for monitoring crop health and nutrient status 

(Fiorentini et al., 2021; Mezera et al., 2022). Notably, a gap exists in the literature 

regarding integrating these two sensing methodologies, particularly in the context of 

assessing N status and agronomic performance in winter wheat using NDVI at different 

spatial scales. In Chapter 5 of this thesis, it is demonstrated that the N status and how it 

reflects the agronomic performance in winter wheat can be assessed through the 

quantitative multiscale comparison of aerially sensed NDVI and ground-based 

proximally sensed NDVI derived from both leaf and canopy scales. In sum, the findings 

showed that the NDVI (PolyPen) measured at leaf level was more sensitive to the N 

status and for assessing the agronomic performance of winter wheat compared to NDVI 

(Drone) and NDVI (TEC5) measured aerially and at canopy scale, respectively (Chapter 

5; Figure 5.12; Table 5.5). Given the level of correlations observed in this study 

(Chapter 5; Figure 5.15), RS might be a useful tool to extrapolate handheld 
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measurements spatially throughout winter wheat growth and development. Moreover, 

there is compelling evidence of the utility of integrating PS and RS employing a 

multiscale approach to sensor data analysis to understand winter wheat N status and 

agronomic performance. This comprehensive approach has the potential to not just 

improve the accuracy of N management strategies but also advance the overarching goal 

of sustainable agriculture through efficient resource utilisation and reduced 

environmental impact.

6.3 Summary of findings and implications

This section assesses how successfully the research aims and objectives outlined in 

Chapter 1 of this thesis have been achieved based on the findings of the study. The 

overall aim of this thesis was to evaluate the feasibility of employing handheld proximal 

sensors and drone-based imagery to identify individual nutrient stresses and distinguish 

between combined nutrient stresses, as well as to examine how these stresses interact, in 

quinoa, cowpea and wheat. This evaluation aimed to determine their suitability for field 

phenotyping in Africa using quick and non-destructive phenotyping techniques. To 

address these research aims, a series of specific objectives were defined (Chapter 1, 

Section 1.2), and subsequently addressed and assessed (Chapters 3–5). In this section, 

an overview of the general findings and outcomes of each of these chapters is provided, 

relating the aims and relevant specific objectives outlined in this thesis. These findings 

embody new insights and knowledge that could impact not just techniques for PRS for 

stress detection in crops but also investigations into plant physiology, morphology and 

agronomy.

Chapter 3 aimed to select optimal SRIs that can effectively differentiate between N and 

P stress in quinoa and cowpea using a handheld proximal sensor (PolyPen RP410). This 

focussed on establishing the link between the spectral responses observed and the 

nutritional status, morpho-physiology and overall performance of the crops. This study 

has not been previously reported in the scientific literature, hence demonstrating its 

novelty in this thesis. 

As outlined in Chapter 3; section 3.1, the specific objectives were (i) to identify optimal 

SRIs indicative of N and P status separately or the combined effect and their 

interactions, (ii) to assess the time course response of optimal SRIs to identify early 
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nutritional variations, (iii) to assess the agro-morpho-physiological responses under the 

different N and P availabilities and (iv) to examine the relationships between optimal 

SRIs and agro-morpho-physiological parameters. 

The results showed that among the SRIs evaluated for quinoa, NDVI, OSAVI, G, 

MCARI, TCARI, ZMI, SPRI, NPQI, NPCI, Ctr2, Lic1, SIPI, CRI1, CRI2, RDVI, 

GNDVI_780 and SRa_790, were identified as indicators with specificity in detecting N 

stress (Chapter 3; Table 3.3; Figure 3.5). For P status, the two SRIs that were most 

effective and demonstrated specificity for their detection were mNDblue_730 and 

PRI_550 (Chapter 3; Table 3.3; Figure 3.6). Furthermore, SRIs including GNDVI_780, 

SRa_790, MCARI, NDVI, G, TCARI, Ctr2 and ZMI were effective in detecting early N 

and P nutritional variations from 37-44 DAS (vegetative stage) in quinoa (Chapter 3; 

Figure 3.5). 

The results revealed that the simultaneous application of different levels of N and P 

nutrients elicited an overall positive response in quinoa (Chapter 3; Table 3.4; Figure 

3.8) This was predominantly evidenced by significant increases in morpho-

physiological indicators such as LNC, LPC, SPAD values, An and PH (Chapter 3; 

Figure 3.8). Once more, the simultaneous application of N and P exhibited a beneficial 

influence on agronomic parameters such as VB, TPB and GY but not for TGW in 

quinoa (Chapter 3; Table 3.5; Figure 3.9). In this study, most of the SRIs that were 

optimal for distinguishing the N and P status in quinoa also demonstrated robust and 

significant correlations with the agro-morpho-physiological parameters (Chapter 3; 

Table 3.6).

Moreover, the results indicated that for cowpea, SRIs including NDVI, SR, OSAVI, 

MCARI, TCARI, ZMI, SPRI, PRI, NPCI, Ctr1, Ctr2, Lic1, Lic2, GM1, GM2, RDVI, 

PRI_550, PRI_norm, PRI/NDVI, GNDVI_780, MRESR, RENDVI, NDRE, CIgreen, 

CIrededge, mNDblue_530, gSRa_790 and SRa_790 were responsive to the combined N 

and P stress (Chapter 3; Table 3.7). It is interesting to highlight that only G and 

rDVI_790 showed specificity for N stress detection in cowpea (Chapter 3; Table 3.7; 

Figure 3.11). However, no SRI was identified to be optimum for P stress in cowpea 

(Chapter 3; Table 3.7), requiring future research. The earliest detection of N and P 

nutritional variations in cowpea was demonstrated by SRIs such as MCARI, Ctr1 and G 
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(Chapter 3; Figures 3.10 and 3.11) at 23 DAS (early vegetative stage) compared to 

quinoa from 37-44 DAS. 

The results showed that the measured morpho-physiological parameters for cowpea 

increased with increasing N and P availability (Chapter 3; Figure 3.13). The LNC, LPC 

and SPAD responded significantly to both N and P stress with N×P interactions 

observed for LNC and SPAD (Chapter 3; Table 3.8). However, An and PH responded to 

only N stress (Chapter 3; Table 3.8). Additionally, agronomic parameters such as FW, 

DW, number of pods and number of seeds responded significantly to N and P supply 

with N×P interactions observed for FW and DW (Chapter 3; Table 3.9). However, 

HSW and SY responded significantly only to P stress. Like quinoa, a wide range of 

SRIs also correlated significantly with agro-morpho-physiological parameters in 

cowpea (Chapter 3; Table 3.10). In the present study, a more effective and significant 

correlation is observed between several SRIs and agro-morpho-physiological metrics in 

quinoa and cowpea reflecting their usefulness in non-destructive assessment of the 

morpho-physiological status of these crops. A more effective correlation between SRIs 

and morpho-physiological parameters in quinoa and cowpea can be achieved by 

integrating knowledge of physiological mechanisms, environmental conditions, canopy 

structure and advanced analytical techniques. This holistic approach may enable better 

monitoring and management of these crops.

Due to the limitations of the PolyPen RP410 spectrometer in detecting P stress 

especially in cowpea, a spectrometer with a wider wavelength range could be more 

effective sensor for monitoring complex nutritional stresses. Hyperspectral sensors 

could be more effective than spectrometers with shorter wavelength ranges due to 

several factors. For instance, hyperspectral sensors capture a wide range of wavelengths, 

allowing for detailed analysis of subtle biochemical changes in plants, such as N content 

and chlorophyll levels, which are indicative of nutritional stress (Liu et al., 2020; 

Sanaeifar et al., 2023). This broad spectral coverage enables the detection of specific 

stress-related spectral signatures that might be missed by spectrometers with limited 

wavelength ranges. However, there should be a trade-off between cost and effectiveness 

when using a sensor.  
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The implications for these findings suggest that quinoa and cowpea growers can modify 

their N and P fertilisation schedules, alleviate nutrient stress conditions, sustain optimal 

plant growth, mitigate substantial yield losses and enhance overall crop productivity by 

promptly detecting and responding to nutritional fluctuations in real-time and at an early 

phase. This underscores the importance of maintaining a well-balanced nutrient regimen 

to ensure optimal tissue nutrient levels, chlorophyll content, photosynthetic efficiency, 

plant growth, biomass buildup and overall crop productivity. The robust and significant 

correlations indicate that these SRIs have the capacity to reliably estimate various agro-

morpho-physiological characteristics swiftly, affordably and non-destructively in 

quinoa and cowpea grown under controlled environments. The demonstrated feasibility 

of using a handheld proximal sensor to distinguish between N and P can greatly aid in 

accurately estimating crop nutritional needs. By optimising fertiliser use and improving 

crop monitoring, this study supports PA, potentially leading to increased crop yields and 

sustainable farming practices. Additionally, the use of low-cost sensing technologies 

can make advanced crop phenotyping accessible to resource-limited settings, promoting 

PA in developing countries. 

Chapter 4 of the thesis evaluated the morpho-physiological drought responses at HN 

and LN supplies and investigated the feasibility of using SRIs derived at the leaf scale 

using the handheld proximal sensor explored in Chapter 3, to distinguish between the 

combined effects of drought and N stress in spring wheat under glasshouse conditions. 

The findings of this research indicated that HN plants exhibited a swifter response to 

drought with a bigger amplitude of response in comparison to the LN plants as observed 

in morpho-physiological parameters including gas exchange parameters, SPAD values, 

RWC, SFW, LA and SMC with synergistic interactive effects except for LNC (Chapter 

4; Table 4.2). These results suggest that in situations where water is scarce, plants 

possessing sufficient or excess N may experience heightened vulnerability to drought 

conditions. Consequently, managing N fertiliser could play a crucial role in enhancing 

water use efficiency during periods of drought.

So far, there is limited data on how N availability influences spectral reflectance in 

response to drought stress. This work has demonstrated the spectral response of several 

SRIs to drought under HN and LN conditions (Chapter 4; Table 4.3). Generally, 
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drought responses in SRIs were significant on the last day of water stress (14 DAWS) 

under HN compared to LN except for NPQI, Lic1, Lic2 and SRa_790 (Chapter 4; Table 

4.3). Out of all the SRIs explored, NPQI and TVI exhibited the swiftest response to 

drought, with a noticeable significant difference between WW and WS plants becoming 

apparent from 3 and 6 DAWS under LN respectively (Chapter 4; Table 4.3). RDVI and 

rDVI_790 demonstrated significant difference between WW and WS plants starting 

from 9 DAWS and were driven by both HN and LN conditions (Chapter 4; Table 4.3). 

SRIs including MCARI1, ARI1, ARI2 and CRI2 showed significant difference between 

WW and WS treatments starting from 12 DAWS. Most of the SRIs (e.g., NDVI, SR, G, 

ZMI, TCARI, PRI, Ctr1, SIPI, GM1, GM2, CRI1, PRI/NDVI, GNDVI_780, MRESR, 

RENDVI, NDRE, CIgreen, CIrededge and gSRa_790) showed a significant difference 

between WS and WW plants at 14 DAWS (Chapter 4; Table 4.3). 

It has been successfully demonstrated that drought and N stress could be distinguished 

in spring wheat at the leaf level using a low-cost handheld proximal sensor (PolyPen 

RP410), by identifying key SRIs that were more specific to drought and N stress 

(Chapter 4; Table 4.4). In an ensemble of 39 SRIs investigated, the narrow-band 

greenness SRIs (RDVI and rDVI_790) indicated higher specificity for drought stress 

detection (Chapter 4; Table 4.4; Figure 4.5A-B). On the other hand, the chlorophyll-

sensitive indices (mNDblue_730, G and Lic2) and the red-edge group indices (MRESR, 

CIrededge and NDRE) exhibited greater specificity for detecting N stress (Chapter 4; 

Table 4.4; Figure 4.6). The findings also revealed strong correlations between a wide 

range of SRIs and morpho-physiological parameters suggesting their utility for non-

destructive assessment of the morpho-physiological status in spring wheat (Chapter 4; 

Table 4.5). The ability to discriminate between drought and N stress using proximally 

sensed data has huge implications for detecting complex environmental stresses in a 

climate change scenario. 

The findings provide new knowledge and a confirmation of established knowledge in 

understanding complex environmental stress which will be useful for advancing PA. 

The series of important ecophysiological thresholds and SRIs that are identified could 

be used by producers as references or guidelines for managing wheat production in the 

future. Most farmers are confronted with both nutrient and water stress management. 

Therefore, the use of spectral data from this work could enhance PA by identifying 
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stress patterns, and aid growers in making good decisions; for instance, optimisation of 

agricultural water use and N application to mitigate adverse stress effects. To this end, 

the findings of this work could be developed by agronomists to establish a fertiliser 

application and intervention protocol for farmers. The use of handheld proximal sensors 

represents a low-cost approach for non-destructive plant phenotyping of crop status. 

Low-cost handheld devices are well-suited for constantly tracking crop growth and will 

provide growers with timely information about crop performance. 

Chapter 5 of this thesis focussed on assessing the N status and how it reflects 

agronomic performance in winter wheat through the quantitative multiscale comparison 

of aerially sensed NDVI and the ground-based proximally sensed NDVI derived from 

both leaf and canopy scales. In this study, NDVI has been compared side-by-side across 

three different spatial scales: aerial, canopy and leaf scales in winter wheat which 

represents a new approach. Existing work has either compared two spatial scales or 

different SRIs at the same time in other crops (eg., Rehman et al., 2019; 2022). 

The findings showed that NDVI (PolyPen) was more sensitive than NDVI (Drone) 

imagery and NDVI (TEC5) to N status and for evaluating the agronomic performance 

of winter wheat (Chapter 5; Figure 5.12; Table 5.5). What is interesting is that while 

NDVI (PolyPen) shows stronger sensitivity to the N status at the early stage, NDVI 

(Drone) was sensitive at a later stage but was more limited with NDVI (TEC5) (Chapter 

5; Figures 5.13 and 5.14). The direct evaluation of N status using a handheld proximal 

sensor NDVI (PolyPen) can offer a low-cost and more sensitive indicator of early 

nutritional N variations in winter wheat when N fertilisation can still be adjusted. On the 

other hand, NDVI (Drone) offers rapid and large-scale monitoring of vegetation cover 

for N status monitoring at the maturity stage. Additionally, NDVI (Drone), NDVI 

(PolyPen) and NDVI (TEC5) showed promise as accurate predictors of GY early in the 

season (Chapter 5; Figure 5.16D). These findings show that the time of measurement, 

measurement platform and sensor all affect how well the NDVI can guide crop 

management decisions.

The findings show that NDVI (Drone), NDVI (PolyPen) and NDVI (TEC5) could be 

used interchangeably because of their strong correlation to each other (Chapter 5; Figure 

5.15). The results imply that RS could be a useful technique to extrapolate ground-based 
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handheld measurements spatially throughout winter wheat growth and development. 

Furthermore, it offers end-users the flexibility to choose the sensor and platform most 

suitable for their needs, considering factors such as cost, expertise, weather, 

geographical location, growth stage, etc., for practical agricultural applications, favoring 

ground-based methods for certain conditions. Collectively, the OCP and OCP Africa 

will aid in the dissemination of the findings or technologies of this PhD work down to 

potential end-users i.e., farmers. The summary of findings of key SRIs across the three 

research chapters and their implications for practice are shown in Table 6.1. 

6.3.1 Impact of phenotyping scale

Chapters 3, 4 and 5 of the PhD thesis each assesses the impact of scale on SRIs for 

monitoring crop responses to different stresses, but with varying focus on crop types, 

stresses, and the scale of data collection. Chapter 3 focuses on leaf-level proximal 

sensing for quinoa and cowpea, assessing their agro-morpho-physiological responses 

under different N and P stresses. This chapter determines optimal SRIs at a fine scale, 

aiming to detect early-stage nutrient stress, distinguish between stresses and understand 

how these stresses affect crop performance. The small-scale data collection (proximal 

sensors at leaf-level) is useful for highly controlled and specific identification of stress 

responses. However, this scale limits its broader applicability across larger fields.

Chapter 4 expands the scale slightly by exploring the interaction of drought and N 

stress in spring wheat, again using a proximal sensor at the leaf level. Here, the study 

not only measures the responses to combined stresses but also attempts to detect each 

stress independently. The leaf-level sensing still operates at a relatively small scale but 

introduces more complexity by evaluating how SRIs can distinguish between multiple, 

overlapping stressors. The effectiveness of detecting drought and N stresses 

independently shows that even at this level, scale limitations might hinder broader, 

field-scale applications.

Chapter 5 takes the analysis to a multiscale approach incorporating both aerial drone 

imagery and ground-based proximal sensors for assessing N stress in winter wheat. This 

chapter represents the largest scale of assessment, aiming to connect leaf-level NDVI to 

canopy and aerial imagery NDVI, which can capture larger field sections. The 
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integration of drone technology allows for broader, more efficient field phenotyping, 

suitable for practical agricultural applications at a commercial scale. This chapter shows 

that while leaf-level sensing provides detailed insight, scaling up to drone-based 

imagery allows for field-wide monitoring, making it a more feasible approach for larger 

operations.

The comparison across the chapters reveals that scale impacts both the precision of the 

data and the applicability of the findings. Leaf-level sensing in Chapters 3 and 4 is more 

precise but less scalable, while Chapter 5’s multiscale approach sacrifices some detail 

for broader applicability across larger areas. Thus, integrating scales, as 

demonstrated in Chapter 5, offers a more comprehensive solution for 

agricultural phenotyping, addressing both precision and scalability. The findings 

suggest that smaller-scale sensing is critical for early detection and specific 

stress analysis, while larger-scale sensing enables more practical, large-field 

monitoring solutions, especially when dealing with complex environmental 

interactions. The scaling up from leaf-level to canopy and aerial imagery 

illustrates how spectral response accuracy and field-wide applicability can be 

balanced for optimal agricultural management.
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Table 6.1. Summary of findings of key SRIs identified across the three research chapters and their implications for practice. 

Chapter Specific objective Key findings of effective SRIs Implications for practice

3 (1) To identify optimal SRIs indicative of N and P status 
separately or the combined effect and their interactions.

(2) To assess the time course response of optimal SRIs to 
identify early nutritional variations.

(3) To examine the relationships between optimal SRIs and 
agro-morpho-physiological parameters.

• NDVI, OSAVI, G, MCARI, TCARI, ZMI, SPRI, NPQI, 
NPCI, Ctr2, Lic1, SIPI, CRI1, CRI2, RDVI, GNDVI_780 
and SRa_790 were specific for N stress detection in quinoa. 

• mNDblue_730 and PRI_550 were specific for detecting P 
stress in quinoa.

• SRIs including GNDVI_780, SRa_790, MCARI, NDVI, G, 
TCARI, Ctr2 and ZMI were effective in detecting early N 
and P nutritional variations in quinoa.

• G and rDVI_790 showed specificity for N stress detection in 
cowpea. MCARI, Ctr1 and G were effective for detecting 
early N and P nutritional variations in cowpea. 

• A wide range of SRIs correlated significantly with agro-
morpho-physiological parameters in both crops. 

When validated, these SRIs hold the 
potential for rapid and non-destructive 
assessment of complex nutritional 
stress and morpho-physiological status 
of the studied crops.

4 (1) Identify effective SRIs specific for discriminating between 
drought and N stress.

(2) To examine the relationships between spectral response and 
morpho-physiological status.

• The chlorophyll-sensitive and red-edge group SRIs 
including mNDblue_730, G, Lic2, MRESR, CIrededge, 
CIgreen and NDRE are the key mechanistic SRIs for N 
stress detection in spring wheat. 

• The RDVI and rDVI_790 are the key mechanistic SRIs for 
drought stress detection and may potentially relate to 
autocorrelation because they capture spatial patterns in 
leaf/vegetation that correlate with environmental factors like 
water and nutrient availability which equally exhibit spatial 
autocorrelation. 

• These SRIs correlated significantly with the morpho-
physiological metrics due to their sensitivity to subtle 
changes in pigments and leaf/canopy structure of wheat 
crop.

The SRIs hold the potential to 
differentiate between drought and N 
stress for strategic crop management. 
The use of handheld proximal sensors 
represents a low-cost approach for 
non-destructive plant phenotyping of 
crop status. 



                                                                        Chapter 6 – General Discussion and Summary of Findings

270

5 To assess the N status and how it reflects agronomic 
performance in winter wheat through the quantitative 
multiscale comparison of aerially sensed NDVI and the ground-
based proximally sensed NDVI derived from both leaf and 
canopy scales.

• NDVI (PolyPen) was more sensitive to N status and for 
evaluating the agronomic performance of winter wheat 
compared to NDVI (Drone) imagery and NDVI (TEC5). 

• NDVI (PolyPen) demonstrated early detection of N 
nutritional variation and for estimating LNC and SPAD 
chlorophyll content at the early growth stage. 

• NDVI (Drone) was more sensitive at the late growth stage.

• NDVI (Drone), NDVI (PolyPen) and NDVI (TEC5) were 
strongly correlated to each other, cross-validating their 
alternative use and effectiveness for N status monitoring. 

Integrating proximal and remote 
sensing using NDVI at the leaf, 
canopy, and aerial scales for 
comprehensive crop N monitoring in 
winter wheat provides new insights 
that enhance the accuracy, efficiency, 
and reliability of N nutritional 
assessments.
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6.4 Future research outlook 

While the findings of this work are conclusive within the scope of the PhD thesis, they 

provide a foundation for further research in this area. Therefore, based on the findings 

and limitations of this thesis, the following future research directions are recommended. 

1. In chapters 3 and 4, the purpose of the controlled/glasshouse experiments was 

not necessarily to build relationships that can be translated directly to the field 

and different geographical settings but to test when these proximal sensors could 

be used at different timings to monitor crop nutritional status. Control trials 

entail the precise control of environmental factors such as temperature, 

humidity, gas concentration, air volume, wind speed, light intensity, spectral 

range, photoperiod, nutrient content, irrigation, etc., which may differ from the 

changing field conditions. Again, pot size, soil volume and spacing could 

influence the morpho-physiological status of the crop (Poorter et al., 2012). 

Therefore, for the correlations established in controlled conditions to be applied 

in the field and different geographical settings, it will require building up 

specific field calibration/validation or new models that could mimic those field 

conditions and these are beyond the scope of the work. Overall, there is a lot of 

variation in how plants develop in pots, which can make it difficult to interpret 

and extrapolate to the field (Passioura 2006). Therefore, any activity undertaken 

in controlled, or glasshouse conditions must be properly validated with field 

measurements to be confident that the data are relevant and of value for field 

conditions (Rebetzke et al., 2013). The findings presented in this study represent 

an initial stage of research. The observed effects might not exist or could be 

more or less pronounced, in plants cultivated in natural field conditions. Further 

research is necessary to validate the findings beyond the controlled environment 

of the glasshouse settings. Additionally, extension of the SRIs to more 

genotypes and environments through validation studies should be considered. 

2. In this work, the handheld proximal contact sensor (PolyPen RP410) 

demonstrated the capability to discriminate between the combined N and P in 

quinoa and cowpea (Chapter 3) as well as drought and N stress in spring wheat 

(Chapter 4). However, the PolyPen RP410 and the spectral analysis method 



                                                                        Chapter 6 – General Discussion and Summary of Findings

272

employed were limited in their response to detecting P and drought stress due to 

the shorter wavelength range (320–790 nm). Future research should consider the 

incorporation or deployment of a spectroradiometer of a wider wavelength 

range, or RS tool along with more robust and automated analysis methods such 

as ML and computer vision to increase detection power and phenotyping 

capabilities (Klem et al., 2018; Ahmad et al., 2021; Safdar et al., 2023). For 

instance, hyperspectral sensing and deep learning methods may be feasible 

choices for use (Osco et al., 2019; Okyere et al., 2023; Yu et al., 2023). 

Hyperspectral expands the number of wavebands accessible for phenotyping, 

thereby broadening the spectrum of measurable phenotypes (Kim et al., 2015; 

Corti et al., 2017; Brugger et al., 2019). 

3. This thesis demonstrated the potential of using existing SRIs for discriminating 

N and P stress in quinoa and cowpea (Chapter 3) and drought and N in spring 

wheat (Chapter 4) at leaf scale. However, future research should consider 

examining the full spectrum and identify indicative or optimal wavelengths 

capable of distinguishing these stresses at leaf, canopy or aerial scales and build 

on that to develop novel SRIs for these crops. The reduction of the high 

dimensionality of the extracted spectral data could aid in the selection of optimal 

wavelengths. Elsewhere, Ansari et al. (2016) showed the utility of hyperspectral 

RS for determining a specific wavelength range for separating N and P stress in 

wheat. 

4. P is an essential macronutrient crucial for the growth of plants and is among the 

least nutrients available in soil. P deficiency frequently serves as a significant 

limitation to plant growth on a global scale. Although P addition experiments 

have been carried out to study the long-term effects on yield, data on early P 

stress detection in spring wheat using PS at leaf and canopy scales are still 

scarce. This work intended to close this gap but did not materialise due to time 

constraints. Future work should consider this research direction. 

5. This work demonstrated the integration of NDVI at leaf, canopy and aerial 

scales for assessing the N status in winter wheat. The integration of more SRIs at 

different spatial scales is highly recommended for further research. 
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6. Further work about genetic studies to identify molecular markers for key SRIs 

for application in plant breeding should be considered. For instance, Genome-

Wide Association Studies (GWAS) can be used to associate specific genetic 

variants with SRIs that correlate with important crop traits. By analysing a large 

population, GWAS can identify loci linked to variations in spectral reflectance, 

providing potential markers for breeding and aiding in the development of crops 

with optimised traits for stress resistance and productivity.

6.5 Concluding remarks

This PhD work has developed and assessed PRS techniques for phenotyping the 

nutritional status of crops grown under glasshouse and field conditions using SRIs at 

different spatial scales. Conventional manual phenotyping has been a bottleneck to 

significant advances in assessing the nutritional status of crops required to meet the 

needs of a rapidly expanding global population. The phenotyping methods developed 

and assessed in this study represent a low-cost approach and offer superior temporal and 

spatial resolutions whilst achieving comparable accuracy for crop physiology, 

morphology, agronomy and spectral reflectance of crops. Field phenotyping 

methodologies for African crops with immediate to long-term feasibility are expected to 

depend on a blend of existing methods or emerging low-cost sensor prototypes and 

imaging techniques for evaluating the nutritional status and crop performance. This will 

aid the widespread adoption for practical implementation in Africa and may play a 

pivotal role in PA as demonstrated in Cudjoe et al. (2023a). The findings presented in 

this thesis indicate a direction for future research and have practical implications for 

field phenotyping in Africa. 
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Abstract

Proximal sensing has been used extensively for decades to assess crop nitrogen (N) 
status using either a handheld chlorophyll meter or vegetation indices such as the 
Normalized Difference Vegetation Index (NDVI) for various crops. However, little 
has been done on quinoa (Chenopodium quinoa Willd.). In this study, we 
investigated how the SPAD chlorophyll meter values and NDVI could be used as 
indicators for N status and how they can be linked to quinoa performance in terms 
of photosynthesis and yield. The objectives of this study were to: (1) evaluate SPAD 
values and NDVI as indicators of N status, (2) assess their relevance over the crop 
cycle, and (3) investigate their link to the performance in terms of net CO2 
assimilation and grain yield at harvest. A pot experiment based on varying nitrogen 
and phosphorus (P) input conditions was conducted in the glasshouse at Cranfield 
University, United Kingdom. The results showed that both SPAD and NDVI 
correlated similarly with the leaf N content (%) (R2=0.76, R2=0.82, p<0.001 
respectively). High correlations between SPAD and NDVI were also observed at 58 
DAS (R2=0.67) and across the entire crop cycle (R2=0.84), validating the utility of 
both parameters for N status monitoring. Furthermore, significant differences 
between treatments were observed at different growth stages when SPAD and 
NDVI were measured across the crop cycle. Strong significant correlations between 
SPAD and NDVI with the net CO2 assimilation (A net) (R2=0.86, R2=0.81, p<0.001 
respectively) were recorded. SPAD values and NDVI significantly correlated with 
grain yield at harvest (R2=0.68, R2=0.80, p<0.001 respectively). While SPAD and 
NDVI are potentially useful tools to improve N fertilizer management and develop 
in-season yield predictions in quinoa at relatively low-cost, alternative non-
saturating spectral indices need to be explored to improve accuracy.

Keywords: Chenopodium quinoa, SPAD, NDVI, N status, net CO2 assimilation, 
photosynthesis
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Introduction

Quinoa (Chenopodium quinoa Willd.) is a unique pseudocereal originating from the 

Andean region of South America. Quinoa has attracted global attention as an important 

food source having exceptional nutritional qualities, health benefits, and resilience to 

various abiotic stresses (Bazile et al., 2016; Hinojosa et al., 2018; Dakhili et al., 2019). 

To meet the ever-increasing demand for quinoa, farmers and breeders need improved 

agronomic practices combined with the breeding of more nutrient-efficient crops, 

especially in low-productivity regions. Therefore, adjusting N requirements based on 

the prediction of potential yield is a crucial part of precision agriculture for making in-

season management decisions and increasing profitability. 

Proximal sensing (PS) technologies offer quick, non-destructive, and accurate 

assessments of crop N status, which is crucial for optimised fertiliser application and 

precision crop management (Chawade et al., 2019; Alvar-Beltrán et al., 2020). 

Spectroscopy technologies (single point or imager) offer a wide range of metrics 

including computed spectral reflectance indices (SRIs) and have been used to assess the 

nutrient status of crops, diagnose nutrient deficiency, monitor growth, and predict crop 

yields (Padilla et al., 2018). Chlorophyll meters such as the SPAD-502 and SRIs such as 

NDVI (Normalised Difference Vegetation Index) are reliable indicators for assessing 

the N status of crop plants (Kizilgeci et al., 2019). The NDVI is a numerical indicator 

using a Normalised ratio of the difference between the near-infrared (NIR) and the red 

reflectance bands. For instance, Rehman et al. (2019) demonstrated the ability of NDVI 

to assess N status in rice and predict grain yield at harvest. The NDVI at panicle 

initiation was most closely related to crop N uptake and positively correlated (R2=0.58) 

with grain yield at harvest. On the other hand, the SPAD-502 measures the relative leaf 

chlorophyll levels at light absorbances of 650 nm (red) and 940 nm NIR (Li et al., 

2019). The SPAD has been successfully used as a selection criterion for nitrogen use 

efficiency and improved grain yield in durum wheat (Kizilgeci et al., 2019). In another 

study, Chetan and Potdar (2016) showed that yield potential in corn could be accurately 

predicted in-season with NDVI and SPAD. A strong correlation (r=0.98) was achieved 

between NDVI, SPAD, and grain yield at the tasselling stage. 
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Previously, most studies employing SRIs have focused largely on cereals. However, the 

use of PS parameters to assess the nutritional status and crop performance in quinoa has 

not been thoroughly studied. Recently, Alvar-Beltrán et al. (2020) tested proximal 

optical sensing tools to monitor quinoa growth in field conditions with various N inputs. 

The authors showed that SPAD-502 and GreenSeeker were effective at making in-

season predictions of crop biomass at harvest (R2=0.68 and 0.82, respectively).

As the amount of chlorophyll in the leaves provides valuable information on the 

physiological status and is directly linked to the photosynthetic capacity and therefore 

primary production (Li et al., 2019), we decided to focus the present study on these 

three components. The main objectives of this study were to: (1) evaluate the SPAD and 

leaf-level NDVI as indicators of N status in quinoa, (2) monitor N status across the 

season using SPAD and NDVI, and (3) assess how both reflect the crop performance in 

terms of net CO2 assimilation and grain yield at harvest.

MATERIALS AND METHODS

Plant material, growth conditions, and crop establishment

A pot experiment with quinoa (Chenopodium quinoa Willd var. temuco) was conducted 

in the glasshouse at the Plant Growth Facility at Cranfield University, United Kingdom, 

from September 2020 to January 2021. The conditions were set as: day/night 

temperature 24/21±2 °C, relative humidity 60%, a photoperiod of 14 h with a light 

intensity of 400-500 µmol m -2 s-1. Before sowing, quinoa seeds were stratified at 4°C for 

3 days and sown in wet vermiculite compost on a mini pot tray and incubated in the 

dark. After 3 days, germinated seeds were illuminated to prevent etiolation. Seedlings of 

similar size (5 cm) were transplanted into pots. At the two-leaf stage, the seedlings were 

thinned to one plant per pot. Quinoa plants were grown to maturity on a reconstituted 

Levington F1, low-nutrient compost, as detailed in the following section. 

Experimental design, compost preparation, and application of nutrient treatments

The experiment was structured in a randomized complete block design (RCBD) with 

five replications. The compost used was Levington F1, low-nutrient compost (ICL, 

Everris, United Kingdom). Compost was washed to remove soluble nutrients, by 

flooding one part of the compost with five-part deionised water, mixing, breaking up 
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aggregates, and draining through a double 0.8 mm sieve (adapted from Masters-Clark et 

al., 2020). The washing process was repeated five times and the washed compost was 

oven-dried at 80 °C. Nutrients were reconstituted in the washed compost with macro 

and micronutrients in a modified Letcombe nutrient solution (Masters-Clark et al., 

2020). The N and P inputs were applied in four nutritional levels designated (HN-HP, 

HN-LP, LN-HP, and LN-LP, with H and L for high and low levels respectively). The 

concentrations for HN and LN were 49.12 mM and 14.59 mM and for HP and LP were, 

13.38 mM and 3.33 mM respectively. Each pot (21 cm tall by 19 cm diameter) was 

filled with 360 g of washed compost and mixed with 58 g of silver sand and 790 ml of 

nutrient solution. Pots were replenished with 790 ml of nutrient solution at 23 DAS, 44 

DAS, 65 DAS, and 79 DAS based on the designated treatments. Plants were irrigated 

with deionised water.

Measurement parameters

Weekly measurements

From 23 DAS, the chlorophyll index and spectral data were measured weekly using a 

SPAD-502 chlorophyll meter (Soil Plant Analysis Development, Minolta Camera Co., 

Ltd., Japan) and a PolyPen instrument (PolyPen, Photon Systems Instruments, Czech 

Republic). NDVI was extracted from the PolyPen data using the 780 nm and 630 nm 

wavelengths. At 58 DAS, NDVI was calculated by taking an average of the 51 and 65 

DAS because the 58 DAS data was missing due to an instrument failure. Measurements 

were realized on fully expanded leaves at the top of the plants. Three readings were 

made and then averaged.

Gas-exchange measurement

The net CO2 assimilation (Anet) was measured at 46 DAS in a fully expanded leaf from 

the top of each plant, employing a gas-exchange system (Li-6400XT, Li-COR Inc., 

Lincoln, NE, USA). The photosynthesis measurements were done between 10 AM and 

2 PM. Additional SPAD data was collected on the same leaves. 

Sampling for nitrogen content and yield determination

At 60 DAS, leaves were sampled for nitrogen content analysis. Total nitrogen (N) 

content (%) was determined by the LECO combustion method. At maturity, manual 
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harvesting was done to separate matured seed heads from the vegetative parts (i.e., 

panicles and stems). Harvested seed heads were dried at 40 °C for 48 h in a forced-air 

oven and threshed manually. Chaffs were removed to retain cleaned grains. The grain 

yield per pot (g pot-1) was further determined based on 13% moisture content. 

Statistical analysis

Data were analysed using linear regression to investigate the relationship between 

variables. Analysis of variance (ANOVA) using R software was employed to assess 

differences between treatments throughout the crop cycle. All results were evaluated at 

a 5% level of significance. 

RESULTS

Evaluation of N status during the reproductive/inflorescence growth stage

Table 1 shows the summary statistics of leaf N content determined at 60 DAS, SPAD, 

and NDVI at 58 DAS for each treatment. An increase in the mean values for each 

variable was observed with the higher nutrient supply treatments, except for SPAD and 

NDVI for the LN-HP treatment, for which values were lower than the LN-LP. The 

linear regression of the leaf N content with SPAD and NDVI showed high correlations 

(R2=0.76, R2=0.82 respectively; Figure 1a, b). The relationship between the N predictors 

(SPAD and NDVI) was also high (R2=0.67, Figure 1c). 

Table 1. Descriptive statistics of leaf N content (%) at 60 DAS, and SPAD and NDVI at 
58 DAS. Abbreviations used are minimum (Min); maximum (Max); standard deviation 
(SD); coefficient of variation (CV). Each treatment represents five replicates.

Parameter Leaf N content (%) SPAD NDVI
Treatment Mean Min Max SD CV (%) Mean Min Max SD CV (%) Mean Min Max SD CV (%)

HN-HP 5.1 5.0 5.3 0.12 2.35 49.2 45.5 53.3 2.83 5.75 0.55 0.55 0.56 0.00 0.00
HN-LP 3.2 3.0 3.3 0.14 4.38 40.3 38.8 41.5 1.01 2.51 0.52 0.51 0.54 0.01 1.92
LN-HP 1.6 1.4 1.9 0.23 14.38 33.8 32.1 35.0 1.13 3.34 0.49 0.47 0.5 0.01 2.04
LN-LP 1.5 1.3 1.8 0.20 13.33 38.9 35.6 41.6 2.36 6.07 0.50 0.47 0.51 0.02 4.00
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Figure 1. Linear regression between leaf N content at 60 DAS and SPAD (a), NDVI (b) 
at 58 DAS, and between NDVI and SPAD at 58 DAS (c). Each treatment represents 
five replicates. Significant level is ***p<0.001.

Time course of proximal sensing parameters (SPAD and NDVI) and their 
relationship throughout the crop cycle

Figure 2 (a, b) displays the time course of SPAD and NDVI measured from 23 DAS to 

93 DAS. A significant difference between treatments was observed from 37 DAS for 

SPAD (Figure 2a) and 30 DAS for NDVI. High statistical differences between 

treatments (p<0.001) were observed constantly from 37 DAS for SPAD and 44 DAS for 

NDVI. For both variables, higher values were obtained for the HN-HP treatment. The 

lowest SPAD values were observed for the LN-HP except at 44 DAS. Similarly, for 

NDVI, the lowest values were observed for the LN-HP treatment from 65 DAS. The 

relationship between SPAD and NDVI across the crop cycle is shown in Figure 2c. 

Non-linear regression was fitted to the data displaying a high R2 (0.84). Higher data 

variation was seen for the lower values of SPAD and NDVI, reflecting the observations 

on the time course for the LN-LP and LN-HP treatments.
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Figure 2. Time course of SPAD (a) and NDVI (b) from 23 to 93 DAS. Relationship 
between NDVI and SPAD over the same period (c). Error bars represent mean ± SD 
(n=5). Asterisks indicate significant difference between treatments (**p<0.01, 
***p<0.001) using student’s t-tests. Non-significant is denoted as ns (p>0.05).

Assessment of how well the proximal sensing parameters reflected crop 
performance 

Table 2 highlights the summary statistics of the crop performance indicators under 

different nutritional treatments. An increase in the mean values for each variable was 

observed with the increase in nutrient supply. To assess how the N status predictors 

(SPAD and NDVI) reflected crop performance in terms of photosynthesis (net CO2 

assimilation) and grain yield at harvest, correlation analyses were performed (Figure 3). 

The results showed a strong significant correlation between Anet and leaf N content, 

SPAD, and NDVI (R2=0.68, R2=0.86, and R2=0.81, respectively). In parallel, the N 

status predictors were significantly correlated with grain yield (R2=0.86, R2=0.68, 

R2=0.80, respectively). 
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Table 2. Descriptive statistics of Anet measured at 46 DAS and grain yield at harvest. 
Abbreviations used are minimum (Min); maximum (Max); standard deviation (SD); 
coefficient of variation (CV). Each treatment represents five replicates, except HN-HP 
and HN-LP for Anet in which one of the replicates had wilted leaves and was removed. 

Performance 
indicator A net(µmol m-2s-1) Grain yield (g pot-1)

Treatment Mean Min Max SD CV (%) Mean Min Max SD CV (%)
HN-HP 25.10 20.01 28.03 3.60 14.34 75.0 52.2 92.8 17.5 23.33
HN-LP 21.37 17.04 23.19 2.91 13.61 50.1 46.8 55.2 3.47 6.93
LN-HP 15.83 11.91 17.84 2.50 15.79 22.9 19.2 26.1 2.68 11.70
LN-LP 15.32 11.95 18.97 3.11 20.30 15.4 11.8 20.6 3.82 24.81

Figure 3. Correlations between leaf N content at 60 DAS and Anet at 46 DAS (a), SPAD 
at 46 DAS and Anet at 46 DAS (b), NDVI at 44 DAS and Anet at 46 DAS (c), leaf N 
content at 60 DAS and grain yield at harvest (d), SPAD at 46 DAS and grain yield at 
harvest (e), and NDVI at 44 DAS and grain yield at harvest (f). Each treatment 
represents five replicates, except HN-HP and HN-LP for A net in which one of the 
replicates had wilted leaves and was removed. Significant levels are **p<0.01, 
***p<0.001. SPAD and NDVI values are dimensionless.

DISCUSSION

This study was conducted to evaluate the usefulness of proximal sensing and indices 

such as SPAD and NDVI measured at the leaf level, as indicators of N status and crop 

performance predictors in quinoa. As there is a strong relationship between chlorophyll 

content and the leaf N content, leaf chlorophyll content is considered a useful indicator 
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of the N status (Uddling et al., 2007). Here, both the SPAD and NDVI displayed similar 

efficiencies as indicators of N status, as they correlated strongly (R2=0.76, R2=0.82, 

respectively) with the leaf N content at 60 DAS (Figure 1a, b). As reported by Yang et 

al. (2010), the high correlation observed between NDVI and leaf N content at 60 DAS 

may be reasoned by the reflectivity of quinoa leaves as influenced by the amount of 

accumulated N, chlorophyll, and leaf area. The results are also consistent with Vian et 

al. (2018), where strong positive relationships were established between NDVI and leaf 

N content in wheat.

SPAD chlorophyll readings and NDVI have been established as reliable indicators to 

identify crop N status in many cereals (Kizilgeci et al., 2019; Rehman et al., 2019). 

However, as already mentioned, comparative research on their exploitation in quinoa 

remains scarce. Thus, the SPAD and leaf NDVI indices hold great potential to optimise 

N-use efficiency in quinoa. Furthermore, the strong relationship between SPAD and 

NDVI observed at 58 DAS during the inflorescence stage and throughout the crop cycle 

validates the suitability and precision of both parameters for rapid and non-destructive 

N status monitoring during the growing season (Figure 1c, 2c). 

The time series of SPAD and NDVI showed strong significant differences between 

treatments at various growth stages of quinoa (Figure 2a, b). The results suggest that 

quinoa was very responsive to N fertilisation but also phosphorus fertilization. 

Generally, quinoa responds well to N applications due to enhanced photosynthetic 

capacity and production of photoassimilates (Murphy and Matanguihan 2015; 

Bascuñán-Godoy et al., 2018). This observation further demonstrates the utility of 

SPAD and NDVI in revealing nutritional variations during the growing season. 

This study assessed how the N status predictors (SPAD and NDVI) reflected the crop 

performance in terms of photosynthesis and grain yield at harvest. It is well established 

that grain yield and net CO2 assimilation are positively correlated to leaf or canopy N 

content, as both are responsive to an increase in nitrogen. Strong significant correlations 

were observed between Anet with leaf N content, SPAD, and NDVI in the present study 

(Figure 3). Our results indicate that SPAD and NDVI indices could reasonably and 

accurately assess the photosynthetic performance of quinoa when the proximal sensors 

are not saturated. Moreover, the linear regression with grain yield showed that grain 

yield is responding quite well to the increase in N and P fertilisation and that SPAD and 
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NDVI could reflect those changes. These findings demonstrate the utility of developing 

in-season yield predictors in quinoa based on proximal sensing.

CONCLUSIONS

This study demonstrated that SPAD and NDVI measured at the leaf level through 

proximal sensing are relevant as indicators of N status in quinoa. The strong 

relationship observed between SPAD and NDVI validates the effectiveness of both 

parameters for N status monitoring in quinoa during the growing season. Furthermore, 

the significant difference between treatments established at critical growth stages of the 

crop indicates the utility of both parameters in detecting nutritional variations during the 

growing season. Both SPAD and NDVI indices correlated strongly with net CO2 

assimilation and grain yield, indicating the utility for assessing the photosynthetic 

capacity and developing in-season yield predictions in quinoa. As SPAD and NDVI are 

potentially suitable proximal sensing parameters to improve N fertiliser management 

and develop in-season yield predictions in quinoa at a low cost. Alternative non-

saturating spectral indices should be explored in quinoa to further improve accuracy.
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Figure B-1. The washing process of the compost is in three steps. These involve 
flooding one part of the compost with five-part deionised water, mixing, and breaking 
up aggregates (A), the compost mixture is then drained through a 0.8 mm double sieve 
(B) and after five repeated washings and draining, the washed compost is oven-dried at 
105 °C for nutrient reconstitution (C) and N and P contents of the unwashed and washed 
compost (D).
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Figure B-2. The author taking gas exchange measurements for net CO2 assimilation rate 
(An) using the portable photosynthetic system (Li-6400XT) along with SPAD 
measurement. 

Figure B-3. Schematic measurement of spectral reflectance using the PolyPen RP410 
spectrometer to identify responsive spectral reflectance indices (SRIs) by repeated 
measures ANOVA (RMA) for N and P status in quinoa. The same approach was used to 
identify SRIs specific for N and P status in cowpea.
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Table B-1. Full results of the test for main effects of spectral reflectance indices (SRIs) in response to nitrogen (N) and phosphorus (P) stress separately and 
their combined effects in quinoa. The responses of the SRIs to N and P stresses and their interactions were tested using the F-statistics and F-Test probability 
via repeated measures ANOVA (RMA). The RMA analysis was done considering all treatment combinations and time points (DAS). The statistically 
significant results (p<0.05) indicating differences between means for levels of N or P and their interactions are shown in bold. 

Index N P N×P DAS N×DAS P×DAS N×P×DAS

NDVI F1,12=93.618, P<0.001 F1,12=3.895, P=0.072 F1,12=30.052, P<0.001 F3.9,62=117.517, P<0.001 F3.9,62=9.966, P<0.001 F3.9,62=2.642, P<0.05 F3.9,62=5.156, P<0.01

SR F1,12=144.270, P<0.001 F1,12=9.031, P<0.05 F1,12=44.955, P<0.001 F4.7,74.6=136.037, P<0.001 F4.7,74.6=9.278, P<0.001 F4.7,74.6=3.089, P<0.05 F4.7,74.6=5.982, P<0.001

MCARI1 F1,12=0.159, P=0.697 F1,12=0.028, P=0.870 F1,12=1.977, P=0.185 F1.4,22.4=24.506, P<0.001 F1.4,22.4=6.942, P<0.01 F1.4,22.4=1.231, P=0.297 F1.4,22.4=1.184, P=0.308

OSAVI F1,12=31.695, P<0.001 F1,12=0.932, P=0.353 F1,12=16.811, P<0.01 F2,31.6=59.964, P<0.001 F2,31.6=7.312, P<0.01 F2,31.6=1.728, P=0.194 F2,31.6=2.391, P=0.108

G F1,12=14.128, P<0.01 F1,12=0.984, P=0.341 F1,12=4.861, P<0.05 F2.2,36=26.081, P<0.001 F2.2,36=11.636, P<0.001 F2.2,36=2.507, P=0.090 F2.2,36=1.902, P=0.160

MCARI F1,12=41.319, P<0.001 F1,12=3.400, P=0.090 F1,12=2.552, P=0.136 F2.4,38=5.441, P<0.01 F2.4,38=9.858, P<0.001 F2.4,38=2.575, P=0.081 F2.4,38=3.033, P=0.052

TCARI F1,12=51.418, P<0.001 F1,12=0.794, P=0.391 F1,12=11.627, P<0.01 F1.8,28=14.000, P<0.001 F1.8,28=3.209, P=0.062 F1.8,28=0.683, P=0.495 F1.8,28=4.622, P<0.05

TVI F1,12=0.112, P=0.744 F1,12=0.065, P=0.803 F1,12=4.311, P=0.060 F1.5,23.8=28.176, P<0.001 F1.5,23.8=6.916, P<0.01 F1.5,23.8=1.231, P=0.299 F1.5,23.8=1.303, P=0.282

ZMI F1,12=87.508, P<0.001 F1,12=3.566, P=0.083 F1,12=18.871, P<0.001 F1.6,25=40.744, P<0.001 F1.6,25=3.254, P=0.066 F1.6,25=1.553, P=0.231 F1.6,25=4.418, P<0.05

SPRI F1,12=43.292, P<0.001 F1,12=4.581, P=0.054 F1,12=1.056, P=0.324 F2.7,43=123.454, P<0.001 F2.7,43=9.661, P<0.001 F2.7,43=3.175, P<0.05 F2.7,43=1.973, P=0.138

NPQI F1,12=7.493, P<0.05 F1,12=1.323, P=0.272 F1,12=2.879, P=0.116 F4.8,77=3.415, P<0.01 F4.8,77=2.494, P<0.05 F4.8,77=0.673, P=0.639 F4.8,77=0.840, P=0.522

PRI F1,12=71.065, P<0.001 F1,12=10.129, P<0.01 F1,12=1.537, P=0.239 F1.7,27.4=96.084, P<0.001 F1.7,27.4=7.626, P<0.01 F1.7,27.4=4.035, P<0.05 F1.7,27.4=1.471, P=0.247

NPCI F1,12=32.916, P<0.001 F1,12=3.642, P=0.081 F1,12=0.783, P=0.394 F1.9,30.8=89.249, P<0.001 F1.9,30.8=7.572, P<0.01 F1.9,30.8=2.281, P=0.121 F1.9,30.8=1.735, P=0.194

Ctr1 F1,12=78.080, P<0.001 F1,12=9.731, P<0.01 F1,12=2.110, P=0.172 F1.7,27.5=93.230, P<0.001 F1.7,27.5=6.008, P<0.01 F1.7,27.5=2.227, P=0.133 F1.7,27.5=1.584, P=0.224

Ctr2 F1,12=81.244, P<0.001 F1,12=3.237, P=0.097 F1,12=23.513, P<0.001 F3.5,56=112.713, P<0.001 F3.5,56=9.600, P<0.001 F3.5,56=2.505, P=0.060 F3.5,56=4.643, P<0.01

Lic1 F1,12=33.269, P<0.001 F1,12=0.960, P=0.346 F1,12=13.029, P<0.01 F2,33=62.743, P<0.001 F2,33=6.875, P<0.01 F2,33=1.853, P=0.172 F2,33=2.419, P=0.104

Lic2 F1,12=98.123, P<0.001 F1,12=10.519, P<0.01 F1,12=6.008, P<0.05 F3.3,53.4=162.341, P<0.001 F3.3,53.4=10.183, P<0.001 F3.3,53.4=3.988, P<0.01 F3.3,53.4=2.216, P=0.091

SIPI F1,12=65.267, P<0.001 F1,12=0.510, P=0.489 F1,12=47.186, P<0.001 F4.6,74.4=58.103, P<0.001 F4.6,74.4=6.961, P<0.001 F4.6,74.4=1.533, P=0.194 F4.6,74.4=6.550, P<0.001

GM1 F1,12=118.366, P<0.001 F1,12=6.127, P<0.05 F1,12=51.745, P<0.001 F4,66.3=67.25, P<0.001 F4,66.3=12.185, P<0.001 F4,66.3=1.274, P=0.289 F4,66.3=8.255, P<0.001

GM2 F1,12=129.417, P<0.001 F1,12=8.692, P<0.05 F1,12=34.177, P<0.001 F4.4,70.5=140.815, P<0.001 F4.4,70.5=10.647, P<0.001 F4.4,70.5=3.043, P<0.05 F4.4,70.5=6.862, P<0.001

ARI1 F1,12=2.492, P=0.140 F1,12=1.162, P=0.302 F1,12=6.302, P<0.05 F1.6,25.5=35.815, P<0.001 F1.6,25.5=4.375, P<0.05 F1.6,25.5=1.985, P=0.165 F1.6,25.5=1.548, P=0.232

ARI2 F1,12=2.305, P=0.155 F1,12=1.187, P=0.297 F1,12=8.190, P<0.05 F1.7,26.5=33.276, P<0.001 F1.7,26.5=4.890, P<0.05 F1.7,26.5=2.211, P=0.137 F1.7,26.5=1.639, P=0.215

CRI1 F1,12=81.086, P<0.001 F1,12=0.263, P=0.617 F1,12=25.724, P<0.001 F4.8,77=38.096, P<0.001 F4.8,77=4.845, P<0.001 F4.8,77=1.113, P=0.360 F4.8,77=4.459, P<0.01

CRI2 F1,12=27.284, P<0.001 F1,12=0.924, P=0.355 F1,12=23.756, P<0.001 F2.8,44=6.947, P<0.001 F2.8,44=2.529, P=0.074 F2.8,44=0.608, P=0.600 F2.8,44=3.908, P<0.05

RDVI F1,12=21.289, P<0.001 F1,12=0.803, P=0.388 F1,12=18.592, P<0.01 F1.9,30.5=55.647, P<0.001 F1.9,30.5=7.373, P<0.01 F1.9,30.5=1.486, P=0.242 F1.9,30.5=2.275, P=0.122
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PRI_550 F1,12=2.916, P=0.113 F1,12=7.991, P<0.05 F1,12=2.279, P=0.157 F2.4,38.6=26.449, P<0.001 F2.4,38.6=2.443, P=0.091 F2.4,38.6=2.651, P=0.074 F2.4,38.6=3.328, P<0.05

PRI_norm F1,12=0.297, P=0.596 F1,12=0.013, P=0.910 F1,12=1.650, P=0.223 F1,16=3.219, P=0.092 F1,16=0.247, P=0.626 F1,16=0.022, P=0.884 F1,16=1.868, P=0.191

PRI/NDVI F1,12=2.850, P=0.117 F1,12=0.013, P=0.910 F1,12=1.315, P=0.274 F1,16=9.658, P<0.01 F1,16=1.804, P=0.198 F1,16=0.031, P=0.866 F1,16=1.741, P=0.206

GNDVI_780 F1,12=61.883, P<0.001 F1,12=3.118, P=0.103 F1,12=55.354, P<0.001 F4,65.6=61.495, P<0.001 F4,65.6=12.543, P<0.001 F4,65.6=0.784, P=0.543 F4,65.6=9.305, P<0.001

MRESR F1,12=128.244, P<0.001 F1,12=16.706, P<0.01 F1,12=46.811, P<0.001 F5.2,83.8=99.584, P<0.001 F5.2,83.8=11.601, P<0.001 F5.2,83.8=2.718, P<0.05 F5.2,83.8=6.334, P<0.001

RENDVI F1,12=129.217, P<0.001 F1,12=12.446, P<0.01 F1,12=55.461, P<0.001 F4.4,70=119.693, P<0.001 F4.4,70=12.025, P<0.001 F4.4,70=2.772, P<0.05 F4.4,70=6.275, P<0.001

NDRE F1,12=133.386, P<0.001 F1,12=18.080, P<0.01 F1,12=57.081, P<0.001 F5,80=108.917, P<0.001 F5,80=10.836, P<0.001 F5,80=2.872, P<0.05 F5,80=7.181, P<0.001

CIgreen F1,12=76.664, P<0.001 F1,12=6.938, P<0.05 F1,12=63.164, P<0.001 F4.8,76=61.198, P<0.001 F4.8,76=12.624, P<0.001 F4.8,76=1.529, P=0.194 F4.8,76=8.514, P<0.001

CIrededge F1,12=132.412, P<0.001 F1,12=19.031, P<0.001 F1,12=57.428, P<0.001 F5,81=103.713, P<0.001 F5,81=10.827, P<0.001 F5,81=2.936, P<0.05 F5,81=7.264, P<0.001

mNDblue_530 F1,12=79.911, P<0.001 F1,12=5.736, P<0.05 F1,12=37.803, P<0.001 F4,66.6=71.269, P<0.001 F4,66.6=10.473, P<0.001 F4,66.6=1.313, P=0.273 F4,66.6=6.702, P<0.001

mNDblue_730 F1,12=1.993, P=0.183 F1,12=8.454, P<0.05 F1,12=20.623, P<0.001 F4,63.5=29.281, P<0.001 F4,63.5=2.990, P<0.001 F4,63.5=1.844, P=0.132 F4,63.5=6.237, P<0.001

rDVI_790 F1,12=4.316, P=0.060 F1,12=0.432, P=0.523 F1,12=10.946, P<0.05 F1.9,30.6=37.901, P<0.001 F1.9,30.6=5.941, P<0.05 F1.9,30.6=0.694, P=0.501 F1.9,30.6=2.662, P=0.088

gSRa_790 F1,12=76.664, P<0.001 F1,12=6.938, P<0.05 F1,12=63.164, P<0.001 F4.8,76=61.198, P<0.001 F4.8,76=12.625, P<0.001 F4.8,76=1.529, P=0.194 F4.8,76=8.514, P<0.001

SRa_790 F1,12=45.166, P<0.001 F1,12=3.663, P=0.080 F1,12=30.725, P<0.001 F3.5,56.6=92.727, P<0.001 F3.5,56.6=8.763, P<0.001 F3.5,56.6=2.488, P=0.060 F3.5,56.6=2.614, P=0.051
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Figure B-4. Raw data distribution and residual plots of some N stress-specific SRIs for quinoa including (A) NDVI, (B) G, (C) GNDVI_780 and (D) ZMI. The 
residuals were examined to verify the assumptions of normality (using histograms) and homogeneity of variance (using plots of fitted values).
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Figure B-5. Raw data distribution and residual plots of P stress-specific SRIs for quinoa. Raw data 
distribution for (A) mNDblue_780, residual plots for (B) mNDblue_780, raw data distribution for (C) 
PRI_550 and residual plots for (D) PRI_550. The residuals were examined to verify the assumptions of 
normality (using histogram plots) and homogeneity of variance (using plots of fitted values).
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Figure B-6. Raw data distribution and residual plots of quinoa nutritional status parameters. Raw data 
distribution for (A) leaf nitrogen content (LNC), residual plots and fitted value plots for (B) LNC, raw data 
distribution for (C) leaf phosphorus concentration (LPC) and residual plots and fitted value plots for (D) 
LPC. Residuals were inspected to check the assumptions of normality (via histogram plots) and variance 
homogeneity (via fitted values plots). 
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Table B-2. Full results of the test for main effects of spectral reflectance indices (SRIs) in response to nitrogen (N) and phosphorus (P) stress separately and 
their combined effects in cowpea. The responses of the SRIs to N and P stresses and their interactions were tested using the F-statistics and F-Test probability 
via repeated measures ANOVA (RMA). The RMA analysis was done considering all treatment combinations and time points (DAS). The statistically 
significant results (p<0.05) indicating differences between means for levels of N or P and their interactions are shown in bold.

Index N P N×P DAS N×DAS P×DAS N×P×DAS

NDVI F1,12=25.143, P<0.01 F1,12=13.557, P<0.05 F1,12=8.511, P<0.05 F4.6,74=64.307, P<0.001 F4.6,74=2.707, P<0.05 F4.6,74=5.490, P<0.01 F4.6,74=2.836, P<0.05

SR F1,12=24.744, P<0.01 F1,12=10.751, P<0.05 F1,12=7.666, P<0.05 F6,95=61.718, P<0.001 F6,95=2.279, P<0.05 F6,95=3.441, P<0.05 F6,95=2.670, P<0.05

MCARI1 F1,12=0.003, P=0.955 F1,12=0.004, P=0.953 F1,12=1.308, P=0.275 F4,60.6=22.638, P<0.001 F4,60.6=0.944, P=0.441 F4,60.6=3.878, P<0.05 F4,60.6=1.142, P=0.344

OSAVI F1,12=9.122, P<0.05 F1,12=7.659, P<0.05 F1,12=3.820, P=0.074 F2.7,43=60.677, P<0.001 F2.7,43=2.098, P=0.120 F2.7,43=7.520, P<0.01 F2.7,43=1.623, P=0.201

G F1,12=23.461, P<0.01 F1,12=2.429, P=0.145 F1,12=4.343, P=0.059 F5,80=19.883, P<0.001 F5,80=1.899, P=0.104 F5,80=4.800, P<0.01 F5,80=1.188, P=0.322

MCARI F1,12=36.796, P<0.001 F1,12=11.570, P<0.05 F1,12=7.256, P<0.05 F5.3,84=6.991, P<0.001 F5.3,84=1.656, P=0.151 F5.3,84=2.748, P<0.05 F5.3,84=1.102, P=0.358

TCARI F1,12=16.668, P<0.05 F1,12=15.365, P<0.05 F1,12=6.580, P<0.05 F4.3,68.3=23.753, P<0.001 F4.3,68.3=1.868, P=0.122 F4.3,68.3=4.161, P<0.05 F4.3,68.3=1.751, P=0.145

TVI F1,12=0.729, P=0.410 F1,12=0.178, P=0.681 F1,12=0.392, P=0.543 F3.7,60=25.607, P<0.001 F3.7,60=1.014, P=0.404 F3.7,60=4.029, P<0.05 F3.7,60=1.086, P=0.370

ZMI F1,12=46.102, P<0.001 F1,12=19.752, P<0.01 F1,12=13.619, P<0.05 F6,95=30.344, P<0.001 F6,95=2.187, P=0.052 F6,95=2.816, P<0.05 F6,95=1.889, P=0.092

SPRI F1,12=31.313, P<0.01 F1,12=22.642, P<0.01 F1,12=1.322, P=0.273 F4.2,66.8=35.836, P<0.001 F4.2,66.8=1.896, P=0.119 F4.2,66.8=4.690, P<0.05 F4.2,66.8=1.956, P=0.109

NPQI F1,12=1.835, P=0.201 F1,12=0.276, P=0.609 F1,12=0.039, P=0.847 F5.4,86.3=2.328, P<0.05 F5.4,86.3=1.745, P=0.128 F5.4,86.3=1.205, P=0.313 F5.4,86.3=0.524, P=0.770

PRI F1,12=39.830, P<0.001 F1,12=21.786, P<0.01 F1,12=2.553, P=0.136 F3.5,56=59.543, P<0.001 F3.5,56=1.819, P=0.146 F3.5,56=5.832, P<0.01 F3.5,56=2.314, P=0.077

NPCI F1,12=24.277, P<0.01 F1,12=19.903, P<0.01 F1,12=0.750, P=0.404 F3,49=36.979, P<0.001 F3,49=1.725, P=0.173 F3,49=5.667, P<0.05 F3,49=1.739, P=0.170

Ctr1 F1,12=41.462, P<0.001 F1,12=15.159, P<0.05 F1,12=2.678, P=0.128 F6,94=9.332, P<0.001 F6,94=1.544, P=0.174 F6,94=1.270, P=0.279 F6,94=1.444, P=0.207

Ctr2 F1,12=30.144, P<0.01 F1,12=19.676, P<0.01 F1,12=9.259, P<0.05 F4.7,75=56.460, P<0.001 F4.7,75=2.628, P<0.05 F4.7,75=5.639, P<0.01 F4.7,75=2.582, P<0.05

Lic1 F1,12=5.004, P<0.05 F1,12=6.333, P<0.05 F1,12=3.270, P=0.096 F3,48=62.248, P<0.001 F3,48=1.909, P=0.140 F3,48=7.371, P<0.01 F3,48=1.803, P=0.158

Lic2 F1,12=40.725, P<0.001 F1,12=18.699, P<0.01 F1,12=3.512, P=0.085 F5.8,93=14.832, P<0.001 F5.8,93=2.012, P=0.074 F5.8,93=1.816, P=0.107 F5.8,93=1.398, P=0.225

SIPI F1,12=4.182, P=0.063 F1,12=2.743, P=0.124 F1,12=3.779, P=0.076 F5,82.2=55.210, P<0.001 F5,82.2=1.592, P=0.170 F5,82.2=4.494, P<0.05 F5,82.2=2.478, P<0.05

GM1 F1,12=39.312, P<0.001 F1,12=13.747, P<0.05 F1,12=14.016, P<0.05 F6,95=44.736, P<0.001 F6,95=2.543, P<0.05 F6,95=3.157, P<0.05 F6,95=2.675, P<0.05

GM2 F1,12=38.419, P<0.001 F1,12=15.816, P<0.05 F1,12=10.764, P<0.05 F6,97=38.690, P<0.001 F6,97=2.135, P=0.056 F6,97=2.907, P<0.05 F6,97=1.986, P=0.074

ARI1 F1,12=0.045, P=0.835 F1,12=0.606, P=0.451 F1,12=3.191, P=0.099 F4.8,76=20.859, P<0.001 F4.8,76=0.795, P=0.551 F4.8,76=0.775, P=0.565 F4.8,76=2.711, P<0.05

ARI2 F1,12=0.060, P=0.811 F1,12=1.509, P=0.243 F1,12=8.808, P<0.05 F5.6,89.7=24.861, P<0.001 F5.6,89.7=0.814, P=0.555 F5.6,89.7=0.952, P=0.459 F5.6,89.7=2.280, P<0.05

CRI1 F1,12=0.296, P=0.596 F1,12=0.078, P=0.784 F1,12=0.344, P=0.568 F4,65=36.406, P<0.001 F4,65=0.809, P=0.525 F4,65=2.067, P=0.094 F4,65=1.360, P=0.257

CRI2 F1,12=0.415, P=0.710 F1,12=0.001, P=0.973 F1,12=0.629, P=0.443 F3.7,58=36.744, P<0.001 F3.7,58=0.685, P=0.594 F3.7,58=1.952, P=0.119 F3.7,58=1.846, P=0.137

RDVI F1,12=12.260, P<0.05 F1,12=6.450, P<0.05 F1,12=2.721, P=0.125 F2.8,45.3=50.550, P<0.001 F2.8,45.3=1.841, P=0.156 F2.8,45.3=6.374, P<0.05 F2.8,45.3=1.339, P=0.274

PRI_550 F1,12=22.013, P<0.01 F1,12=12.702, P<0.05 F1,12=0.000, P=0.979 F5,80 =395.618, P<0.001 F5,80 =1.640, P=0.159 F5,80 =1.425, P=0.224 F5,80 =1.062, P=0.388
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PRI_norm F1,12=22.013, P<0.01 F1,12=12.702, P<0.05 F1,12=0.001, P=0.979 F5,80=395.618, P<0.001 F5,80=1.640, P=0.159 F5,80=1.425, P=0.224 F5,80=1.062, P=0.388

PRI/NDVI F1,12=4.962, P<0.05 F1,12=11.827, P<0.05 F1,12=0.015, P=0.905 F1,16.7=20.330, P<0.01 F1,16.7=1.400, P=0.255 F1,16.7=7.536, P<0.05 F1,16.7=0.059, P=0.822

GNDVI_780 F1,12=45.426, P<0.001 F1,12=14.389, P<0.05 F1,12=5.474, P<0.05 F3.7,60=614.263, P<0.001 F3.7,60=8.426, P<0.001 F3.7,60=2.602, P<0.05 F3.7,60=3.040, P<0.05

MRESR F1,12=167.352, P<0.001 F1,12=52.680, P<0.001 F1,12=11.288, P<0.05 F5,82=30.944, P<0.001 F5,82=7.693, P<0.001 F5,82=1.626, P=0.161 F5,82=2.079, P=0.075

RENDVI F1,12=55.619, P<0.001 F1,12=20.721, P<0.01 F1,12=4.695, P=0.051 F4.3,68.8=401.795, P<0.001 F4.3,68.8=8.735, P<0.001 F4.3,68.8=2.333, P=0.059 F4.3,68.8=2.297, P=0.063

NDRE F1,12=57.549, P<0.001 F1,12=18.749, P<0.01 F1,12=6.782, P<0.05 F5,80=289.325, P<0.001 F5,80=9.651, P<0.001 F5,80=2.085, P=0.076 F5,80=2.119, P=0.072

CIgreen F1,12=54.387, P<0.001 F1,12=15.770, P<0.05 F1,12=5.392, P<0.05 F3.7,59.3=260.367, P<0.001 F3.7,59.3=8.905, P<0.001 F3.7,59.3=2.020, P=0.108 F3.7,59.3=2.916, P<0.05

CIrededge F1,12=65.525, P<0.001 F1,12=20.862, P<0.01 F1,12=7.150, P<0.05 F4.8,77=229.619, P<0.001 F4.8,77=9.816, P<0.001 F4.8,77=1.938, P=0.100 F4.8,77=2.152, P=0.070

mNDblue_530 F1,12=134.749, P<0.001 F1,12=37.657, P<0.001 F1,12=8.687, P<0.05 F5.3,84.7=993.998, P<0.001 F5.3,84.7=8.906, P<0.001 F5.3,84.7=1.567, P=0.175 F5.3,84.7=2.437, P<0.05

mNDblue_730 F1,12=0.002, P=0.967 F1,12=0.036, P=0.852 F1,12=0.924, P=0.355 F4.3,69.5=2773.273, P<0.001 F4.3,69.5=0.796, P=0.541 F4.3,69.5=2.582, P<0.05 F4.3,69.5=0.774, P=0.555

rDVI_790 F1,12=21.864, P<0.01 F1,12=2.757, P=0.123 F1,12=2.757, P=0.123 F4.6,73.8=1896.738, P<0.001 F4.6,73.8=2.001, P=0.094 F4.6,73.8=2.021, P=0.091 F4.6,73.8=1.228, P=0.305

gSRa_790 F1,12=54.387, P<0.001 F1,12=15.770, P<0.05 F1,12=5.392, P<0.05 F3.7,59.3=260.367, P<0.001 F3.7,59.3=8.905, P<0.001 F3.7,59.3=2.020, P=0.108 F3.7,59.3=2.916, P<0.05

SRa_790 F1,12=14.442, P<0.05 F1,12=6.607, P<0.05 F1,12=0.469, P=0.506 F3.6,57=269.367, P<0.001 F3.6,57=4.831, P<0.05 F3.6,57=2.533, P=0.057 F3.6,57=1.773, P=0.154
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Figure B-7. Raw data distribution and residual plots of N stress-specific SRIs identified for 
cowpea. Raw data distribution for (A) G, residual plots for (B) G, raw data distribution for 
(C) rDVI_790 and residual plots for (D) rDVI_790. The residuals were inspected to verify 
the assumptions of normality (using histogram plots) and homogeneity of variance (using 
plots of fitted values).
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Appendix C Supplementary materials for Chapter 4

Table C-1. Full results of descriptive statistics (Means, Absolute Diff., and Approx. LSD) of morpho-physiological parameters including net CO2 assimilation 
rate (An), stomatal conductance (Gs), transpiration rate (E), intrinsic water use efficiency (WUEi), SPAD, leaf nitrogen content (LNC), relative water content 
(RWC), shoot fresh weight (SFW), leaf area (LA) and soil moisture content (SMC) in response to drought under high nitrogen (HN) and low nitrogen (LN) 
conditions and their interactions. Analysis was based on the LMM/REML Autocorrelation (AR1) model fitted in the D-N order of terms. The means are 
estimations from the Autocorrelation (AR1) model. Means of E, LA and SFW were squarely rooted to conform to the residuals of the analysis. Absolute 
difference (Absolute Diff) values or pairwise differences between treatment means and days after water stress (DAWS) greater than the approximate (Approx) 
least significant differences (LSDs) at a 5% level of REML means are considered statistically significant and bolded. 

Model term D×N×DAWS
D×DAWS

HN LN     

N×DAWS DAWS

Treatment

Drought
Well-

watered
Absolute 

Diff.
Approx. 

LSD Drought
Well-

watered
Absolute 

Diff.
Approx. 

LSD Drought
Well-

watered
Absolute 

Diff.
Approx. 

LSD HN LN
Absolute 

Diff.
Approx. 

LSD Mean

Parameter DAWS               

0 23.49 27.59 4.10 4.33 20.75 20.99 0.24 4.33 22.12 24.29 2.17 3.06 25.54 20.87 4.67 3.06 23.21

3 23.49 27.71 4.22 4.33 19.12 20.59 1.46 4.33 21.31 24.15 2.84 3.06 25.60 19.86 5.75 3.06 22.73

6 16.91 28.25 11.34 4.33 19.49 19.29 0.20 4.33 18.20 23.77 5.57 3.06 22.58 19.39 3.19 3.06 20.99

9 14.02 27.04 13.02 4.33 16.29 16.82 0.53 4.33 15.16 21.93 6.77 3.06 20.53 16.56 3.97 3.06 18.54

12 3.24 23.55 20.31 4.33 7.82 13.82 6.00 4.33 5.53 18.68 13.15 3.06 13.40 10.82 2.58 3.06 12.11

An (µmol CO2 m−2 s−1)

14 0.16 22.32 22.16 4.47 1.18 10.92 9.74 4.33 0.67 16.62 15.95 3.06 11.24 6.05 5.19 3.11 8.65

 Mean 13.55 26.08 12.52 4.35 14.11 17.07 3.03 4.33 13.83 21.57 7.74 3.06 19.82 15.59 4.22 3.07 17.70

0 0.27 0.35 0.09 0.06 0.25 0.25 0.01 0.06 0.26 0.30 0.04 0.04 0.31 0.25 0.06 0.04 0.28

3 0.25 0.33 0.08 0.06 0.23 0.27 0.04 0.06 0.24 0.30 0.06 0.04 0.29 0.25 0.04 0.04 0.27

6 0.13 0.36 0.23 0.06 0.25 0.26 0.01 0.06 0.19 0.31 0.12 0.04 0.24 0.26 0.01 0.04 0.25

9 0.11 0.36 0.25 0.06 0.19 0.26 0.07 0.06 0.15 0.31 0.16 0.04 0.23 0.23 0.00 0.04 0.23

12 0.02 0.31 0.29 0.06 0.07 0.21 0.14 0.06 0.04 0.26 0.21 0.04 0.17 0.14 0.03 0.04 0.15

Gs (mmol H2O m−2 s−1)

14 0.01 0.29 0.28 0.06 0.01 0.20 0.18 0.06 0.01 0.24 0.23 0.04 0.15 0.10 0.05 0.04 0.13

 Mean 0.13 0.33 0.20 0.06 0.17 0.24 0.07 0.06 0.15 0.29 0.14 0.04 0.23 0.20 0.03 0.04 0.22

0 0.0034 0.0039 0.0005 0.0006 0.0034 0.0032 0.0001 0.0006 0.0034 0.0035 0.0002 0.0004 0.0036 0.0033 0.0003 0.0004 0.0035

3 0.0032 0.0037 0.0005 0.0006 0.0031 0.0034 0.0003 0.0006 0.0031 0.0036 0.0004 0.0004 0.0034 0.0032 0.0002 0.0004 0.0033

6 0.0020 0.0041 0.0021 0.0006 0.0039 0.0038 0.0001 0.0006 0.0030 0.0039 0.0010 0.0004 0.0031 0.0038 0.0008 0.0004 0.0034

9 0.0012 0.0028 0.0016 0.0006 0.0021 0.0024 0.0004 0.0006 0.0016 0.0026 0.0010 0.0004 0.0020 0.0022 0.0003 0.0004 0.0021

12 0.0003 0.0028 0.0025 0.0006 0.0011 0.0023 0.0013 0.0006 0.0007 0.0025 0.0019 0.0004 0.0015 0.0017 0.0001 0.0004 0.0016

E (mol H2O m−2 s−1)

14 0.0002 0.0032 0.0031 0.0006 0.0002 0.0023 0.0021 0.0006 0.0002 0.0028 0.0026 0.0004 0.0017 0.0013 0.0004 0.0004 0.0015

 Mean 0.0017 0.0034 0.0017 0.0006 0.0023 0.0029 0.0007 0.0006 0.0020 0.0032 0.0012 0.0004 0.0026 0.0026 0.0004 0.0004 0.0026
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Table C-1 continued

0 88.39 79.21 9.18 23.86 83.45 87.26 3.80 23.86 85.92 83.23 2.69 16.92 83.80 85.35 1.55 16.35 84.58

3 95.14 84.43 10.71 23.86 83.72 76.72 7.01 23.86 89.43 80.57 8.86 16.92 89.79 80.22 9.57 16.35 85.00

6 134.68 80.34 54.35 23.86 78.62 74.02 4.61 23.86 106.65 77.18 29.48 16.92 107.51 76.32 31.19 16.35 91.92

9 140.10 76.56 63.54 23.86 84.87 63.37 21.50 23.86 112.48 69.97 42.52 16.92 108.33 74.12 34.22 16.35 91.23

12 138.22 76.18 62.04 23.86 115.94 66.04 49.90 23.86 127.08 71.11 55.97 16.92 107.20 90.99 16.21 16.35 99.09

WUEi (µmol CO2 
mmol H2O)

14 73.81 77.12 3.30 25.82 75.49 52.43 23.06 23.86 74.65 64.77 9.88 16.92 75.46 63.96 11.50 17.03 69.71

 Mean 111.72 78.97 33.85 24.19 87.01 69.97 17.04 23.86 99.37 74.47 24.90 16.92 95.35 78.49 17.37 16.46 86.92

0 44.72 44.04 0.68 4.42 43.0 40.2 2.79 4.42 43.87 42.13 1.74 3.13 44.38 41.62 2.76 3.13 43.00

3 41.25 46.66 5.41 4.42 41.9 41.1 0.82 4.42 41.57 43.87 2.29 3.13 43.96 41.49 2.47 3.13 42.72

6 40.10 50.34 10.24 4.42 36.8 42.0 5.22 4.42 38.43 46.16 7.73 3.13 45.22 39.37 5.85 3.13 42.29

9 36.22 51.28 15.06 4.42 35.5 41.7 6.21 4.42 35.87 46.50 10.63 3.13 43.75 38.62 5.13 3.13 41.19

12 34.45 48.48 14.03 4.42 32.0 35.6 3.60 4.42 33.22 42.04 8.82 3.13 41.47 33.80 7.66 3.13 37.63

SPAD

14 31.00 49.04 18.04 4.42 31.1 37.6 6.50 4.42 31.05 43.32 12.27 3.13 40.02 34.35 5.67 3.13 37.19

 Mean 37.96 48.31 10.58 4.42 36.7 39.7 4.19 4.42 37.34 44.00 7.25 3.13 43.13 38.21 4.92 3.13 40.67

0 5.04 4.96 0.09 0.49 3.46 3.42 0.04 0.49 4.25 4.19 0.06 0.35 5.00 3.44 1.56 0.35 4.22

3 - - - - - - - - - - - - - - - - -

6 - - - - - - - - - - - - - - - - -

9 5.15 5.11 0.04 0.55 2.56 2.62 0.06 0.49 3.85 3.86 0.01 0.37 5.13 2.59 2.54 0.37 3.86

12 - - - - - - - - - - - - - - - - -

LNC (%)

14 4.70 4.90 0.20 0.38 2.36 2.29 0.07 0.38 3.53 3.59 0.06 0.27 4.80 2.32 2.47 0.27 3.56

 Mean 4.96 4.99 0.11 0.48 2.79 2.78 0.06 0.46 3.88 3.88 0.05 0.33 4.98 2.79 2.19 0.33 3.88

0 - - - - - - - - - - - - - - - - -

3 - - - - - - - - - - - - - - - - -

6 - - - - - - - - - - - - - - - - -

9 47.86 84.48 36.62 14.00 53.81 74.43 20.62 12.52 50.8 79.5 28.6 9.4 66.2 64.1 2.1 9.4 65.1

12 - - - - - - - -    

RWC (%)

14 40.77 87.24 46.47 10.29 47.31 73.87 26.56 10.29 44.0 80.6 36.5 7.3 64.0 60.6 3.4 7.3 62.3

 Mean 44.32 85.86 41.55 12.15 50.56 74.15 23.59 11.41 47.4 80.0 32.6 8.3 65.1 62.4 2.7 8.3 63.7
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Table C-1 continued

0 6.06 5.62 0.44 0.42 5.42 5.43 0.00 0.42 5.74 5.52 0.22 0.30 5.84 5.43 0.42 0.30 5.63

3 - - - - - - - - - - - - - - - - -

6 - - - - - - - - - - - - - - - - -

9 5.39 6.70 1.30 0.47 5.32 5.87 0.54 0.42 5.36 6.28 0.92 0.32 6.05 5.60 0.45 0.32 5.82

12 - - - - - - - - - - - - - - - - -

SFW (g pot-1)

14 4.38 8.12 3.74 0.33 4.57 5.87 1.30 0.35 4.47 6.99 2.52 0.23 6.25 5.22 1.03 0.24 5.73

 Mean 5.28 6.81 1.83 0.41 5.11 5.72 0.61 0.40 5.19 6.27 1.22 0.28 6.04 5.41 0.63 0.29 5.73

0 32.36 31.01 1.35 2.57 26.58 26.27 0.31 2.76 29.47 28.64 0.83 1.94 31.69 26.42 5.27 1.96 29.05

3 - - - - - - - - - - - - - - - - -

6 - - - - - - - - - - - - - - - -  

9 32.36 33.66 1.30 2.83 25.45 28.31 2.86 2.79 27.12 30.98 3.86 2.06 31.22 26.88 4.34 2.03 29.05

12 - - - - - - - - - - - - - - - - -

LA (cm2)

14 22.14 42.19 20.05 2.01 21.21 28.29 7.08 2.20 21.67 35.24 13.57 1.72 32.16 24.75 7.41 1.54 28.46

 Mean 28.95 35.62 7.57 2.47 24.41 27.62 3.42 2.58 26.09 31.62 6.09 1.91 31.69 26.02 5.67 1.84 28.85

0 41.75 41.43 0.32 7.93 51.48 47.92 3.56 8.32 46.61 44.68 1.93 20.63 41.59 49.70 8.11 20.63 45.64

3 29.0 48.3 19.32 7.93 44.2 61.4 17.15 8.32 36.59 54.83 18.24 20.63 38.63 52.80 14.17 20.63 45.71

6 17.2 29.4 12.20 7.93 23.0 51.7 28.78 8.32 20.08 40.58 20.50 20.63 23.31 37.35 14.04 20.63 30.33

9 10.09 40.47 30.38 7.93 13.22 66.12 52.90 8.32 11.65 53.30 41.65 20.63 25.28 39.67 14.39 20.63 32.47

12 8.9 48.0 39.14 7.93 9.7 74.0 64.29 8.32 9.28 61.00 51.72 20.63 28.44 41.85 13.41 20.63 35.14

SMC (%)

14 6.63 53.07 46.44 7.93 7.04 66.57 59.53 8.32 6.83 59.82 52.99 20.63 29.85 36.81 6.96 20.63 33.33

 Mean 18.92 43.45 24.63 7.93 24.77 61.29 37.70 8.32 21.84 52.37 31.17 20.63 31.18 43.03 11.85 20.63 37.10
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Figure C-1. Raw data distribution of the different treatments and residual plots of N stress morpho-
physiological indicators in spring wheat. Raw data distribution and residual plots for (A) LNC and (B) 
SPAD. The residuals were inspected to verify the assumptions of normality (using histogram plots) and 
homogeneity of variance (using plots of fitted values).
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Figure C-2. Raw data distribution of the different treatments and residual plots of drought stress morpho-
physiological indicators in spring wheat. Raw data distribution and residual plots for (A) SMC and (B) 
RWC. The residuals were inspected to verify the assumptions of normality (using histogram plots) and 
homogeneity of variance (using plots of fitted values).
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Table C-2. Descriptive statistics (Means, Absolute difference and Approximate LSDs) of spectral reflectance indices (SRIs) in response to drought under high 
nitrogen (HN) and low nitrogen (LN) conditions and their interactions. Analysis was based on the REML Autocorrelation (AR1) model fitted in the D-N order 
of terms. Absolute difference (Absolute Diff) values or pairwise differences between treatment means and days after water stress (DAWS) greater than the 
approximate (Approx) least significant differences (LSDs) at a 5% level of REML means are considered statistically significant and bolded.

Model term D×N×DAWS D×DAWS

HN LN     

N×DAWS DAWS

Treatment

Drought
Well-

watered
Absolute 

Diff.
Approx. 

LSD Drought
Well-

watered
Absolute 

Diff.
Approx. 

LSD Drought
Well-

watered
Absolute 

Diff.
Approx. 

LSD HN LN
Absolute 

Diff.
Approx. 

LSD Mean

Index DAWS            

0 0.60 0.60 0.01 0.04 0.60 0.59 0.01 0.04 0.60 0.60 0.00 0.03 0.60 0.59 0.01 0.03 0.60

3 0.60 0.60 0.00 0.04 0.59 0.59 0.00 0.04 0.59 0.59 0.00 0.03 0.60 0.59 0.01 0.03 0.59

6 0.61 0.60 0.00 0.04 0.59 0.58 0.01 0.04 0.60 0.59 0.00 0.03 0.60 0.59 0.02 0.03 0.59

9 0.60 0.60 0.00 0.04 0.59 0.57 0.01 0.04 0.59 0.59 0.01 0.03 0.60 0.58 0.02 0.03 0.59

12 0.59 0.59 0.01 0.04 0.58 0.54 0.03 0.04 0.58 0.57 0.01 0.03 0.59 0.56 0.03 0.03 0.58

NDVI

14 0.54 0.60 0.06 0.04 0.55 0.55 0.00 0.04 0.54 0.57 0.03 0.03 0.57 0.55 0.02 0.03 0.56

 Mean 0.59 0.60 0.01 0.04 0.58 0.57 0.01 0.04 0.58 0.59 0.01 0.03 0.59 0.58 0.02 0.03 0.58

0 3.95 4.03 0.08 0.39 3.96 3.88 0.08 0.39 3.95 3.96 0.00 0.28 3.99 3.92 0.07 0.28 3.95

3 3.98 4.00 0.02 0.39 3.85 3.87 0.02 0.39 3.92 3.94 0.02 0.28 3.99 3.86 0.13 0.28 3.93

6 4.07 4.02 0.05 0.39 3.87 3.80 0.07 0.39 3.97 3.91 0.06 0.28 4.04 3.83 0.21 0.28 3.94

9 4.02 4.00 0.01 0.39 3.86 3.70 0.16 0.39 3.94 3.85 0.08 0.28 4.01 3.78 0.23 0.28 3.90

12 3.83 3.93 0.09 0.39 3.74 3.46 0.28 0.39 3.79 3.69 0.10 0.28 3.88 3.60 0.28 0.28 3.74

SR

14 3.36 3.97 0.61 0.39 3.50 3.47 0.04 0.39 3.43 3.72 0.29 0.28 3.66 3.49 0.18 0.28 3.57

 Mean 3.87 3.99 0.15 0.39 3.80 3.70 0.11 0.39 3.83 3.84 0.09 0.28 3.93 3.75 0.18 0.28 3.84

0 0.70 0.67 0.03 0.05 0.68 0.68 0.00 0.05 0.69 0.67 0.02 0.03 0.69 0.68 0.01 0.03 0.68

3 0.66 0.66 0.00 0.05 0.69 0.71 0.02 0.05 0.68 0.68 0.01 0.03 0.66 0.70 0.04 0.03 0.68

6 0.68 0.68 0.00 0.05 0.69 0.74 0.05 0.05 0.68 0.71 0.02 0.03 0.68 0.71 0.04 0.03 0.70

9 0.70 0.65 0.05 0.05 0.72 0.68 0.04 0.05 0.71 0.66 0.04 0.03 0.67 0.70 0.03 0.03 0.69

12 0.73 0.65 0.08 0.05 0.75 0.75 0.00 0.05 0.74 0.70 0.04 0.03 0.69 0.75 0.06 0.03 0.72

MCARI1

14 0.77 0.67 0.10 0.05 0.78 0.73 0.05 0.05 0.77 0.70 0.07 0.03 0.72 0.75 0.03 0.03 0.73

 Mean 0.71 0.66 0.04 0.05 0.72 0.72 0.03 0.05 0.71 0.69 0.03 0.03 0.68 0.72 0.04 0.03 0.70

0 0.58 0.58 0.00 0.02 0.58 0.57 0.00 0.02 0.58 0.57 0.00 0.01 0.58 0.57 0.00 0.01 0.58

3 0.57 0.57 0.00 0.02 0.57 0.58 0.01 0.02 0.57 0.57 0.00 0.01 0.57 0.57 0.00 0.01 0.57

6 0.58 0.58 0.00 0.02 0.57 0.58 0.00 0.02 0.58 0.58 0.00 0.01 0.58 0.58 0.00 0.01 0.58

9 0.58 0.57 0.01 0.02 0.58 0.56 0.01 0.02 0.58 0.57 0.01 0.01 0.58 0.57 0.01 0.01 0.57

12 0.58 0.57 0.01 0.02 0.58 0.56 0.02 0.02 0.58 0.56 0.02 0.01 0.57 0.57 0.00 0.01 0.57

OSAVI

14 0.56 0.57 0.01 0.02 0.57 0.56 0.01 0.02 0.56 0.57 0.00 0.01 0.57 0.57 0.00 0.01 0.57

 Mean 0.58 0.57 0.01 0.02 0.58 0.57 0.01 0.02 0.58 0.57 0.01 0.01 0.57 0.57 0.00 0.01 0.57
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Table C-2 continued

0 1.45 1.39 0.05 0.13 1.49 1.49 0.00 0.13 1.47 1.44 0.03 0.09 1.42 1.49 0.07 0.09 1.46

3 1.38 1.38 0.00 0.13 1.46 1.49 0.03 0.13 1.42 1.43 0.01 0.09 1.38 1.47 0.10 0.09 1.43

6 1.37 1.36 0.01 0.13 1.47 1.52 0.05 0.13 1.42 1.44 0.02 0.09 1.36 1.50 0.14 0.09 1.43

9 1.44 1.34 0.09 0.13 1.48 1.55 0.07 0.13 1.46 1.45 0.01 0.09 1.39 1.52 0.13 0.09 1.45

12 1.47 1.35 0.12 0.13 1.62 1.65 0.03 0.13 1.55 1.50 0.05 0.09 1.41 1.64 0.23 0.09 1.52

G

14 1.55 1.35 0.20 0.13 1.65 1.64 0.01 0.13 1.60 1.50 0.11 0.09 1.45 1.65 0.19 0.09 1.55

 Mean 1.44 1.36 0.08 0.13 1.53 1.56 0.03 0.13 1.49 1.46 0.04 0.09 1.40 1.54 0.14 0.09 1.47

0 0.12 0.10 0.02 0.06 0.12 0.12 0.00 0.06 0.12 0.11 0.01 0.04 0.11 0.12 0.01 0.04 0.12

3 0.10 0.09 0.01 0.06 0.12 0.13 0.01 0.06 0.11 0.11 0.00 0.04 0.10 0.13 0.03 0.04 0.11

6 0.09 0.09 0.00 0.06 0.12 0.14 0.02 0.06 0.11 0.12 0.01 0.04 0.09 0.13 0.04 0.04 0.11

9 0.11 0.09 0.02 0.06 0.13 0.15 0.02 0.06 0.12 0.12 0.00 0.04 0.10 0.14 0.04 0.04 0.12

12 0.12 0.09 0.03 0.06 0.17 0.22 0.05 0.06 0.14 0.15 0.01 0.04 0.10 0.19 0.09 0.04 0.15

MCARI

14 0.15 0.09 0.06 0.06 0.20 0.20 0.00 0.06 0.18 0.15 0.03 0.04 0.12 0.20 0.08 0.04 0.16

 Mean 0.11 0.09 0.02 0.06 0.14 0.16 0.02 0.06 0.13 0.13 0.01 0.04 0.10 0.15 0.05 0.04 0.13

0 -0.15 -0.14 0.01 0.04 -0.15 -0.15 0.00 0.04 -0.15 -0.15 0.01 0.03 -0.15 -0.15 0.00 0.03 -0.15

3 -0.14 -0.14 0.00 0.04 -0.15 -0.16 0.00 0.04 -0.15 -0.15 0.00 0.03 -0.14 -0.16 0.02 0.03 -0.15

6 -0.14 -0.14 0.00 0.04 -0.15 -0.17 0.01 0.04 -0.15 -0.16 0.01 0.03 -0.14 -0.16 0.02 0.03 -0.15

9 -0.15 -0.14 0.01 0.04 -0.16 -0.16 0.00 0.04 -0.15 -0.15 0.00 0.03 -0.14 -0.16 0.02 0.03 -0.15

12 -0.16 -0.14 0.02 0.04 -0.18 -0.21 0.03 0.04 -0.17 -0.17 0.00 0.03 -0.15 -0.19 0.04 0.03 -0.17

TCARI

14 -0.19 -0.14 0.05 0.04 -0.20 -0.19 0.01 0.04 -0.20 -0.17 0.03 0.03 -0.17 -0.20 0.03 0.03 -0.18

 Mean -0.16 -0.14 0.02 0.04 -0.17 -0.17 0.01 0.04 -0.16 -0.16 0.01 0.03 -0.15 -0.17 0.02 0.03 -0.16

0 27.04 25.85 1.19 1.61 25.85 26.00 0.15 1.61 26.44 25.92 0.52 1.14 26.45 25.92 0.52 1.14 26.18

3 25.42 25.47 0.04 1.61 26.49 27.20 0.71 1.61 25.96 26.33 0.38 1.14 25.45 26.84 1.40 1.14 26.15

6 26.10 26.16 0.06 1.61 26.50 28.16 1.66 1.61 26.30 27.16 0.86 1.14 26.13 27.33 1.20 1.14 26.73

9 26.70 25.02 1.68 1.61 27.64 26.11 1.53 1.61 27.17 25.57 1.60 1.14 25.86 26.88 1.02 1.14 26.37

12 27.74 25.13 2.61 1.61 28.65 28.33 0.32 1.61 28.19 26.73 1.46 1.14 26.43 28.49 2.06 1.14 27.46

TVI

14 28.98 25.78 3.20 1.61 29.44 27.65 1.79 1.61 29.21 26.72 2.50 1.14 27.38 28.54 1.16 1.14 27.96

 Mean 27.00 25.57 1.46 1.61 27.43 27.24 1.03 1.61 27.21 26.41 1.22 1.14 26.28 27.33 1.23 1.14 26.81

0 1.86 1.82 0.04 1.61 1.83 1.82 0.02 1.61 1.85 1.87 0.02 1.14 1.89 1.83 0.06 1.14 1.86

3 1.94 1.83 0.11 1.61 1.84 1.83 0.02 1.61 1.89 1.89 0.00 1.14 1.94 1.84 0.11 1.14 1.89

6 1.99 1.79 0.21 1.61 1.84 1.79 0.06 1.61 1.92 1.88 0.04 1.14 1.99 1.81 0.17 1.14 1.90

9 1.93 1.73 0.20 1.61 1.83 1.73 0.10 1.61 1.88 1.85 0.03 1.14 1.96 1.78 0.18 1.14 1.87

12 1.93 1.63 0.29 1.61 1.77 1.63 0.14 1.61 1.85 1.80 0.05 1.14 1.94 1.70 0.24 1.14 1.82

ZMI

14 1.76 1.63 0.13 1.61 1.70 1.63 0.07 1.61 1.73 1.80 0.07 1.14 1.86 1.66 0.20 1.14 1.76

 Mean 1.90 1.74 0.17 1.61 1.80 1.74 0.07 1.61 1.85 1.85 0.03 1.14 1.93 1.77 0.16 1.14 1.85
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Table C-2 continued

0 0.84 0.85 0.01 0.03 0.85 0.84 0.00 0.03 0.84 0.85 0.00 0.02 0.85 0.84 0.00 0.02 0.85

3 0.86 0.85 0.01 0.03 0.86 0.86 0.00 0.03 0.86 0.85 0.01 0.02 0.85 0.86 0.01 0.02 0.85

6 0.86 0.86 0.00 0.03 0.84 0.86 0.01 0.03 0.85 0.86 0.01 0.02 0.86 0.85 0.01 0.02 0.86

9 0.83 0.84 0.01 0.03 0.84 0.83 0.01 0.03 0.84 0.84 0.00 0.02 0.83 0.84 0.01 0.02 0.84

12 0.84 0.84 0.00 0.03 0.83 0.81 0.02 0.03 0.83 0.83 0.01 0.02 0.84 0.82 0.02 0.02 0.83

SPRI

14 0.83 0.83 0.00 0.03 0.81 0.81 0.00 0.03 0.82 0.82 0.00 0.02 0.83 0.81 0.02 0.02 0.82

 Mean 0.84 0.84 0.01 0.03 0.84 0.84 0.01 0.03 0.84 0.84 0.01 0.02 0.84 0.84 0.01 0.02 0.84

0 -0.006 -0.005 0.001 0.014 -0.002 -0.003 0.000 0.014 -0.004 -0.004 0.001 0.010 -0.006 -0.003 0.003 0.010 0.00

3 -0.003 -0.017 0.014 0.014 0.001 -0.017 0.018 0.014 -0.001 -0.017 0.016 0.010 -0.010 -0.008 0.002 0.010 -0.01

6 -0.011 -0.004 0.007 0.014 -0.008 -0.006 0.001 0.014 -0.009 -0.005 0.004 0.010 -0.008 -0.007 0.001 0.010 -0.01

9 0.000 -0.005 0.005 0.014 -0.008 0.004 0.012 0.014 -0.004 -0.001 -0.004 0.010 -0.003 -0.002 0.001 0.010 0.00

12 -0.014 -0.007 0.007 0.014 -0.008 0.000 0.008 0.014 -0.011 -0.004 0.007 0.010 -0.011 -0.004 0.007 0.010 -0.01

NPQI

14 -0.024 -0.009 0.015 0.014 -0.009 -0.005 0.004 0.014 -0.016 -0.007 0.009 0.010 -0.016 -0.007 0.009 0.010 -0.01

 Mean -0.010 -0.008 0.008 0.014 -0.006 -0.005 0.007 0.014 -0.008 -0.006 0.006 0.010 -0.009 -0.005 0.004 0.010 -0.01

0 0.033 0.032 0.000 0.006 0.032 0.032 0.000 0.006 0.033 0.032 0.000 0.004 0.033 0.032 0.001 0.004 0.03

3 0.028 0.031 0.003 0.006 0.031 0.031 0.000 0.006 0.030 0.031 0.002 0.004 0.030 0.031 0.001 0.004 0.03

6 0.030 0.029 0.001 0.006 0.030 0.031 0.001 0.006 0.030 0.030 0.000 0.004 0.029 0.030 0.001 0.004 0.03

9 0.028 0.028 0.000 0.006 0.029 0.030 0.001 0.006 0.029 0.029 0.000 0.004 0.028 0.029 0.001 0.004 0.03

12 0.025 0.027 0.002 0.006 0.029 0.029 0.000 0.006 0.027 0.028 0.001 0.004 0.026 0.029 0.002 0.004 0.03

PRI

14 0.017 0.030 0.013 0.006 0.027 0.026 0.001 0.006 0.022 0.028 0.006 0.004 0.023 0.026 0.003 0.004 0.02

 Mean 0.027 0.030 0.003 0.006 0.029 0.030 0.001 0.006 0.028 0.030 0.002 0.004 0.028 0.030 0.002 0.004 0.03

0 0.086 0.081 0.005 0.016 0.084 0.085 0.001 0.016 0.085 0.083 0.002 0.004 0.083 0.084 0.001 0.004 0.08

3 0.078 0.083 0.005 0.016 0.075 0.078 0.003 0.016 0.077 0.080 0.004 0.004 0.081 0.076 0.005 0.004 0.08

6 0.075 0.074 0.001 0.016 0.084 0.077 0.008 0.016 0.080 0.076 0.004 0.004 0.075 0.081 0.006 0.004 0.08

9 0.095 0.088 0.007 0.016 0.085 0.090 0.005 0.016 0.090 0.089 0.001 0.004 0.091 0.088 0.004 0.004 0.09

12 0.089 0.087 0.002 0.016 0.092 0.103 0.011 0.016 0.091 0.095 0.005 0.004 0.088 0.098 0.009 0.004 0.09

NPCI

14 0.095 0.093 0.002 0.016 0.108 0.108 0.000 0.016 0.101 0.100 0.001 0.004 0.094 0.108 0.014 0.004 0.10

 Mean 0.086 0.084 0.004 0.016 0.088 0.090 0.005 0.016 0.087 0.087 0.003 0.004 0.085 0.089 0.006 0.004 0.09

0 1.54 1.49 0.05 0.15 1.52 1.54 0.02 0.15 1.53 1.52 0.01 0.10 1.52 1.53 0.02 0.10 1.53

3 1.48 1.46 0.02 0.15 1.51 1.55 0.04 0.15 1.49 1.51 0.01 0.10 1.47 1.53 0.06 0.10 1.50

6 1.42 1.43 0.01 0.15 1.54 1.57 0.03 0.15 1.48 1.50 0.02 0.10 1.43 1.56 0.13 0.10 1.49

9 1.54 1.45 0.09 0.15 1.51 1.63 0.12 0.15 1.52 1.54 0.01 0.10 1.49 1.57 0.08 0.10 1.53

12 1.56 1.44 0.11 0.15 1.63 1.79 0.15 0.15 1.60 1.62 0.02 0.10 1.50 1.71 0.21 0.10 1.61

Ctr1

14 1.63 1.47 0.16 0.15 1.78 1.76 0.02 0.15 1.71 1.62 0.09 0.10 1.55 1.77 0.22 0.10 1.66

 Mean 1.53 1.46 0.07 0.15 1.58 1.64 0.06 0.15 1.56 1.55 0.03 0.10 1.49 1.61 0.12 0.10 1.55
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Table C-2 continued

0 0.31 0.31 0.01 0.05 0.32 0.32 0.00 0.05 0.32 0.31 0.00 0.03 0.31 0.32 0.01 0.03 0.31

3 0.31 0.30 0.01 0.05 0.32 0.32 0.00 0.05 0.31 0.31 0.00 0.03 0.31 0.32 0.02 0.03 0.31

6 0.30 0.30 0.00 0.05 0.32 0.33 0.01 0.05 0.31 0.31 0.00 0.03 0.30 0.33 0.03 0.03 0.31

9 0.31 0.30 0.00 0.05 0.32 0.34 0.02 0.05 0.31 0.32 0.01 0.03 0.31 0.33 0.03 0.03 0.32

12 0.32 0.31 0.01 0.05 0.33 0.38 0.05 0.05 0.33 0.35 0.02 0.03 0.31 0.36 0.05 0.03 0.34

Ctr2

14 0.36 0.31 0.05 0.05 0.37 0.37 0.00 0.05 0.36 0.34 0.03 0.03 0.33 0.37 0.04 0.03 0.35

 Mean 0.32 0.30 0.01 0.05 0.33 0.35 0.01 0.05 0.32 0.32 0.01 0.03 0.31 0.34 0.03 0.03 0.32

0 0.609 0.610 0.001 0.023 0.611 0.607 0.004 0.023 0.610 0.609 0.001 0.016 0.610 0.609 0.001 0.016 0.61

3 0.606 0.608 0.002 0.023 0.601 0.606 0.004 0.023 0.604 0.607 0.003 0.016 0.607 0.603 0.004 0.016 0.61

6 0.612 0.608 0.004 0.023 0.604 0.604 0.000 0.023 0.608 0.606 0.002 0.016 0.610 0.604 0.007 0.016 0.61

9 0.613 0.603 0.010 0.023 0.602 0.594 0.008 0.023 0.607 0.599 0.009 0.016 0.608 0.598 0.011 0.016 0.60

12 0.606 0.599 0.007 0.023 0.609 0.583 0.026 0.023 0.608 0.591 0.016 0.016 0.602 0.596 0.006 0.016 0.60

Lic1

14 0.578 0.602 0.023 0.023 0.586 0.584 0.002 0.023 0.582 0.593 0.010 0.016 0.590 0.585 0.005 0.016 0.59

 Mean 0.604 0.605 0.008 0.023 0.602 0.596 0.007 0.023 0.603 0.601 0.007 0.016 0.605 0.599 0.005 0.016 0.60

0 0.768 0.789 0.021 0.042 0.769 0.763 0.006 0.042 0.768 0.776 0.007 0.030 0.778 0.766 0.012 0.030 0.77

3 0.785 0.791 0.006 0.042 0.779 0.775 0.003 0.042 0.782 0.783 0.001 0.030 0.788 0.777 0.011 0.030 0.78

6 0.802 0.793 0.009 0.042 0.764 0.764 0.000 0.042 0.783 0.778 0.004 0.030 0.797 0.764 0.034 0.030 0.78

9 0.754 0.787 0.034 0.042 0.766 0.736 0.030 0.042 0.760 0.762 0.002 0.030 0.770 0.751 0.019 0.030 0.76

12 0.755 0.773 0.018 0.042 0.736 0.688 0.048 0.042 0.745 0.730 0.015 0.030 0.764 0.712 0.052 0.030 0.74

Lic2

14 0.740 0.772 0.032 0.042 0.680 0.691 0.012 0.042 0.710 0.732 0.022 0.030 0.756 0.686 0.070 0.030 0.72

 Mean 0.767 0.784 0.020 0.042 0.749 0.746 0.017 0.042 0.758 0.760 0.009 0.030 0.776 0.743 0.033 0.030 0.76

0 0.64 0.64 0.00 0.02 0.64 0.64 0.00 0.02 0.64 0.64 0.00 0.02 0.64 0.64 0.00 0.02 0.64

3 0.64 0.64 0.00 0.02 0.63 0.63 0.01 0.02 0.63 0.64 0.00 0.02 0.64 0.63 0.01 0.02 0.63

6 0.64 0.64 0.01 0.02 0.63 0.63 0.00 0.02 0.64 0.63 0.00 0.02 0.64 0.63 0.01 0.02 0.63

9 0.64 0.64 0.01 0.02 0.63 0.63 0.00 0.02 0.64 0.63 0.01 0.02 0.64 0.63 0.01 0.02 0.64

12 0.63 0.63 0.00 0.02 0.64 0.62 0.02 0.02 0.64 0.63 0.01 0.02 0.63 0.63 0.01 0.02 0.63

SIPI

14 0.60 0.64 0.04 0.02 0.62 0.62 0.00 0.02 0.61 0.63 0.02 0.02 0.62 0.62 0.00 0.02 0.62

 Mean 0.63 0.64 0.01 0.02 0.63 0.63 0.01 0.02 0.63 0.63 0.01 0.02 0.63 0.63 0.01 0.02 0.63

0 2.79 2.91 0.11 0.29 2.73 2.71 0.02 0.29 2.76 2.81 0.05 0.20 2.85 2.72 0.13 0.20 2.78

3 2.90 2.93 0.03 0.29 2.72 2.70 0.02 0.29 2.81 2.81 0.01 0.20 2.91 2.71 0.21 0.20 2.81

6 2.98 2.96 0.02 0.29 2.72 2.63 0.09 0.29 2.85 2.80 0.05 0.20 2.97 2.68 0.29 0.20 2.82

9 2.86 2.95 0.09 0.29 2.70 2.55 0.16 0.29 2.78 2.75 0.03 0.20 2.91 2.63 0.28 0.20 2.77

12 2.73 2.91 0.17 0.29 2.54 2.36 0.18 0.29 2.64 2.63 0.00 0.20 2.82 2.45 0.37 0.20 2.63

GM1

14 2.40 2.92 0.52 0.29 2.38 2.36 0.02 0.29 2.39 2.64 0.25 0.20 2.66 2.37 0.29 0.20 2.52

 Mean 2.78 2.93 0.16 0.29 2.63 2.55 0.08 0.29 2.70 2.74 0.07 0.20 2.85 2.59 0.26 0.20 2.72
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Table C-2 continued

0 2.59 2.70 0.11 0.27 2.55 2.52 0.02 0.27 2.57 2.61 0.05 0.19 2.65 2.54 0.11 0.19 2.59

3 2.67 2.71 0.04 0.27 2.55 2.53 0.03 0.27 2.61 2.62 0.01 0.19 2.69 2.54 0.15 0.19 2.61

6 2.77 2.74 0.03 0.27 2.54 2.46 0.08 0.27 2.65 2.60 0.05 0.19 2.76 2.50 0.26 0.19 2.63

9 2.67 2.73 0.06 0.27 2.52 2.38 0.15 0.27 2.60 2.55 0.05 0.19 2.70 2.45 0.25 0.19 2.57

12 2.63 2.69 0.06 0.27 2.43 2.21 0.23 0.27 2.53 2.45 0.08 0.19 2.66 2.32 0.34 0.19 2.49

GM2

14 2.35 2.69 0.34 0.27 2.28 2.20 0.08 0.27 2.32 2.45 0.13 0.19 2.52 2.24 0.28 0.19 2.38

 Mean 2.61 2.71 0.11 0.27 2.48 2.38 0.10 0.27 2.55 2.55 0.06 0.19 2.66 2.43 0.23 0.19 2.55

0 0.37 0.39 0.02 0.09 0.36 0.37 0.01 0.09 0.37 0.38 0.01 0.06 0.38 0.36 0.02 0.06 0.37

3 0.45 0.43 0.02 0.09 0.32 0.34 0.02 0.09 0.38 0.39 0.00 0.06 0.44 0.33 0.12 0.06 0.38

6 0.40 0.41 0.02 0.09 0.35 0.32 0.03 0.09 0.37 0.37 0.01 0.06 0.40 0.34 0.07 0.06 0.37

9 0.36 0.45 0.09 0.09 0.33 0.34 0.01 0.09 0.35 0.40 0.05 0.06 0.40 0.34 0.06 0.06 0.37

12 0.19 0.42 0.23 0.09 0.20 0.29 0.10 0.09 0.19 0.36 0.17 0.06 0.31 0.24 0.06 0.06 0.28

ARI1

14 0.09 0.44 0.35 0.09 0.18 0.31 0.13 0.09 0.13 0.38 0.24 0.06 0.27 0.24 0.02 0.06 0.25

 Mean 0.31 0.43 0.12 0.09 0.29 0.33 0.05 0.09 0.30 0.38 0.08 0.06 0.37 0.31 0.06 0.06 0.34

0 0.21 0.21 0.00 0.05 0.19 0.19 0.00 0.05 0.20 0.20 0.00 0.03 0.21 0.19 0.02 0.03 0.20

3 0.24 0.23 0.01 0.05 0.17 0.18 0.01 0.05 0.20 0.21 0.00 0.03 0.23 0.18 0.06 0.03 0.21

6 0.22 0.23 0.01 0.05 0.19 0.18 0.01 0.05 0.20 0.20 0.00 0.03 0.22 0.18 0.04 0.03 0.20

9 0.19 0.24 0.04 0.05 0.19 0.18 0.01 0.05 0.19 0.21 0.02 0.03 0.22 0.18 0.03 0.03 0.20

12 0.11 0.22 0.12 0.05 0.11 0.16 0.05 0.05 0.11 0.19 0.08 0.03 0.17 0.13 0.03 0.03 0.15

ARI2

14 0.05 0.24 0.19 0.05 0.10 0.17 0.07 0.05 0.08 0.20 0.13 0.03 0.14 0.13 0.01 0.03 0.14

 Mean 0.17 0.23 0.06 0.05 0.16 0.18 0.02 0.05 0.16 0.20 0.04 0.03 0.20 0.17 0.03 0.03 0.18

0 2.47 2.44 0.03 0.32 2.68 2.65 0.03 0.32 2.57 2.54 0.03 0.22 2.45 2.66 0.21 0.22 2.56

3 2.42 2.35 0.07 0.32 2.45 2.51 0.05 0.32 2.44 2.43 0.01 0.22 2.39 2.48 0.09 0.22 2.43

6 2.30 2.26 0.04 0.32 2.53 2.43 0.10 0.32 2.41 2.35 0.07 0.22 2.28 2.48 0.20 0.22 2.38

9 2.49 2.35 0.14 0.32 2.43 2.69 0.26 0.32 2.46 2.52 0.06 0.22 2.42 2.56 0.14 0.22 2.49

12 2.19 2.35 0.16 0.32 2.62 2.45 0.17 0.32 2.40 2.40 0.01 0.22 2.27 2.53 0.26 0.22 2.40

CRI1

14 1.96 2.32 0.36 0.32 2.36 2.55 0.18 0.32 2.16 2.43 0.27 0.22 2.14 2.46 0.32 0.22 2.30

 Mean 2.30 2.35 0.13 0.32 2.51 2.54 0.13 0.32 2.41 2.44 0.07 0.22 2.32 2.53 0.20 0.22 2.43

0 2.84 2.83 0.01 0.36 3.03 3.00 0.03 0.36 2.94 2.92 0.02 0.25 2.84 3.02 0.18 0.25 2.93

3 2.87 2.79 0.09 0.36 2.76 2.83 0.07 0.36 2.82 2.81 0.01 0.25 2.83 2.80 0.03 0.25 2.81

6 2.69 2.67 0.02 0.36 2.87 2.74 0.13 0.36 2.78 2.71 0.08 0.25 2.68 2.81 0.12 0.25 2.75

9 2.85 2.80 0.05 0.36 2.76 3.03 0.26 0.36 2.81 2.91 0.11 0.25 2.82 2.90 0.07 0.25 2.86

12 2.38 2.77 0.39 0.36 2.81 2.73 0.08 0.36 2.59 2.75 0.16 0.25 2.58 2.77 0.19 0.25 2.67

CRI2

14 2.05 2.76 0.71 0.36 2.54 2.85 0.31 0.36 2.29 2.80 0.51 0.25 2.40 2.69 0.29 0.25 2.55

 Mean 2.61 2.77 0.21 0.36 2.80 2.86 0.15 0.36 2.71 2.82 0.15 0.25 2.69 2.83 0.15 0.25 2.76
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Table C-2 continued

0 0.51 0.50 0.01 0.02 0.50 0.50 0.00 0.02 0.50 0.50 0.00 0.01 0.51 0.50 0.01 0.01 0.50

3 0.50 0.50 0.00 0.02 0.50 0.51 0.01 0.02 0.50 0.50 0.00 0.01 0.50 0.50 0.00 0.01 0.50

6 0.51 0.51 0.00 0.02 0.50 0.51 0.01 0.02 0.50 0.51 0.00 0.01 0.51 0.51 0.00 0.01 0.51

9 0.51 0.47 0.04 0.02 0.51 0.48 0.03 0.02 0.51 0.49 0.02 0.01 0.50 0.50 0.00 0.01 0.50

12 0.52 0.49 0.03 0.02 0.52 0.49 0.03 0.02 0.52 0.49 0.02 0.01 0.50 0.51 0.00 0.01 0.50

RDVI

14 0.50 0.50 0.00 0.02 0.51 0.49 0.02 0.02 0.51 0.50 0.01 0.01 0.50 0.50 0.00 0.01 0.50

 Mean 0.51 0.50 0.01 0.02 0.51 0.50 0.01 0.02 0.51 0.50 0.01 0.01 0.50 0.50 0.00 0.01 0.50

0 0.031 0.032 0.002 0.005 0.035 0.035 0.001 0.005 0.033 0.034 0.001 0.003 0.032 0.035 0.003 0.003 0.03

3 0.033 0.031 0.002 0.005 0.032 0.035 0.003 0.005 0.032 0.033 0.000 0.003 0.032 0.033 0.002 0.003 0.03

6 0.029 0.029 0.000 0.005 0.033 0.036 0.003 0.005 0.031 0.032 0.001 0.003 0.029 0.034 0.005 0.003 0.03

9 0.032 0.031 0.001 0.005 0.034 0.037 0.002 0.005 0.033 0.034 0.001 0.003 0.031 0.035 0.004 0.003 0.03

12 0.032 0.032 0.000 0.005 0.039 0.035 0.004 0.005 0.035 0.033 0.002 0.003 0.032 0.037 0.005 0.003 0.03

PRI_550

14 0.034 0.029 0.005 0.005 0.035 0.038 0.003 0.005 0.035 0.034 0.001 0.003 0.032 0.037 0.005 0.003 0.03

 Mean 0.032 0.031 0.002 0.005 0.035 0.036 0.003 0.005 0.033 0.033 0.001 0.003 0.031 0.035 0.004 0.003 0.03

0 0.038 0.042 0.004 0.006 0.043 0.044 0.001 0.006 0.041 0.043 0.003 0.004 0.040 0.043 0.003 0.004 0.04

3 0.043 0.041 0.002 0.006 0.041 0.043 0.002 0.006 0.042 0.042 0.000 0.004 0.042 0.042 0.001 0.004 0.04

6 0.038 0.039 0.001 0.006 0.041 0.043 0.001 0.006 0.040 0.041 0.001 0.004 0.038 0.042 0.004 0.004 0.04

9 0.040 0.043 0.003 0.006 0.042 0.045 0.003 0.006 0.041 0.044 0.003 0.004 0.041 0.043 0.002 0.004 0.04

12 0.040 0.044 0.004 0.006 0.044 0.040 0.004 0.006 0.042 0.042 0.000 0.004 0.042 0.042 0.000 0.004 0.04

PRI_norm

14 0.042 0.039 0.002 0.006 0.039 0.044 0.004 0.006 0.040 0.041 0.001 0.004 0.041 0.041 0.001 0.004 0.04

 Mean 0.040 0.041 0.003 0.006 0.042 0.043 0.003 0.006 0.041 0.042 0.001 0.004 0.041 0.042 0.002 0.004 0.04

0 0.055 0.054 0.001 0.009 0.054 0.054 0.000 0.009 0.055 0.054 0.001 0.007 0.055 0.054 0.001 0.007 0.05

3 0.047 0.052 0.005 0.009 0.052 0.053 0.001 0.009 0.050 0.053 0.003 0.007 0.050 0.053 0.003 0.007 0.05

6 0.049 0.048 0.001 0.009 0.050 0.053 0.003 0.009 0.050 0.051 0.001 0.007 0.048 0.052 0.003 0.007 0.05

9 0.047 0.047 0.000 0.009 0.049 0.052 0.003 0.009 0.048 0.049 0.001 0.007 0.047 0.050 0.003 0.007 0.05

12 0.043 0.046 0.004 0.009 0.050 0.052 0.003 0.009 0.046 0.049 0.003 0.007 0.044 0.051 0.007 0.007 0.05

PRI/NDVI

14 0.030 0.049 0.019 0.009 0.047 0.047 0.001 0.009 0.039 0.048 0.009 0.007 0.040 0.047 0.007 0.007 0.04

 Mean 0.045 0.049 0.005 0.009 0.051 0.052 0.002 0.009 0.048 0.051 0.003 0.007 0.047 0.051 0.004 0.007 0.05

0 0.48 0.50 0.01 0.05 0.47 0.47 0.01 0.05 0.48 0.48 0.00 0.01 0.49 0.47 0.02 0.01 0.48

3 0.50 0.50 0.00 0.05 0.47 0.46 0.00 0.05 0.48 0.48 0.00 0.01 0.50 0.47 0.03 0.01 0.48

6 0.51 0.50 0.00 0.05 0.47 0.46 0.02 0.05 0.49 0.48 0.01 0.01 0.51 0.46 0.04 0.01 0.49

9 0.49 0.50 0.01 0.05 0.47 0.44 0.03 0.05 0.48 0.47 0.01 0.01 0.50 0.45 0.04 0.01 0.48

12 0.47 0.50 0.02 0.05 0.44 0.40 0.04 0.05 0.46 0.45 0.01 0.01 0.49 0.42 0.06 0.01 0.45

GNDVI_780

14 0.42 0.50 0.08 0.05 0.41 0.41 0.00 0.05 0.41 0.45 0.04 0.01 0.46 0.41 0.05 0.01 0.43

 Mean 0.48 0.50 0.02 0.05 0.45 0.44 0.01 0.05 0.47 0.47 0.01 0.01 0.49 0.45 0.04 0.01 0.47
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Table C-2 continued

0 3.11 3.35 0.23 0.43 3.05 3.01 0.04 0.43 3.08 3.18 0.09 0.30 3.23 3.03 0.20 0.30 3.13

3 3.41 3.46 0.05 0.43 3.12 3.01 0.10 0.43 3.26 3.23 0.03 0.30 3.43 3.06 0.37 0.30 3.25

6 3.59 3.56 0.03 0.43 3.06 2.89 0.17 0.43 3.33 3.22 0.10 0.30 3.57 2.98 0.59 0.30 3.27

9 3.28 3.54 0.26 0.43 3.05 2.71 0.33 0.43 3.16 3.13 0.04 0.30 3.41 2.88 0.53 0.30 3.15

12 3.31 3.43 0.12 0.43 2.81 2.47 0.34 0.43 3.06 2.95 0.11 0.30 3.37 2.64 0.73 0.30 3.01

MRESR

14 2.87 3.49 0.62 0.43 2.56 2.47 0.10 0.43 2.72 2.98 0.26 0.30 3.18 2.51 0.67 0.30 2.85

 Mean 3.26 3.47 0.22 0.43 2.94 2.76 0.18 0.43 3.10 3.12 0.11 0.30 3.37 2.85 0.52 0.30 3.11

0 0.36 0.38 0.02 0.05 0.36 0.36 0.00 0.05 0.36 0.37 0.01 0.04 0.37 0.36 0.02 0.04 0.36

3 0.38 0.39 0.00 0.05 0.36 0.36 0.01 0.05 0.37 0.37 0.00 0.04 0.38 0.36 0.03 0.04 0.37

6 0.40 0.39 0.00 0.05 0.36 0.34 0.01 0.05 0.38 0.37 0.01 0.04 0.39 0.35 0.04 0.04 0.37

9 0.38 0.39 0.01 0.05 0.36 0.33 0.03 0.05 0.37 0.36 0.01 0.04 0.39 0.34 0.04 0.04 0.36

12 0.38 0.38 0.01 0.05 0.34 0.29 0.05 0.05 0.36 0.34 0.02 0.04 0.38 0.32 0.06 0.04 0.35

RENDVI

14 0.33 0.39 0.06 0.05 0.31 0.30 0.01 0.05 0.32 0.34 0.02 0.04 0.36 0.30 0.06 0.04 0.33

 Mean 0.37 0.39 0.02 0.05 0.35 0.33 0.02 0.05 0.36 0.36 0.01 0.04 0.38 0.34 0.04 0.04 0.36

0 0.20 0.21 0.01 0.03 0.19 0.18 0.01 0.03 0.19 0.20 0.00 0.02 0.20 0.19 0.01 0.02 0.19

3 0.21 0.21 0.00 0.03 0.19 0.18 0.01 0.03 0.20 0.20 0.00 0.02 0.21 0.19 0.02 0.02 0.20

6 0.22 0.22 0.01 0.03 0.19 0.18 0.01 0.03 0.21 0.20 0.01 0.02 0.22 0.19 0.03 0.02 0.20

9 0.21 0.22 0.01 0.03 0.19 0.17 0.02 0.03 0.20 0.19 0.00 0.02 0.22 0.18 0.04 0.02 0.20

12 0.21 0.22 0.00 0.03 0.17 0.15 0.03 0.03 0.19 0.18 0.01 0.02 0.21 0.16 0.05 0.02 0.19

NDRE

14 0.18 0.21 0.04 0.03 0.16 0.14 0.01 0.03 0.17 0.18 0.01 0.02 0.20 0.15 0.05 0.02 0.17

 Mean 0.21 0.21 0.01 0.03 0.18 0.17 0.01 0.03 0.19 0.19 0.01 0.02 0.21 0.17 0.04 0.02 0.19

0 1.88 1.98 0.10 0.30 1.81 1.77 0.03 0.30 1.84 1.88 0.03 0.21 1.93 1.79 0.14 0.21 1.86

3 1.97 2.01 0.04 0.30 1.80 1.76 0.04 0.30 1.88 1.88 0.00 0.21 1.99 1.78 0.22 0.21 1.88

6 2.06 2.06 0.00 0.30 1.79 1.68 0.11 0.30 1.93 1.87 0.06 0.21 2.06 1.74 0.33 0.21 1.90

9 1.94 2.03 0.09 0.30 1.76 1.59 0.18 0.30 1.85 1.81 0.04 0.21 1.99 1.67 0.31 0.21 1.83

12 1.81 1.98 0.18 0.30 1.58 1.38 0.20 0.30 1.69 1.68 0.01 0.21 1.90 1.48 0.42 0.21 1.69

CIgreen

14 1.47 2.01 0.54 0.30 1.40 1.39 0.01 0.30 1.43 1.70 0.27 0.21 1.74 1.40 0.34 0.21 1.57

 Mean 1.86 2.01 0.16 0.30 1.69 1.59 0.10 0.30 1.77 1.80 0.07 0.21 1.93 1.64 0.29 0.21 1.79

0 0.49 0.52 0.03 0.10 0.47 0.45 0.02 0.10 0.48 0.49 0.01 0.07 0.50 0.46 0.04 0.07 0.48

3 0.54 0.54 0.01 0.10 0.48 0.46 0.02 0.10 0.51 0.50 0.01 0.07 0.54 0.47 0.07 0.07 0.51

6 0.58 0.56 0.01 0.10 0.48 0.44 0.04 0.10 0.53 0.50 0.03 0.07 0.57 0.46 0.11 0.07 0.51

9 0.53 0.56 0.03 0.10 0.47 0.40 0.07 0.10 0.50 0.48 0.02 0.07 0.55 0.43 0.11 0.07 0.49

12 0.55 0.55 0.01 0.10 0.42 0.34 0.08 0.10 0.48 0.45 0.03 0.07 0.55 0.38 0.17 0.07 0.46

CIrededge

14 0.44 0.56 0.11 0.10 0.37 0.34 0.03 0.10 0.41 0.45 0.04 0.07 0.50 0.36 0.14 0.07 0.43

 Mean 0.52 0.55 0.03 0.10 0.45 0.41 0.04 0.10 0.48 0.48 0.02 0.07 0.53 0.43 0.11 0.07 0.48
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Table C-2 continued

0 0.10 0.09 0.01 0.03 0.10 0.11 0.00 0.03 0.10 0.10 0.00 0.02 0.10 0.11 0.01 0.02 0.10

3 0.09 0.09 0.00 0.03 0.10 0.11 0.01 0.03 0.09 0.10 0.00 0.02 0.09 0.10 0.02 0.02 0.09

6 0.08 0.08 0.00 0.03 0.10 0.11 0.01 0.03 0.09 0.10 0.00 0.02 0.08 0.11 0.03 0.02 0.09

9 0.10 0.08 0.01 0.03 0.10 0.12 0.02 0.03 0.10 0.10 0.00 0.02 0.09 0.11 0.02 0.02 0.10

12 0.10 0.09 0.02 0.03 0.13 0.15 0.02 0.03 0.12 0.12 0.00 0.02 0.09 0.14 0.05 0.02 0.12

mNDblue_530

14 0.12 0.09 0.04 0.03 0.15 0.14 0.01 0.03 0.14 0.12 0.02 0.02 0.11 0.15 0.04 0.02 0.13

 Mean 0.10 0.09 0.01 0.03 0.11 0.12 0.01 0.03 0.11 0.11 0.01 0.02 0.09 0.12 0.03 0.02 0.11

0 0.52 0.51 0.01 0.02 0.52 0.53 0.01 0.02 0.52 0.52 0.00 0.01 0.52 0.52 0.01 0.01 0.52

3 0.50 0.50 0.00 0.02 0.51 0.52 0.01 0.02 0.51 0.51 0.01 0.01 0.50 0.51 0.01 0.01 0.51

6 0.49 0.50 0.00 0.02 0.52 0.52 0.01 0.02 0.51 0.51 0.01 0.01 0.49 0.52 0.03 0.01 0.51

9 0.51 0.49 0.02 0.02 0.52 0.54 0.02 0.02 0.52 0.52 0.00 0.01 0.50 0.53 0.02 0.01 0.52

12 0.50 0.50 0.00 0.02 0.54 0.55 0.01 0.02 0.52 0.52 0.00 0.01 0.50 0.54 0.05 0.01 0.52

mNDblue_730

14 0.50 0.50 0.00 0.02 0.55 0.55 0.00 0.02 0.52 0.53 0.00 0.01 0.50 0.55 0.04 0.01 0.52

 Mean 0.51 0.50 0.00 0.02 0.53 0.53 0.01 0.02 0.52 0.52 0.00 0.01 0.50 0.53 0.03 0.01 0.52

0 0.419 0.407 0.013 0.018 0.400 0.396 0.004 0.018 0.41 0.40 0.01 0.01 0.41 0.40 0.01 0.01 0.41

3 0.400 0.404 0.004 0.018 0.407 0.413 0.006 0.018 0.40 0.41 0.00 0.01 0.40 0.41 0.01 0.01 0.41

6 0.414 0.414 0.000 0.018 0.407 0.425 0.018 0.018 0.41 0.42 0.01 0.01 0.41 0.42 0.00 0.01 0.42

9 0.417 0.397 0.019 0.018 0.420 0.391 0.029 0.018 0.42 0.39 0.02 0.01 0.41 0.41 0.00 0.01 0.41

12 0.428 0.395 0.032 0.018 0.426 0.406 0.020 0.018 0.43 0.40 0.03 0.01 0.41 0.42 0.00 0.01 0.41

rDVI_790

14 0.432 0.404 0.028 0.018 0.420 0.398 0.021 0.018 0.43 0.40 0.02 0.01 0.42 0.41 0.01 0.01 0.41

 Mean 0.418 0.404 0.016 0.018 0.413 0.405 0.016 0.018 0.42 0.40 0.02 0.01 0.41 0.41 0.01 0.01 0.41

0 2.87 2.99 0.11 0.30 2.81 2.76 0.05 0.30 2.84 2.87 0.03 0.21 2.93 2.79 0.14 0.21 2.86

3 2.98 3.01 0.04 0.30 2.79 2.75 0.04 0.30 2.88 2.88 0.00 0.21 2.99 2.77 0.22 0.21 2.88

6 3.07 3.04 0.03 0.30 2.79 2.68 0.11 0.30 2.93 2.86 0.07 0.21 3.06 2.73 0.32 0.21 2.89

9 2.95 3.04 0.09 0.30 2.76 2.60 0.16 0.30 2.85 2.82 0.03 0.21 3.00 2.68 0.32 0.21 2.84

12 2.80 2.97 0.17 0.30 2.59 2.39 0.20 0.30 2.70 2.68 0.01 0.21 2.89 2.49 0.40 0.21 2.69

gSRa_790

14 2.46 2.99 0.53 0.30 2.40 2.39 0.02 0.30 2.43 2.69 0.26 0.21 2.72 2.40 0.33 0.21 2.56

 Mean 2.86 3.01 0.16 0.30 2.69 2.60 0.10 0.30 2.77 2.80 0.07 0.21 2.93 2.64 0.29 0.21 2.79

0 4.12 4.15 0.03 0.26 4.16 4.09 0.07 0.26 4.14 4.12 0.02 0.21 4.13 4.12 0.01 0.21 4.13
3 4.08 4.11 0.03 0.26 4.03 4.08 0.05 0.26 4.05 4.09 0.04 0.21 4.09 4.05 0.04 0.21 4.07

6 4.16 4.11 0.05 0.26 4.06 4.03 0.02 0.26 4.11 4.07 0.04 0.21 4.13 4.05 0.09 0.21 4.09

9 4.19 4.05 0.14 0.26 4.01 3.95 0.07 0.26 4.10 4.00 0.10 0.21 4.12 3.98 0.14 0.21 4.05

12 4.09 3.98 0.11 0.26 4.13 3.83 0.31 0.26 4.11 3.90 0.21 0.21 4.04 3.98 0.06 0.21 4.01

SRa_790

14 3.76 4.00 0.24 0.26 3.87 3.80 0.07 0.26 3.81 3.90 0.08 0.21 3.88 3.83 0.04 0.21 3.86

 Mean 4.07 4.07 0.10 0.26 4.04 3.96 0.10 0.26 4.06 4.01 0.08 0.21 4.07 4.00 0.06 0.21 4.03
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Table C-3. Full results of the test for main effects of the spectral reflectance indices (SRIs) in response to the combined drought (D) and nitrogen (N) stress. 
The F-statistics and F-Test probabilities were used to test the effects/responses of the spectral indices to drought and N stresses as well as their interactions. The 
F-test was done considering all treatment combinations and days after water stress (DAWS). The statistically significant results (p<0.05) indicating differences 
between means for levels of N or P and their interactions are shown in bold. 

Index D N DAWS D×N D×DAWS N×DAWS D×N×DAWS

NDVI F1,13.17 = 0.86, P = 0.371 F1,13.17 =1.79, P = 0.203 F5,65.5 = 5.75, P <0.001 F1,13.2 = 1.72, P = 0.213 F5,65.5 = 3.87, P < 0.05 F5,65.5 = 0.55, P = 0.740 F5,65.5 = 0.87, P = 0.507

SR F1,13.0 = 1.05, P = 0.325 F1,13.0 = 2.08, P = 0.173 F5,66.0 = 7.45, P <0.001 F1,13.0 = 2.50, P = 0.138 F5,66.0 = 4.35, P < 0.05 F5,66.0 = 0.68, P = 0.640 F5,66.0 = 1.43, P = 0.226

MCARI1 F1,14.0 = 9.86, P < 0.05 F1,14.0 = 10.58, P < 0.05 F5, 52.7 = 8.34, P <0.001 F1,14.0 = 4.42, P = 0.054 F5, 52.7 = 5.61, P <0.001 F5, 52.7 = 3.05, P < 0.05 F5, 52.7 = 0.80, P = 0.556

OSAVI F1,13.8 = 1.29, P = 0.276 F1,13.8 = 0.40, P = 0.538 F5, 52.9 = 1.97, P = 0.098 F1,13.8 = 0.36, P = 0.559 F5, 52.9 = 3.03, P < 0.05 F5, 52.9 = 0.36, P = 0.871 F5, 52.9 = 0.90, P = 0.489

G F1,15.7 = 3.67, P = 0.074 F1,15.7 = 18.69, P <0.001 F5, 67.3 = 6.10, P <0.001 F1,15.7 = 3.13, P = 0.096 F5, 67.3 = 1.71, P = 0.145 F5, 67.3 = 2.95, P < 0.05 F5, 67.3 = 0.77, P = 0.576

MCARI F1,14.4 = 1.22, P = 0.287 F1,14.4 = 9.66, P < 0.05 F5, 66.3 = 4.76, P <0.001 F1,14.4 = 1.72, P = 0.210 F5, 66.3 = 2.04, P = 0.085 F5, 66.3 = 3.08, P < 0.05 F5, 66.3 = 0.54, P = 0.744

TCARI F1,16.6 = 1.91, P = 0.185 F1,16.6 = 4.23, P = 0.056 F5, 67.5 = 5.82, P <0.001 F1,16.6 = 1.77, P = 0.201 F5, 67.5 = 3.05, P < 0.05 F5, 67.5 = 1.93, P = 0.101 F5, 67.5 = 0.85, P = 0.521

TVI F1,14.0 = 10.72, P < 0.05 F1,14.0 = 11.09, P < 0.05 F5, 51.9 = 7.79, P <0.001 F1,14.0 = 4.39, P = 0.055 F5, 51.9 = 6.08, P <0.001 F5, 51.9 = 3.15, P < 0.05 F5, 51.9 = 0.72, P = 0.609

ZMI F1,11.8 = 0.93, P = 0.353 F1,11.8 = 10.93, P < 0.05 F5, 65.0 = 6.72, P <0.001 F1,11.8 = 3.13, P = 0.103 F5, 65.0 = 3.05, P < 0.05 F5, 65.0 = 2.83, P < 0.05 F5, 65.0 = 1.32, P = 0.268

SPRI F1, 23.7 = 0.03, P = 0.856 F1, 23.7 = 1.87, P = 0.184 F5, 66.0 = 8.52, P <0.001 F1, 23.7 = 0.47, P = 0.500 F5, 66.0 = 0.72, P = 0.611 F5, 66.0 = 2.03, P = 0.085 F5, 66.0 = 0.62, P = 0.687

NPQI F1, 24.1 = 0.33, P = 0.572 F1, 24.1 = 2.91, P = 0.101 F5, 63.6 = 1.92, P = 0.104 F1, 24.1 = 0.05, P = 0.818 F5, 63.6 = 3.70, P < 0.05 F5, 63.6 = 0.48, P = 0.792 F5, 63.6 = 1.12, P = 0.357

PRI F1,14.9 = 1.85, P = 0.194 F1,14.9 = 1.09, P = 0.313 F5, 62.0 = 5.43, P <0.001 F1,14.9 = 2.06, P = 0.172 F5, 62.0 = 1.77, P = 0.133 F5, 62.0 = 0.45, P = 0.814 F5, 62.0 = 2.42, P < 0.05

NPCI F1, 23.5 = 0.04, P = 0.853 F1, 23.5 = 2.01, P = 0.170 F5, 65.8 = 8.62, P <0.001 F1, 23.5 = 0.48, P = 0.495 F5, 65.8 = 0.71, P = 0.617 F5, 65.8 = 2.10, P = 0.076 F5, 65.8 = 0.63, P = 0.674

Ctr1 F1,15.7 = 1.17, P = 0.295 F1,15.7 = 12.52, P < 0.05 F5, 65.2 = 6.66, P <0.001 F1,15.7 = 3.13, P = 0.096 F5, 65.2 = 1.53, P = 0.192 F5, 65.2 = 3.57, P < 0.05 F5, 65.2 = 1.43, P = 0.224

Ctr2 F1,13.1 = 0.72, P = 0.411 F1,13.1 = 4.93, P < 0.05 F5, 65.5 = 5.19, P <0.001 F1,13.1 = 1.30, P = 0.275 F5, 65.5 = 3.67, P < 0.05 F5, 65.5 = 1.11, P = 0.365 F5, 65.5 = 0.74, P = 0.598

Lic1 F1,13.9 = 0.02, P = 0.878 F1,13.9 = 1.02, P = 0.330 F5, 54.3 = 4.65, P < 0.05 F1,13.9 = 0.79, P = 0.388 F5, 54.3 = 2.66, P < 0.05 F5, 54.3 = 0.23, P = 0.947 F5, 54.3 = 0.73, P = 0.603

Lic2 F1,16.4 = 1.22, P = 0.285 F1,16.4 = 14.98, P < 0.05 F5, 64.8 = 10.11, P < 0.001 F1,16.4 = 2.30, P = 0.148 F5, 64.8 = 1.95, P = 0.098 F5, 64.8 = 3.29, P <0.05 F5, 64.8 = 2.08, P = 0.079

SIPI F1,13.8 = 0.34, P = 0.567 F1,13.8 = 0.41, P = 0.534 F5, 54.1 = 3.86, P < 0.05 F1,13.8 = 1.02, P = 0.330 F5, 54.1 = 3.41, P < 0.05 F5, 54.1 = 0.54, P = 0.746 F5, 54.1 = 1.46, P = 0.217

GM1 F1,12.0 = 3.00, P = 0.109 F1,12.0 = 8.66, P < 0.05 F5, 65.6 = 11.44, P <0.001 F1,12.0 = 3.79, P = 0.075 F5, 65.6 = 5.16, P <0.001 F5, 65.6 = 2.22, P = 0.063 F5, 65.6 = 1.82, P = 0.121

GM2 F1,11.4 = 1.23, P = 0.291 F1,11.4 = 8.54, P < 0.05 F5, 64.5 = 7.72, P <0.001 F1,11.4 = 3.08, P = 0.106 F5, 64.5 = 3.68, P < 0.05 F5, 64.5 = 2.19, P = 0.066 F5, 64.5 = 1.20, P = 0.318

ARI1 F1,14.0 = 16.59, P < 0.05 F1, 8.2 = 8.98, P < 0.05 F5, 54.8 = 26.89, P < 0.001 F1, 10.0 = 3.98, P = 0.074 F5, 54.8 = 22.25, P < 0.001 F5, 54.8 = 3.20, P < 0.05 F5, 54.8 = 4.42, P < 0.05

ARI2 F1,13.8 = 15.16, P < 0.05 F1, 8.7 = 8.90, P < 0.05 F5, 55.4 = 24.41, P < 0.001 F1, 10.6 = 3.71, P = 0.081 F5, 55.4 = 20.10, P < 0.001 F5, 55.4 = 2.32, P = 0.055 F5, 55.4 = 4.41, P < 0.05

CRI1 F1,11.8 = 0.09, P = 0.775 F1,10.5 = 8.13, P < 0.05 F5, 52.6 = 5.18, P < 0.001 F1,12.7 = 0.01, P = 0.916 F5, 52.6 = 2.49, P < 0.05 F5, 52.6 = 1.09, P = 0.378 F5, 52.6 = 3.16, P < 0.05

CRI2 F1,12.4 = 1.38, P = 0.262 F1,10.3 = 2.77, P = 0.126 F5, 52.2 = 10.11, P < 0.001 F1,12.4 = 0.31, P = 0.590 F5, 52.2 = 6.16, P < 0.001 F5, 52.2 = 1.98, P = 0.097 F5, 52.2 = 3.95, P < 0.05

RDVI F1, 24.9 = 10.31, P < 0.05 F1, 24.9 = 0.51, P = 0.482 F5, 62.4 = 1.05, P = 0.398 F1, 24.9 = 0.06, P = 0.802 F5, 62.4 = 4.38, P < 0.05 F5, 62.4 = 0.91, P = 0.484 F5, 62.4 = 0.81, P = 0.544

PRI_550 F1,13.8 = 0.33, P = 0.573 F1, 9.9 = 43.50, P <0.001 F5, 52.2 = 2.29, P = 0.059 F1,11.5 = 3.00, P = 0.110 F5, 52.2 = 0.94, P = 0.462 F5, 52.2 = 1.05, P = 0.399 F5, 52.2 = 1.95, P = 0.102

PRI_norm F1,13.8 = 0.99, P = 0.338 F1,10.7 = 2.31, P = 0.157 F5, 52.1 = 0.90, P = 0.487 F1,12.2 = 0.00, P = 0.969 F5, 52.1 = 0.46, P = 0.807 F5, 52.1 = 0.85, P = 0.522 F5, 52.1 = 2.23, P = 0.065
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PRI/NDVI F1,16.1 = 2.18, P = 0.160 F1,16.1 = 4.29, P = 0.055 F5, 60.7 = 4.64, P < 0.05 F1,16.1 = 1.40, P = 0.253 F5, 60.7 = 1.23, P = 0.304 F5, 60.7 = 0.76, P = 0.582 F5, 60.7 = 2.57, P < 0.05

GNDVI_780 F1,12.4 = 1.88, P = 0.194 F1,12.4 = 7.13, P < 0.05 F5, 65.6 = 8.15, P < 0.001 F1,12.4 = 2.50, P = 0.139 F5, 65.6 = 4.30, P < 0.05 F5, 65.6 = 1.65, P = 0.159 F5, 65.6 = 0.91, P = 0.480

MRESR F1,12.2 = 2.05, P = 0.178 F1,12.2 = 18.10, P < 0.05 F5, 64.7 = 7.64, P < 0.001 F1,12.2 = 4.15, P = 0.064 F5, 64.7 = 3.69, P < 0.05 F5, 64.7 = 3.50, P < 0.05 F5, 64.7 = 1.85, P = 0.115

RENDVI F1,11.7 = 0.97, P = 0.345 F1,11.7 = 8.06, P < 0.05 F5, 64.8 = 5.53, P < 0.001 F1,11.7 = 2.26, P = 0.159 F5, 64.8 = 4.08, P < 0.05 F5, 64.8 = 2.06, P = 0.082 F5, 64.8 = 0.85, P = 0.517

NDRE F1,11.9 = 0.49, P = 0.499 F1,11.9 = 12.45, P < 0.05 F5, 64.8 = 6.14, P < 0.001 F1,11.9 = 2.59, P = 0.134 F5, 64.8 = 2.96, P < 0.05 F5, 64.8 = 2.85, P < 0.05 F5, 64.8 = 1.05, P = 0.398

CIgreen F1,12.1 = 2.79, P = 0.121 F1,12.1 = 9.91, P < 0.05 F5, 65.9 = 12.03, P < 0.001 F1,12.1 = 3.59, P = 0.082 F5, 65.9 = 5.38, P < 0.001 F5, 65.9 = 2.56, P < 0.05 F5, 65.9 = 1.40, P = 0.237

CIrededge F1,12.5 = 0.75, P = 0.403 F1,12.5 = 14.92, P < 0.05 F5, 65.7 = 6.48, P < 0.001 F1,12.5 = 2.84, P = 0.117 F5, 65.7 = 3.03, P < 0.05 F5, 65.7 = 4.37, P < 0.05 F5, 65.7 = 1.29, P = 0.277

mNDblue_530 F1,13.9 = 1.59, P = 0.229 F1,13.9 = 12.27, P < 0.05 F5, 65.7 = 7.75, P < 0.001 F1,13.9 = 2.14, P = 0.166 F5, 65.7 = 2.34, P = 0.051 F5, 65.7 = 3.17, P < 0.05 F5, 65.7 = 0.78, P = 0.568

mNDblue_730 F1,22.5 = 0.03, P = 0.861 F1,22.5 = 55.64, P < 0.001 F5, 66.1 = 4.58, P < 0.05 F1, 22.5 = 2.81, P = 0.108 F5, 66.1 = 0.20, P = 0.960 F5, 66.1 = 5.83, P < 0.001 F5, 66.1 = 1.42, P = 0.227

rDVI_790 F1,16.4 = 18.86, P < 0.001 F1,29.9 = 0.45, P = 0.507 F5, 58.5 = 1.95, P = 0.099 F1, 28.6 = 1.60, P = 0.216 F5, 58.5 = 6.56, P < 0.001 F5, 58.5 = 1.99, P = 0.093 F5, 58.5 = 0.58, P = 0.718

gSRa_790 F1,11.8 = 2.59, P = 0.134 F1,11.8 = 9.65, P < 0.05 F5, 65.4 = 21.21, P < 0.001 F1,11.8 = 3.73, P = 0.078 F5, 65.4 = 5.11, P < 0.001 F5, 65.4 = 1.96, P = 0.096 F5, 65.4 = 1.48, P = 0.209

SRa_790 F1,14.0 = 0.15, P = 0.702 F1,14.0 = 1.09, P = 0.313 F5, 54.5 = 5.46, P < 0.001 F1,14.0 = 0.90, P = 0.358 F5, 54.5 = 2.47, P < 0.05 F5, 54.5 = 0.36, P = 0.873 F5, 54.5 = 0.86, P = 0.516



                                                                                                                                                      Appendices

317

Figure C-3. Schematic measurement of spectral reflectance using the PolyPen RP410 
spectrometer to identify responsive spectral reflectance indices (SRIs) by linear mixed 
models (LMMs) fitted using residual (or restricted) maximum likelihood (REML), 
LMM/REML for drought and N status in spring wheat.

Figure C-4. Raw data distribution of different treatment conditions of drought stress-specific 
SRIs identified for spring wheat. Raw data distribution of treatments for (A) RDVI and (B) 
rDVI_790. 
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Figure C-5. Raw data distribution of different treatment conditions of some N stress-specific SRIs identified for spring wheat including (A) PRI_550, (B) 
mNDblue_730 and (C) CRI1.
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Figure C-6. Residual plots of drought stress-specific SRIs identified for spring wheat including (A) RDVI and (B) rDVI_790. The residuals were inspected to 
verify the assumptions of normality (using histogram plots) and homogeneity of variance (using plots of fitted values).
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Figure C-7. Residual plots of some N stress-specific SRIs for spring wheat including (A) PRI_550, (B) mNDblue_730 and (C) CRI1. The residuals were 
examined to verify the assumptions of normality (using histogram plots) and homogeneity of variance (using plots of fitted values).
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Appendix D Supplementary material for Chapter 5

Figure D-1. The WGIN diversity N trial plots. The photograph was taken at post-anthesis.


