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ABSTRACT
Fungicide resistance management principles recommend that farmers avoid splitting the total dose applied of a fungicidal mode 
of action (MoA) across multiple applications per season (‘dose splitting’). However, dose splitting may sometimes be needed 
to make another proven resistance management tactic—application in mixture with a different MoA—practically achievable, 
especially in cases where there are limited MoAs available for disease control. Variable effects of dose splitting on selection for 
resistance have been observed in field experiments, and its effect on selection for partial resistance in fungal pathogens is not well 
studied. An improved understanding of whether the effect of dose splitting depends on fungicide properties and the type of fun-
gicide resistance is required. We developed a compartmental epidemiological model of Septoria leaf blotch (STB) (Zymoseptoria 
tritici) to investigate the effect of dose splitting on selection for both complete and partial target-site and non-target-site resist-
ance. To solely measure the effects of dose splitting, we restricted the analysis to solo fungicide application (solo use is not recom-
mended in practice). Our results show variable effects of dose splitting: in general, it increased the selection for both target-site 
and non-target-site resistance. Within the range of dose–response parameters expected for commercial fungicides, dose splitting 
increased the selection most for partial resistance mechanisms that result in a reduction in fungicide efficacy at low fungicide 
concentrations but not at high concentrations. We predict that dose splitting of a succinate dehydrogenase inhibitor (SDHI) fun-
gicide (solo) will increase selection for target-site and non-target-site resistance by between 20% and 35%, respectively.

1   |   Introduction

The effectiveness of fungicides for control of plant diseases is 
threatened by the evolution of resistance (Corkley et al. 2022). 
The risk of resistance is particularly high for polycyclic 

foliar fungal pathogens, such as Septoria tritici blotch (STB) 
(Zymoseptoria tritici) in wheat, grey mould (Botrytis cinerea) 
in many hosts, potato late blight (Phytophthora infestans), and 
net blotch (Pyrenophora teres) and powdery mildew (Blumeria 
hordei) diseases of barley. These pathogens have large 
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population sizes and many generations per year, enabling 
rapid evolution of resistance (Grimmer et al. 2015; McDonald 
et  al.  2022), and have the potential to cause large economic 
losses. Fungicide resistance management tactics include mi-
nimising the dose and number of applications and applying 
in mixture with a different mode of action (MoA) (Corkley 
et al. 2022; Elderfield et al. 2018; Mikaberidze et al. 2017; van 
den Berg et al. 2016; van den Bosch, Oliver, et al. 2014; van den 
Bosch, Paveley, et al. 2014). However, the number of effective 
MoAs available for use is increasingly restricted by regulation 
(especially of multisite fungicides) and resistance that has al-
ready evolved. This poses challenges for the implementation 
of current resistance management strategies.

Fungicides with an MoA affecting a single pathogen target 
site are at a particular risk of resistance development be-
cause one or more mutations affecting the target-site gene 
(‘target-site resistance’) can confer a large fitness advantage. 
For example, the G143A mutation prevents quinone outside 
inhibitor (QoI) fungicides from binding to the cytochrome b 
mitochondrial protein, restoring its function in respiration 
(Dorigan et  al.  2023). Z. tritici has accumulated multiple 
mutations in the CYP51 gene, each conferring partial resis-
tance but in combination causing gradually increasing lev-
els of resistance to demethylation inhibitor (DMI) fungicides 
(Cools and Fraaije  2013; Hawkins and Fraaije  2021; Leroux 
and Walker 2011). In addition to target-site mutations, other 
mechanisms of fungicide resistance in pathogens include 
target-site overexpression and non-target-site resistance, such 
as increased efflux, detoxification and alternative metabo-
lism (Dorigan et al. 2023; Hawkins and Fraaije 2021; Hu and 
Chen 2021). These mechanisms generally cause partial resis-
tance, although they may cause more highly resistant strains 
when in combination with target-site resistance. Metabolic 
resistance pathways such as efflux pumps are also implicated 
in multidrug-resistant fungal strains (Kretschmer et al. 2009; 
Omrane et al. 2017; Patry-Leclaire et al. 2023).

To predict the impact of fungicide resistance management tac-
tics on selection, it is helpful to consider pathogen epidemics 
in terms of the per capita rate of increase or ‘growth rate’ (r) 
of each strain. This approach combines the repeating stages 
of lesion establishment, growth and sporulation into a single 
measure of the success of a strain at a given point in time. 
When a fungicide is applied, the growth rates of pathogen 
strains with resistance to the action of a fungicide are higher 
than those of strains that are sensitive to the fungicide. The 
greater the difference in the per capita growth rates of resis-
tant and sensitive strains, the faster the rate of selection for 
resistance (van den Bosch, Oliver, et al. 2014). The impact of 
any given fungicide dose on the per capita growth rate of a 
pathogen strain can be represented in models by its effect on 
important parts of the pathogen life cycle, such as a reduc-
tion in the pathogen transmission rate. Assuming that the 
applied dose decays exponentially over time, it is possible to 
track the ‘effective dose’ remaining at any point in time. The 
impact of the fungicide on the pathogen life cycle is greatest 
at high effective doses, where the maximum effect is defined 
by an ‘asymptote parameter’, and the rate at which the ef-
fect decreases with reducing fungicide doses is defined by a 
‘curvature parameter’. Resistance will cause a change in the 

dose–response to a fungicide, which may be apparent either as 
a complete or partial reduction in the maximum effect of the 
fungicide on the pathogen growth rate even at high effective 
doses, or as a reduction in the efficacy of lower effective doses 
of the fungicide. We will refer to these types of resistance as 
‘asymptote shift’ and ‘curvature shift’ respectively, to reflect 
their effect on the fungicide dose–response (Figure  1a,b). 
Resistance resulting from an asymptote shift is sometimes re-
ferred to as ‘qualitative’ or ‘type I' resistance, and resistance 
resulting from a curvature shift as ‘quantitative’ or ‘type II' re-
sistance (Elderfield 2018; Mikaberidze et al. 2017; Taylor and 
Cunniffe 2023a).

Let us consider which resistance mechanisms are likely to lead 
to either a partial asymptote shift or a curvature shift. Some fun-
gicides bind competitively directly to the enzyme active site: for 
example, DMI fungicides bind competitively to the CYP51 pro-
tein, which catalyses a step in ergosterol biosynthesis (Hargrove 
et al. 2015), occupying the P450 active site and preventing sub-
strate binding. A target-site mutation that causes a small to mod-
erate reduction in the affinity of the enzyme for the fungicide 
will reduce fungicide efficacy at low fungicide concentrations 
but not at high fungicide concentrations. This case is therefore 
best represented by a curvature shift. A curvature shift will also 
be representative of other resistance mechanisms that reduce 
fungicide efficacy at low fungicide concentrations but are over-
whelmed by high fungicide concentrations. These may include 
target-site overexpression and non-target-site metabolic resis-
tance mechanisms such as increased expression of efflux pumps 
and detoxification. A partial asymptote shift could result from 
a target-site mutation that reduces the maximum effect of fun-
gicides, which bind allosterically and non-competitively to an 
enzyme. These fungicides change the structure of the enzyme 
in a way that inhibits enzyme function or reduces access to or 
binding of the substrate to the enzyme active site. An example 
is the cyanoacrylate phenamacril, which is used against a num-
ber of Fusarium species (Wollenberg et al. 2020). The maximum 
effect of these fungicides could be partially reduced by a target-
site mutation that changes the shape of the enzyme–fungicide 
complex, partially restoring enzyme function.

Multiple fungicide applications per year are often useful for 
control of polycyclic foliar fungal pathogens. If the number of 
MoAs available for programmes is limited, use of mixtures may 
require splitting the total dose of a fungicide across two or more 
applications, reducing the dose of each MoA per application but 
increasing the exposure time of the pathogen to each fungicide, 
with counteracting (but not necessarily equal) effects on selec-
tion for resistance. If resistance is evolving ‘concurrently’ to two 
or more MoAs at the same time, there are complex trade-offs 
for resistance management. Whether ‘splitting and mixing’ is a 
useful strategy for management of concurrent evolution of re-
sistance will depend on the balance between the effects of mix-
ture and dose splitting on selection. However, variation in the 
effects of dose splitting has been observed in field trials (Paveley 
et al. 2020; Young et al. 2021) and is not well understood. van 
den Bosch, Oliver, et  al.  (2014) hypothesise that dose splitting 
will increase selection overall for strains with an asymptote shift 
and highlight several experimental studies that support this the-
ory. The effect of dose splitting on selection for partially resistant 
strains with a curvature shift has not been explicitly considered 
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in previous modelling studies. An improved understanding of 
how fungicide properties and type of resistance determine the 
effect of dose splitting on selection for resistant pathogen strains 
is needed to inform management tactics.

To investigate the effect of dose splitting on selection, we de-
veloped a model of fungicide resistance evolution in Z. tritici. 
Z. tritici is one of the most common and damaging pathogens 
affecting winter wheat crops in the UK and worldwide, associ-
ated with a reduction in crop quality and yield losses of up to 
50% if uncontrolled (Fones and Gurr  2015). It has evolved re-
sistance to QoIs, DMIs and SDHIs (Cools and Fraaije  2013; 
Dooley et al. 2016; Huf et al. 2018; Rehfus et al. 2018; Torriani 
et  al.  2009), with a corresponding decline in disease control 
(Blake et al. 2018). The model simulates a typical UK epidemic 
of STB, describing the seasonal growth and senescence of the 
upper crop canopy of winter wheat under average tempera-
ture  conditions in the UK, key processes in the pathogen life 
cycle (sporulation, infection and growth) and their interaction 
with fungicides. In the UK, initial infection of wheat crops by Z. 
tritici occurs in autumn or spring through airborne ascospores 

or by splash-dispersed conidia from wheat stubble. The fungus 
develops slowly during a symptomless latent period, following 
which necrotic lesions form on the leaf surface. These produce 
asexual haploid pycnidiospores that spread to the upper leaf 
canopy through contact and rain splash, driving the majority of 
secondary infections within the growing season (Ponomarenko 
et al. 2011; Suffert et al. 2011).

Through model simulations, we compared the effects on selec-
tion for a resistant Z. tritici strain of applying a fungicide solo in 
either a single application at full label rate or in two applications, 
each at half the full label rate. It should be noted that use of a 
solo MoA is not recommended in practice. However, restricting 
the analysis to dose splitting of a solo fungicide enabled us to 
measure solely the effects of dose splitting, rather than the com-
bined effects of ‘splitting and mixing’, giving a clearer picture of 
the drivers in variation of the effects of dose splitting. We used 
the model to investigate how the effect of dose splitting on se-
lection for resistance depends on (a) fungicide properties (foliar 
concentration half-life; asymptote and curvature dose–response 
parameters for the sensitive strain); (b) the type of resistance 

FIGURE 1    |    Effect of asymptote shift, �q, and curvature shift, �k, on the dose–response to fungicide dose, D(t). Panels (a) and (b) show the frac-
tional reduction, f (t), of pathogen life cycle parameters for different levels of asymptote shift and curvature shift, respectively. Panels (c) and (d) show 
f�(t) − f�(t), the resulting difference in f (t) of the sensitive strain compared to that of a resistant strain with an asymptote shift or a curvature shift, 
respectively. Dose–response shown for a fungicide with q� = 0.75, k� = 10. [Colour figure can be viewed at wileyonlinelibrary.com]

 13653059, 0, D
ow

nloaded from
 https://bsppjournals.onlinelibrary.w

iley.com
/doi/10.1111/ppa.14080 by R

otham
sted R

esearch, W
iley O

nline L
ibrary on [18/03/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://onlinelibrary.wiley.com/


4 of 16 Plant Pathology, 2025

(asymptote shift or curvature shift); and (c) the magnitude of the 
asymptote or curvature shift.

2   |   Materials and Methods

2.1   |   Model Background and Approach

We follow the approach of Hobbelen, Paveley, and van den 
Bosch (2011), modelling the leaf area index (LAI; a dimensionless 
measure of leaf density, defined as the total amount of one-sided 
leaf area of the canopy [m2] per unit ground area [m2]) and infec-
tion by Z. tritici pycnidiospores on the top three leaves of the wheat 
canopy only. Yield loss due to Z. tritici occurs due to a reduction in 
healthy leaf area duration (HAD) and the resulting loss of inter-
ception of photosynthetically active radiation (PAR) on the upper 
three leaves during grain filling; the level of disease on the upper 
canopy is a good predictor of yield loss (Parker et al. 2004; Shaw 
and Royle 1989). Fungicide applications targeted against Z. tritici 
are therefore mostly applied to the upper leaf canopy. Although 
there will be some fungicide exposure on lower leaves, previous 
modelling results suggest that it is on the upper leaf canopy that 
selection for resistance primarily occurs (van den Berg et al. 2013).

The dynamics of the epidemic in the model are driven by the 
growth and senescence of the crop, which determines the leaf 
area available for infection, and the effect of a fungicide on the 
pathogen life cycle over time. The leaf area can pass sequentially 
through healthy, latent (infected but not yet sporulating), infec-
tious (sporulating) and post-infectious stages; healthy and latent 
leaf area may also senesce due to leaf age. The infectious leaf 
area generates new infections on healthy leaf area. The model 
simulates the LAI of both the latent and infectious stages of a 
sensitive strain and a resistant strain of Z. tritici.

Our model has the same functional form as the one developed by 
Hobbelen, Paveley, Fraaije et  al.  (2011) and Hobbelen, Paveley, 
and van den Bosch (2011). However, the rate of senescence in that 
model was parameterised using data on spring barley (Hordeum 
vulgare) (Hobbelen, Paveley, Fraaije et al. 2011), and the simulated 
timing of crop senescence could impact on model predictions 
of the effects of dose splitting on selection for resistant strains. 
We therefore reparameterised the model (see Section 2.3) using 
a dataset of green leaf area index (GLAI) and Z. tritici infection 
of the top three leaves of wheat crops from 14 site-years (Milne 
et al. 2003, described as ‘Data set 1’; te Beest et al. 2009).

2.2   |   Model Equations

2.2.1   |   Growth and Senescence of Wheat Leaf Canopy

It is assumed that the growth rate of the total leaf area of the 
upper canopy is not affected by Z. tritici severity, so the total LAI 
and uninfected healthy GLAI are tracked separately (Hobbelen, 
Paveley, and van den Bosch 2011). In the absence of disease, the 
rates of change of the total LAI (A) and the total healthy GLAI 
(H) are given by

where t0 is the time at which leaf 3 emerges and the growth of the 
upper canopy commences, AMax is the maximum LAI, � is the 
growth rate of the leaf area, �(t) is the rate of senescence at time 
t , t�0 is the time of onset of senescence, t�T is the time at which 
the canopy has fully senesced and �, � and � are the coefficients 
controlling the rate at which senescence occurs in relation to the 
length of time after the onset of senescence. Time is measured in 
degree days (base 0°C, ‘zero-degree days’; see Section 2.3).

2.2.2   |   Infection of Crop by Z. tritici

The development of the STB epidemic is described in the model 
by tracking the LAI of latent and infectious lesions of the resis-
tant and sensitive strains.

It is assumed that the epidemic on the upper leaves is initiated 
by an influx of spores from infectious lesions on lower leaves. 
The density of infectious lesions on lower leaves, C, diminishes 
over time at rate �, as lower leaves senesce and infectious lesions 
on the lower leaves reach the end of the infectious period. The 
LAI of infectious lesions on lower leaves at time t , C(t), is calcu-
lated as

A fraction, ��Start, of the initial influx C from lower leaves is as-
sumed to be spores of the resistant strain, with the sensitive 
strain fraction ��Start = 1 − ��Start

. It is assumed that ��Start and ��Start 
are not affected by fungicide application after the start of the 
model simulation at growth stage (GS) 31. The initial influx 
is denoted as C� and C� for the sensitive and resistant strains, 
respectively.

The influx of spores, C, and infectious LAI on the upper can-
opy, I, are converted into new latent lesions on the upper can-
opy, at transmission rate �, that is, the overall rate at which 
infectious lesion density is converted into new latent lesions on 
a given density of healthy leaf area. Latent lesions mature into 
infectious, sporulating lesions, at a rate �, where 1/� is the av-
erage latent period. Infectious lesions die at a rate �, where 1/� 
is the average infectious period. Leaf senescence affects latent 
LAI, but not infectious LAI as the leaf tissue is already killed by 
the necrotic process of lesions becoming infectious (Hobbelen, 
Paveley, and van den Bosch 2011; Kema et al. 1996). The follow-
ing set of equations track the area index of healthy (H), latently 
infected (L) and infectious (I) leaf area over time, with L� and L� 
denoting the area index of latent lesions and I� and I� denoting 
the infectious area index of the resistant and sensitive strains, 
respectively:

(1)
dA

dt
=

{
0, t< t0

𝛾
(
AMax−A

)
, t> t0

(2)dH

dt
= �

(
AMax−A

)
−�(t)H

(3)where 𝛽(t)=

⎧⎪⎨⎪⎩

0, t< t𝛽0

𝜏

�
t− t𝛽0
t𝛽T − t𝛽0

�
+𝜑e

𝜔

�
t𝛽T −t

�
, t𝛽0 ≤ t≤ t𝛽T

(4)C(t)=C0e
−�t

(5)dH

dt
= �

(
AMax−A

)
−�(t)H−�

(
H

A

)(
C�+C�+ I�+ I�

)
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The final fraction of the resistant strain in the population at crop 
senescence, ��End, is calculated as

2.2.3   |   The Effect of the Fungicide on Pathogen 
Growth Rate

Fungicide effects on the two strains of Z. tritici are simulated 
in the model through a dose-dependent reduction of patho-
gen life cycle parameters � (transmission rate; Equations  6 
and 7) and � (the rate at which latent lesions are converted 
to sporulating lesions; Equations  8 and 9), slowing the rate 
of increase of the pathogen population. Single-site fungicides 
are assumed to reduce both the transmission rate and the rate 
of conversion of latent infections to sporulating lesions. The 
infectious period of sporulating lesions is assumed to be unaf-
fected by fungicides.

The fungicide dose at time t , D(t), is expressed as a propor-
tion of the maximum permitted individual dose (as defined on 
the product label), DMax, and decays exponentially over time 
at rate v:

where D0 is the applied dose and t∗ is the time of application. D(t) 
is the ‘effective dose’ referred to in Section 1.

The fungicide reduces the pathogen life cycle parameters � and 
� by a fraction f (t), which changes over time depending on the 
remaining fungicide dose, D(t). The dose–response of f (t) to D(t) 
(Figure 1a,b) is described by a combination of an asymptote pa-
rameter, q, which is the maximum fractional reduction of the 
pathogen life cycle parameter (i.e., at infinite fungicide dose), and 
a curvature parameter, k, which defines how quickly the frac-
tional reduction declines from the asymptote as D(t) decreases:

The asymptote parameters are denoted as q� and q�, the curva-
ture parameters as k� and k� and the fractional reductions as 
f�(t) and f�(t) for the sensitive and resistant strains, respectively. 
Each pathogen life cycle parameter affected by the fungicide is 
multiplied by (1 − f (t)) to represent the effect of the fungicide on 

the growth rate of the pathogen population. For example, the 
transmission rate of the sensitive strain at time t , ��(t), is calcu-
lated as

where �0 is the transmission rate in the absence of fungi-
cides. It is assumed that there are no fitness costs of resis-
tance. If f𝜎(t) > f𝜌(t), the density of the resistant strain will 
increase faster than the density of the sensitive strain, leading 
to an increase in the resistant strain fraction of the Z. tritici 
population.

2.2.4   |   Types of Fungicide Resistance

We simulate two types of fungicide resistance based on the na-
ture of the shift in sensitivity to the fungicide (‘sensitivity shift’):

Asymptote shift, �q: parameter q is reduced relative to 
the sensitive strain.

Curvature shift, �k: parameter k is reduced relative to 
the sensitive strain.

We describe the level of sensitivity shift as a percentage. For 
example, a 50% asymptote shift means that q� = 0.5q�. Partial 
resistance could take the form of either an asymptote shift or a 
curvature shift, or a combination of both. An asymptote shift 
means that the effect of any dose D(t) against the resistant strain 
of the pathogen is reduced (Figure  1a). For a curvature shift, 
the instantaneous effect of a high dose of the fungicide may still 
be as potent, but at lower doses, it is less effective against the 
resistant strain than against the sensitive strain (Figure 1b). The 
biological significance of asymptote and curvature shifts is dis-
cussed in Section 1.

A 100% asymptote and a 100% curvature shift are functionally 
identical: both represent strains that are completely resistant 
to the fungicide at any dose D(t). Otherwise, for a given per-
centage sensitivity shift, an asymptote shift will result in a 
more highly resistant strain than the same level of curvature 
shift (as can be seen by comparing Figure  1a,b). The differ-
ence in the fractional reduction of the sensitive strain com-
pared to that of the resistant strain, f�(t) − f�(t), is greatest at 
a high fungicide dose D(t) for asymptote shifts and greatest at 
an intermediate fungicide dose D(t) for partial (< 100%) curva-
ture shifts (Figure 1c,d).

2.2.5   |   Calculation of the Selection Coefficient

We used the selection coefficient, s, to compare the rate of se-
lection for the resistant strain in each scenario simulated 
(Milgroom and Fry  1988; van den Bosch, Oliver, et  al.  2014). 
The selection coefficient is defined as the difference in fitness 
between the resistant and sensitive strains due to the application 
of the fungicide, where fitness is measured by the per capita rate 
of increase, r, of a population:

(6)
dL�
dt

=��

(
H

A

)(
C�+ I�

)
−�L−�(t)L�

(7)
dL�

dt
=��

(
H

A

)(
C�+ I�

)
−�L�−�(t)L�

(8)
dI�
dt

= ��L�−�I�

(9)
dI�

dt
= ��L�−�I�

(10)��End
=

I�
(
t�T

)

I�
(
t�T

)
+ I�

(
t�T

)

(11)D(t)=D0e
−v(t−t∗)

(12)f�(t)=q�
(
1−e−k�D(t)

)

(13)f�(t)=q�
(
1−e−k�D(t)

)

(14)��(t)=�0

(
1− f�(t)

)
=�0

(
1−q�

(
1−e−k�D(t)

))

(15)s= r�−r�
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where r� and r� are the average per capita rates of increase of 
the resistant and sensitive strains, respectively, over the course 
of the growing season. We calculate total selection between the 
start of the simulation, t0, and crop senescence, time t�T, denoting 
the total length of time simulated as T. Assuming exponential 
growth of the sensitive and resistant strains (in the absence of 
density dependence), the density of the sensitive strain and re-
sistant strain at time t�T, denoted as P�

(
t�T

)
 and P�

(
t�T

)
, respec-

tively, can be calculated as

where P�(0) and P�(0) are the initial densities of the sensitive and 
resistant strain, respectively, at the start of the simulation.

Rearrangement of Equations (16) and (17) for r� and r� and sub-
stitution of Equation (15) give

This can also be expressed in terms of the population fractions 
of the resistant and sensitive strains, �� and �� at the beginning 
of the simulation and the end of the growing season:

2.3   |   Model Implementation and Parameterisation

The model was implemented in MATLAB R2022b (The 
MathWorks Inc. 2022) using a built-in function ‘ode45’ for the 
solution of the ordinary differential equations.

The model was parameterised using data on GLAI and Z. trit-
ici infection over time from field trials of wheat crops grown 
with and without fungicide application, recorded over 14 site-
years between 1993 and 1995 in the United Kingdom, and cor-
responding daily weather data from meteorological stations 
within 1 km of the site (Milne et al. 2003, described as ‘Data 
set 1’; te Beest et al. 2009). We refer to data from these trials 
as ‘Dataset 1’. For each site-year, Dataset 1 includes data on 
four cultivars (Riband, Apollo, Slejpner and Haven), with four 
replicates per cultivar.

We chose to follow previous models (Elderfield et  al.  2018; 
Hobbelen, Paveley, and van den Bosch et al. 2011; van den Berg 
et al. 2013) in parameterising the model on a zero-degree days 
scale. Weather data for the sites were used to calculate both 
the thermal time (degree days base 0°C) and photo-vernal-
thermal time (base 1°C) since sowing (Milne et  al.  2003; 
Weir et al. 1984) corresponding to each observation date. The 
photo-vernal-thermal time gave a more consistent profile for 
the timings of the upper canopy growth and senescence than 
thermal time (see Figure A.1.2 in File S1 for further details). 
Using linear regression, we derived a relationship between 

thermal time and photo-vernal-thermal time, tpvt, and used 
this to convert tpvt to the average thermal time in zero-degree 
days, t :

Dataset 1 was used to estimate the average number of zero-
degree days per day, z.

We assumed that data from field plots that received a fungi-
cide programme designed to provide full protection against 
disease (Milne et  al.  2003) are representative of canopy 
growth in the absence of disease. We used these data to esti-
mate the parameters controlling the growth and senescence 
of the wheat canopy: t0, t�0, t�T, AMax, �, �, � and � (defined 
in Section  2.2.1). The mean GLAI of the top three leaves at 
each observation time point was calculated for each site-year 
from data from all four cultivars and replicates in Dataset 1. 
The parameters were fitted to data pooled from six site-years 
with maximum observed GLAI ranging from 3.76 to 4.90 
(Cambridgeshire-1994, Devon-1994, Devon-1995, Kent-1995, 
Norfolk-1994, Norfolk-1995), using least-squares optimisation 
(lsqcurvefit, MATLAB R2022b; further details in File  S1). 
Model zero-degree days were mapped to growth stages on 
Zadoks' scale (Zadoks et al. 1974), based on the fitted values of 
t0, t�0, t�T and the estimated phyllochron length (see File S1 for 
further details).

We estimated Z. tritici life cycle parameters �, � and � (defined in 
Section 2.2.2) based on data from a literature search (Table 2). 
In combination with C0 (Equation 4) and �0 (Equations 6, 7 and 
14), these parameters describe the infection of crop by Z. tritici 
in the absence of a fungicide. We estimated values for C0 and 
�0 using data on STB epidemic progress (% severity) (Dataset 1) 
on untreated plots on which the maximum severity of the STB 
epidemic exceeded 5% and the maximum cumulative severity 
of yellow rust, brown rust and powdery mildew did not exceed 
15%. Data from cultivars that were considered moderately re-
sistant at the time the trials were carried out were used to es-
timate �0. Data from six site-years (Devon-1994, Devon-1995, 
Hampshire-1995, Herefordshire-1994, Herefordshire-1995, 
Kent-1994) fitted these criteria. We fitted separate values of 
C0 and �0 for each site-year-cultivar combination using least-
squares optimisation and calculated the average of these val-
ues (further details in File S1).

We used data from AHDB Fungicide Performance trials 
(AHDB 2024a) on the observed dose–response of STB severity 
to fluxapyroxad and isopyrazam from 2011 to 2012 (Dataset 2) 
to estimate indicative values of q� and k� for SDHI fungicides 
(see File S1 for further details), using an estimate of � based on a 
literature search (Table 2).

2.4   |   Model Simulations of Dose Splitting

We investigated the impact of dose splitting on selection for re-
sistant strains with either an asymptote shift or a curvature shift 
(either partial or complete resistance) for a range of values of the 
fungicide parameters q�, k� and � and of the pathogen transmis-
sion rate, �0 (Table 1). We compared selection for the resistant 

(16)P�
(
t�T

)
=P�(0)e

r�T

(17)P�
(
t�T

)
=P�(0)e

r�T

(18)s=
1

T

(
ln

(
P�
(
t�T

)
P�(0)

P�(0)P�
(
t�T

)
))

(19)s=
1

T

(
ln

(
��End

��Start

��Start
��End

))

(20)t=1.204tpvt+778.6
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strain following a single application of the fungicide at full label 
rate, DMax, at either growth stage 32 (GS32) or GS39, to selec-
tion for the resistant strain following a ‘split dose’ application of 
0.5DMax at both GS32 and GS39. In all simulations, the total dose 
applied to the upper leaf canopy, DTotal, was equal to DMax.

The foliar concentration half-lives of fungicide products can be 
very variable depending on the crop and environmental condi-
tions (Fantke et al. 2014). We simulated three values of � (Table 1), 
equivalent to foliar half-lives of 3, 6 and 12 days; SDHI fungicides 
such as fluxapyroxad, penthiopyrad and fluopyram have an av-
erage half-life of approximately 6 days (Fantke et  al.  2014; He 
et al. 2016; Noh et al. 2019). Figure 2 illustrates the effect of the 
decay rate on the simulated fungicide dose D(t) and fractional re-
duction f (t) over time following single and split dose applications.

We included very low and high values of parameters q� and k� in 
the analysis to understand the extremes of the range of possible 
effects of dose splitting. In practice, these parameter values are 
unlikely in a commercially available fungicide: fungicides with 
very low values of q� or k� would not be effective, while very high 
values are more likely to be associated with an unacceptable 

toxicity profile. We compared our results to those obtained using 
our fitted parameter values for SDHI fungicides to understand 
the most likely range of effects of dose splitting on selection for 
resistance to commercial fungicides.

We assumed that ��(0) = 0.01, that is, 1% of the inoculum initi-
ating the epidemic was the resistant Z. tritici strain, while the 
remaining 99% of the population was sensitive to the fungicide. 
The simulations were run for a single growing season from the 
start of the leaf growth of the upper canopy, t0, to complete can-
opy senescence, t�T. For each combination of parameter values 
simulated, the selection coefficient for the resistant strain, s, was 
calculated (Equation 19). The percentage change in the selection 
coefficient due to dose splitting, �, was then calculated as

where sSingle is the selection coefficient for a single application at 
DTotal and sSplit is the selection coefficient for the resistant strain 
for a split dose application.

3   |   Results

3.1   |   Model Parameterisation

The fitted model parameters are summarised in Table  2. The 
model fit to observed GLAI in the absence of disease was good 
(Figure  3a; n = 76, R2 = 76.9%, RMSE = 0.76). For the cultivar-
site-year combinations used to fit �0, the transmission rate in the 
absence of fungicide, the overall fit to observed disease severity 
progress was excellent (n = 293, R2 = 88.4%, RMSE = 2.8%); fitted 
values of �0 ranged from 0.0136 to 0.0364, with a mean value of 
0.0211. In the absence of a fungicide, the model predicts STB 
severity of 9.5% (Figure  3b) at GS75 (medium milk), which is 
approximately equivalent to the expected average severity on a 
cultivar with an AHDB resistance rating of 6 (AHDB 2024b).

3.2   |   Effect of Dose Splitting on Selection 
for Fungicide Resistance

For the range of parameter values simulated (Table 1), we show 
results for both the overall magnitude of selection, measured 
by the selection coefficient s (Section  2.2.5), and the percent-
age change in selection due to dose splitting, � (Equation  21). 
When describing the baseline level of efficacy of a fungicide in 
Sections 3.2.1 and 3.2.2, we refer to the dose–response against 
the sensitive strain, notated as q� and k� for the asymptote and 
curvature parameter, respectively. For a resistant strain with an 
asymptote shift, 𝜁q > 0 but no curvature shift, that is, �k = 0, 
note that k� = k�. For a resistant strain with a curvature shift 
𝜁k > 0 but no asymptote shift, q� = q�.

3.2.1   |   Magnitude of Selection

The magnitude of selection for fungicide resistance, measured 
by the selection coefficient s, increased for both single and 

(21)�=100×

(
sSplit− sSingle

)
sSingle

TABLE 1    |    List of parameter values simulated.

Parameter Description Values simulated

DTotal Total fungicide 
dose applied to the 
upper leaf canopy

1, i.e. DMax

��Start
Initial fraction of 
the inoculum C 
that is resistant

0.01

q� Asymptote 
of fungicide 

dose–response 
(sensitive strain)

0.05, 0.1, 0.25, 0.5, 
0.75, 0.8, 0.95, 1

k� Curvature 
of fungicide 

dose–response 
(sensitive strain)

0, 0.25, 0.5, 0.75, 
1, 1.5, 2, 4, 5, 7.5, 

10, 15, 20, 30

� Decay rate (t−1) 0.01605, 0.00802, 
0.00401

�q Asymptote shift of 
the resistant strain

0, 1, 5, 10, 25, 
50, 75, 90, 100

�k Curvature shift of 
the resistant strain

0, 1, 5, 10, 25, 
50, 75, 90, 100

�0 Transmission rate 0.01055, 0.0211, 
0.0422, 0.0800

GS32 Timing of GS32 
application (zero-

degree days)

1495

GS39 Timing of GS39 
applications (zero-

degree days)

1653

Note: All combinations of q�, k� and �  values simulated for each value of �q and 
�k listed.
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8 of 16 Plant Pathology, 2025

split dose fungicide applications with increasing values of the 
asymptote parameter, q�, curvature parameter, k�, asymptote 
shift, �q, curvature shift, �k, or transmission rate, �0, and with 
decreasing values of the decay rate, � (Figure 4, Figure A.2.1 
in File  S2). This means that a strain with resistance against 
a highly effective fungicide (with high values of q�, k� and a 
relatively low value of �) would spread more quickly if the 
fungicide was applied, compared to a strain with resistance 
against a fungicide with lower efficacy. The greater the effect 
of a fungicide on the growth rate of the sensitive strain, the 
greater the maximum magnitude of the cumulative difference 
in growth rates between the resistant and sensitive strains 
when the fungicide is applied. More highly resistant strains 
(higher values of �q or �k) will also spread more quickly, as 
they have higher growth rates in the presence of a fungicide 
relative to the sensitive strain.

As noted in Section 2.2.4, either a 100% asymptote shift or 100% 
curvature shift leads to a strain that is completely resistant to the 

fungicide at any dose D(t), and an identical value of s for a given 
combination of q� , k� and �. For a given sensitivity shift percent-
age less than 100% (e.g., 50% or 90%), s is higher for an asymptote 
shift than for the same level of curvature shift, as the asymptote 
shift corresponds in a more highly resistant strain, leading to a 
greater cumulative difference in growth rates between the resis-
tant and sensitive strain when fungicide is applied.

For partial and complete asymptote shifts, s was consistently 
higher for split-dose applications than for single applications.

3.2.2   |   Effect of Dose Splitting on Selection 
for Resistance, �

The values of the asymptote parameter, q�, and asymptote shift, 
�q, have very little impact on the percentage change in the selec-
tion coefficient s (� in Equation 21) as a result of dose splitting 
(Figure 5). q� also has very little impact on � for a curvature shift 

FIGURE 2    |    Effect of decay rate � on the simulated fungicide dose, D(t), and fractional reduction, f (t), over time following single (solid black line) 
and split dose (blue dashed line) applications of a fungicide with q = 0.75, k = 10. Panels (a), (b) and (c) show D(t) for � = 0.016 t−1, � = 0.008 t−1 and 
� = 0.004 t−1, corresponding to foliar half-lives of 3, 6 and 12 days, respectively. Panels (d), (e) and (f) show f (t) for � = 0.016 t−1, � = 0.008 t−1 and � = 
0.004 t−1, respectively. [Colour figure can be viewed at wileyonlinelibrary.com]
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(Figure A.2.2, in File S2). This is because q� and �q do not affect 
the length of time for which there is a difference in the level of 
control exerted by single and split dose applications. The cur-
vature parameter, k�, and the decay rate, �, together control the 
value of �, in combination with the curvature shift, �k, where 
relevant (Figure 6). The transmission rate, �0, only has a small 
effect on the value of � (Figure A.2.3 in File S2).

For any asymptote shift, dose splitting increased selection for re-
sistance. The value of � for an asymptote shift varied from < 5% 
to 40%, depending on the values of k� and � (Figure 6a–c). Our 
results suggest that splitting the dose of a solo SDHI across two 
applications rather than making a single application at full dose 
rate could increase selection for a strain with an asymptote shift 
to the SDHI by approximately 20%.

For curvature shifts, � varied from −20% to 80% (Figure 6d–f), 
indicating that dose splitting can reduce selection for partially 
resistant strains in some cases, but in other cases it may lead 
to a large increase in selection for resistance, dependent on the 
values of k�, � and �k. The value of � increased with the curvature 

parameter, k�, reaching an asymptote at high values of k� when 
the fungicide half-life was short (Figure 6d). For longer fungi-
cide half-lives, the value of � initially increased with k� to a max-
imum, then decreased at very large values of k� (Figure 6f). For 
larger curvature shifts, �k, the �-values approach the curves for 
asymptote shifts (Figure 6a–c). For smaller curvature shifts, �k 
< 50%, � initially increased with k�, to a maximum at approxi-
mately 5 ≤ k� ≤ 10, and then decreased again for larger values 
of k�. For small curvature shifts, �k, large curvature param-
eters, k�, and longer fungicide half-lives, � approached zero or 
even became negative. Our results suggest that dose splitting 
of a solo SDHI application would increase selection for a strain 
with a curvature shift to the SDHI by approximately 20%–35%, 
with smaller curvature shifts falling towards the upper end of 
this range.

Dose splitting will increase selection for resistance if it leads 
to a larger difference in the growth rates of the sensitive strain 
and resistant strain for a longer time than a single application, 
that is, if it increases the overall sum of the differences in frac-
tional reduction, 

∑T
t=0

�
f�(t) − f�(t)

�
. For an asymptote shift, 

TABLE 2    |    Fitted parameter values.

Parameter Definition Units Fitted value Source

t0, GS31 Timing of the start of growth of leaf 3 t 1396 a

GS32 Timing of GS32: leaf 3 fully emerged t 1495 a

GS37 Timing of GS37: leaf 2 fully emerged t 1574 a

GS39 Timing of GS39: flag leaf fully emerged t 1653 a

t�0, GS61 Timing of anthesis and start of leaf 3 senescence t 1891 a

t�T, GS87 Timing of end of grainfill and complete senescence of wheat canopy t 2567 a

AMax Maximum leaf area index of top three leaves of the wheat canopy — 4.438 a

� Growth rate of leaf area t−1 0.0082 a

� Coefficients controlling the rate of senescence over time, in 
relation to the length of time after the onset of senescence

t−1 0.0028 a

� t−1 0.704 a

� t−1 0.314 a

1/� Average latent period t 350 b

1/� Average infectious period t 600 c

C0 Initial density of infectious lesions on the lower leaves — 0.0144 a

� Rate at which C(t) decreases t−1 0.00897 d

�0 Transmission rate — 0.0211 a

z Number of zero-degree days per day t 14.4 a

q� Asymptote parameter for an SDHI fungicide (against sensitive strain) — 0.569 e

k� Curvature parameter for an SDHI fungicide (against sensitive strain) — 9.9 e

� Decay rate for an SDHI fungicide t−1 0.00802 f

Note: Time, t , is measured in degree days (base 0°C) after sowing.
aEstimate based on ‘Data set 1’ from Milne et al. (2003).
bShaw (1990); Suffert et al. (2013).
cBoixel (2020); Eyal (1971).
dHobbelen, Paveley, and van den Bosch (2011).
eEstimate based on data from AHDB Fungicide Performance field trials.
fFantke et al. (2014); He et al. (2016); Noh et al. (2019).
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10 of 16 Plant Pathology, 2025

FIGURE 3    |    Model simulation of the growth, senescence and infection by Zymoseptoria tritici of the upper wheat canopy. (a) Model simulation of 
healthy leaf area index (LAI) in the absence of disease (solid line) and observed green leaf area index (GLAI) measurements used for parameterisation 
of wheat canopy (points) (n = 76, from six sites from Dataset 1). The simulated timings of growth stages 32, 37, 39, 61 and 75 are indicated (blue ar-
rows). (b) Model simulation of healthy (not latently infected) LAI in the presence of Z. tritici, latently infected LAI and infectious LAI for an average 
untreated epidemic of Septoria tritici blotch in the UK. [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 4    |    Effect of fungicide properties and resistance type on the magnitude of selection for a resistant strain. Variation in selection coeffi-
cient, s, with (a) asymptote parameter, q�; (b) curvature parameter, k; (c) decay rate, �; (d) asymptote shift, �q; and (e) curvature shift, �k. Only one 
parameter varied at a time: � = 0.008 for (a), (b), (d) and (e); q� = 0.75 for (b)–(e); k� = 10 for (a) and (c)–(e); �q = 100% for (a)–(c) and 0% for (e); �k = 0% 
for (a)–(d). s measures the magnitude of selection for a resistant strain. [Colour figure can be viewed at wileyonlinelibrary.com]
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the maximum difference in the growth rates of the sensitive 
strain and the resistant strain occurs at high fungicide doses, 
D(t), for which the fractional reduction f�(t) is close to the 
maximum (as defined by the asymptote q�) (Figure 1c). For a 
curvature shift, dose–response curves for sensitive and resis-
tant strains converge at high values of D(t). The maximum dif-
ference in the fractional reduction and resulting growth rates 
of the sensitive strain and a resistant strain with a curvature 
shift occurs at intermediate fungicide dose D(t) (Figure  1d). 
As discussed by Taylor and Cunniffe  (2023b), the effect of 
dose–response convergence on selection must be considered 
not only at the applied dose, but across the full time span of 
fungicide decay. Dose splitting increases the length of time 
that the pathogen is exposed to intermediate fungicide doses, 
which therefore increases 

∑T
t=0

�
f�(t) − f�(t)

�
. The results in 

Figure 6 can be understood by considering how the values of 
k�, � and �k affect the size and duration of the difference in the 
growth rates of the sensitive and resistant strain, for single 
and split dose applications.

3.2.2.1   |   Effect of Decay Rate, �.  For both asymptote shifts 
and curvature shifts, � was higher for larger values of � (Figure 6). 
If the decay rate is high, the effect of a single application dissipates 
quickly, so a split dose application is likely to double the exposure 
time. If the decay rate is low, the effect of a single application at 
full dose rate will last for longer, so there is less difference in expo-
sure time compared to the split dose application.

3.2.2.2   |   Why Does � Increase With k
�
 for Asymptote 

Shifts?.  For small values of the curvature parameter k� 
(approx. < 4), the maximum reduction of the sensitive strain life 
cycle parameters is only achieved at a high fungicide dose, D(t) , 
and the fractional reduction reduces quickly as D(t) decreases 
(Figure A.2.4a in File S2). Therefore, the higher maximum dose 
applied in the single application initially achieves a much higher 
fractional reduction than the split dose application. Larger 
corresponding differences in the growth rates of the resistant 
and sensitive strain partially counterbalance the increased 
selection from the increased exposure time in the split dose 
application. The rate of selection from either a single or split dose 
application is therefore relatively similar for small values of k�, 
resulting in small values of �.

As k� increases, the fractional reduction remains close to the 
maximum fractional reduction even at lower fungicide doses 
≤ 0.5 DMax, so at lower values of D(t), differences in the growth 
rates of the resistant and sensitive strain are similar to the differ-
ence at the full dose rate (Figure A.2.4b in File S2). The effect of 
the increased exposure time from the split dose therefore domi-
nates at higher values of k�, resulting in higher values of �.

3.2.2.3   |   Why Does � Exhibit a Maximum vs. k
�
 

for Asymptote Shifts When � Is Low?.  If k� is large 
and � is low, the effect of a single application persists close to 
the maximum fractional reduction for a long time (Figure  2f; 

FIGURE 5    |    Negligible effect of asymptote parameter, q�, and asymptote shift, �q on �, the percentage change in selection due to dose splitting. 
Variation in � with (a) q� and (b) �q for k� = 1, 2, 5 and 10. (c) Variation in � with q� for decay rates � = 0.004 t−1, 0.008 t−1 and 0.016 t−1. � is measured 
as the percentage change in selection as a result of splitting a total fungicide dose DTotal over two applications of 0.5DMax at GS32 and GS39. [Colour 
figure can be viewed at wileyonlinelibrary.com]
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12 of 16 Plant Pathology, 2025

Figure A.2.4c in File S2), which shifts the point at which there 
is a large difference in the fractional reduction from the single 
application and the split dose application later in the season. 
Because canopy senescence begins to restrict the growth rates 
of both the resistant and sensitive strains later in the season, 
the value of � is reduced relative to the maximum at intermedi-
ate values of k� and lower values of �. However, the effect of dose 
splitting may still be larger than for small values of k�.

3.2.2.4   |   Why Does � Increase With k
�
 More for Curva-

ture Shifts Than for Asymptote Shifts?.  As k� increases, 
the dose–response curve for the sensitive strain becomes more 
steeply curved, resulting in a decrease in the fungicide dose D(t) 
at which the difference f�(t) − f�(t) is maximised for a curvature 
shift. The larger the value of k� and the smaller the value of �k , 
the lower the dose D(t) at which the difference f�(t) − f�(t) is 
maximised (Figure  1; Figure  A.2.4d–f in File  S2), as resistant 

FIGURE 6    |    Percentage change in selection, �, as a result of dose splitting for a range of parameter values: Curvature parameter, k�, decay rate, v, 
and levels of sensitivity shift, �q and �k. Dose splitting simulated as two applications of 0.5DMax at GS32 and GS39, compared to a single application 
of DMax at GS32. Panels (a), (b) and (c) show the effect of k� on � for a resistant strain with an asymptote shift, �q, for fungicide decay rates � = 0.016 
t−1, � = 0.008 t−1 and � = 0.004 t−1, corresponding to foliar half-lives of 3, 6 and 12 days, respectively. Panels (d), (e) and (f) show the effect of k� on � 
for a resistant strain with a curvature shift, �k, for fungicide decay rates � = 0.016 t−1, � = 0.008 t−1, and � = 0.004 t−1, respectively. Results shown for 
asymptote parameter q� = 0.5; the effect of q� on � is very small (see Figure 5). [Colour figure can be viewed at wileyonlinelibrary.com]
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strains with a small curvature shift are still well controlled at 
high fungicide doses.

For very small values of k�, the maximum difference in growth 
rates occurs at higher values of D(t) > 0.5DMax, which may not 
be reached using a split dose application. The maximum differ-
ence in growth rates is reached by the higher dose rate of the 
single application, partially counterbalancing the increased ex-
posure time from the split dose application. Therefore � is small 
for small values of k� for a curvature shift. For larger values of 
k�, the maximum difference in growth rates occurs at values of 
D(t) < 0.5DMax. A split dose application keeps D(t) close to the 
level that maximises f�(t) − f�(t) for longer. In combination with 
the effect of increased exposure time, a split dose application in-
creases selection more for strains with a curvature shift than 
for strains with an asymptote shift for intermediate values of k�.

3.2.2.5   |   Why Does � Become Negative for Small Curva-
ture Shifts, Large Values of k

�
 and Small Values of �?.  If 

k� is large and �k is small, the maximum difference in growth 
rates occurs at very small values of D(t) < 0.1DMax (Figure A.2.4f 
in File S2). If the decay rate, �, is also small, low values of D(t) 
are not reached for a split dose application until late in the sea-
son, when canopy senescence restricts the growth rates of both 
the resistant and sensitive strains, leading to low or even nega-
tive values of � for large values of k� combined with small values 
of � and small values of �k.

It is important to note that our results do not suggest that there 
would be no selection for resistance in cases where � was close 
to 0 or even negative: on the contrary, selection for resistance 
will usually be strong in cases with large values of k� and small 
values of � (Figure 4), as resistance against a very effective fun-
gicide gives a strong fitness advantage. However, in these cases 
dose splitting may have little effect on the strength of selection 
for resistance, or may even slightly decrease selection relative to 
a single application.

4   |   Discussion

Dose splitting is likely to increase selection for both target-site 
and non-target-site resistance. Our results suggest that the per-
centage increase in selection due to dose splitting, �, is likely 
to be particularly large for resistance mechanisms that cause 
a curvature shift, where the effect of the fungicide is reduced 
at lower concentrations but not at high concentrations. These 
mechanisms could include non-target-site resistance, target-site 
overexpression and target-site mutations that affect fungicide 
competitive binding rates. Our results also support the hypothe-
sis of van den Bosch, Oliver, et al. (2014) that dose splitting will 
increase selection for target-site mutations that cause an asymp-
tote shift.

We show that the effects of dose splitting can be very variable 
for both target-site and non-target-site resistance. The largest in-
creases in selection due to dose splitting are likely to occur for 
fungicides with a steeply curved dose–response curve (i.e., high 
values of k�) and a relatively short half-life (i.e., high values of 
the decay rate, �). In these cases, dose splitting should be consid-
ered high risk for both target-site and non-target-site resistance. 

Our analysis focused on dose splitting of a solo MoA, whereas 
resistance management guidelines recommend application in 
mixture with other MoAs; mixture may reduce selection for 
resistance and change the measured effects of dose splitting 
(Young et al. 2021). Where use of mixture requires ‘splitting and 
mixing’ due to limited numbers of effective MoAs for use in dis-
ease control, careful choice of mixture partners will be needed 
for fungicides for which dose splitting is high risk for resistance 
evolution. The use of alternative disease control measures as 
part of Integrated Pest Management (IPM) is likely to be partic-
ularly important in this context. Measures such as choice of crop 
cultivars with resistance to fungal diseases can reduce patho-
gen growth rates and/or enable a reduction in fungicide inputs, 
therefore reducing selection for fungicide resistance.

We found a small range of parameter values—fungicides with 
a large curvature parameter and a low decay rate—for which 
dose splitting could reduce selection for a resistant strain with a 
small curvature shift. However, these parameter values are rela-
tively unlikely for a commercial fungicide, unless a high level of 
persistence could be achieved without associated environmen-
tal toxicity that would prevent regulatory approval. We used 
SDHI fungicides as an example of a commercial MoA currently 
available to growers. Our results suggest that dose splitting of 
an SDHI fungicide applied solo will increase selection for resis-
tance by 20%–35%.

Our results suggest that variability in fungicide decay rates 
between years and sites due to differing environmental condi-
tions is likely to contribute to the variable selection for SDH-
mutants observed in field experiments on dose splitting (Paveley 
et al. 2020; Young et al. 2021). We modelled the effect of a 4-fold 
change in fungicide half-life, which is well within the maximum 
range observed in field conditions (Fantke et al. 2014). Our re-
sults suggest that for a fungicide with k� = 10, the variation in 
decay rates could account for the variation in the percentage ef-
fect of dose splitting on selection, �, in the range 10%–40% for an 
asymptote shift, or 0%–70% for a curvature shift (Figure 6b,e). 
The statistical power or field trials to detect the lower end of 
this range may be limited due to experimental noise, but our re-
sults confirm that dose splitting tends to increase selection for 
resistance.

There is a strong covariance between the fitted values of k�, 
q� and � for the SDHI fungicide, increasing uncertainty in the 
estimation of these parameters and the consequences of dose 
splitting. We also assumed that k� and q� were the same for the 
fractional reduction of the transmission rate and the rate of con-
version from latent to infectious leaf tissue. Measures of fungi-
cide foliar half-life for each trial, and laboratory investigation 
of the effects of different fungicide dose rates on life cycle pa-
rameters such as latent period, could provide valuable additional 
evidence to inform these parameter values.

In our study, we assumed negligible fitness costs of fungicide 
resistance, which is often the case (Hawkins and Fraaije 2018; 
Mikaberidze and McDonald 2015). However, fitness costs may 
sometimes suppress the growth rate of the resistant strain to 
a level below the growth rate of the sensitive strain. This can 
occur in the absence of fungicide, at low fungicide doses for an 
asymptote shift (Mikaberidze et al. 2017), or at high fungicide 
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doses for resistant strains with a small curvature shift. Fitness 
costs have been reported for some target-site and non-target-site 
mutations; conversely, resistant strains can also have increased 
virulence relative to wild-type strains (Dorigan et al. 2023).

We did not explicitly model polygenic resistance, where resis-
tance is conferred by multiple genes and the degree of resistance 
can build up gradually over time as resistance mutations accu-
mulate. At the population level, this process leads to a continu-
ous distribution of resistance phenotypes across strains, with the 
average levels of resistance increasing over time as selection for 
resistance continues (Shaw  1989; Taylor and Cunniffe  2023a). 
The difference between the dose–response curves of partially 
resistant strains may be analogous to a small curvature shift in 
our model, meaning that dose splitting could strongly increase 
the rate of selection for polygenic resistance.

The variable effect of dose splitting complicates management 
of resistance evolving ‘concurrently’ to two or more MoAs at 
the same time. Use of mixtures may require splitting the total 
dose of a fungicide across two or more applications (‘splitting 
and mixing’) due to a limited number of MoA  available. The 
balance between the effects of mixture and dose splitting on 
selection for resistance will change depending on fungicide 
properties and resistance type and strength. Previous modelling 
studies found that if it is necessary to combine two high-risk 
fungicides in a programme, mixture rather than alternation or 
concurrent use will generally present the best strategy to max-
imise the length of time that effective disease control can be 
maintained (Elderfield  2018; Hobbelen et  al.  2013). However, 
Elderfield (2018) found that alternation may be a better strategy 
against strains with a small curvature shift. Experimental evo-
lution in  vitro on sensitive isolates of Z. tritici using mixtures 
of high-risk fungicides showed that the success of mixture in 
delaying resistance depended strongly on the mixture compo-
nents, and some reduced-dose mixtures selected for generalist, 
multidrug resistance (MDR; Ballu et  al.  2021). These results 
may be explained by our finding that dose splitting increases 
selection more for strains with a small curvature shift—repre-
sentative of non-target-site resistance—than for strains with 
an asymptote shift. The optimal strategy to slow evolution of 
resistance to one fungicide may not be the optimal strategy for 
another fungicide. The efficacy of the fungicide programme is 
also a vital consideration, and, where relevant, the effects of sex-
ual reproduction of the pathogen. We will use the insights into 
the drivers of variation in the effects of dose splitting presented 
in this paper to underpin further work investigating whether 
‘splitting and mixing’ or alternation of two fungicides is a better 
strategy when concurrent evolution of resistance is a concern.

Because the balance between the effects of mixture and dose 
splitting on selection for resistance will differ for asymptote 
and curvature shifts, this could introduce trade-offs between 
tactics to reduce selection for large, target-site asymptote shifts 
and alternative tactics to limit incrementally increasing levels 
of resistance due to mechanisms that cause a curvature shift. 
These trade-offs appear to occur in weed management, where 
the use of herbicide mixtures is associated with a lower prev-
alence of target-site resistance but a higher prevalence of met-
abolic resistance (Comont et  al.  2020). Fungicide resistance 
management strategies have tended to focus on large asymptote 

shifts associated with target-site mutations, as these can lead to 
a rapid loss of fungicide efficacy, for example, as experienced 
in QoI fungicides for multiple pathogens (Grimmer et al. 2015). 
Due to their large effects, target-site mutations that result in 
an asymptote shift are more likely to be quickly identified and 
studied than individual non-target-site resistance mechanisms 
that may be overlooked due to the small effects of each gene (Hu 
and Chen  2021). However, in combination with target-site re-
sistance, non-target-site mechanisms may contribute to highly 
resistant MDR strains (Omrane et al. 2017). Synergistic interac-
tions between resistance mechanisms could enhance the over-
all impact of non-target-site resistance: for example, increased 
efflux reduces the cellular fungicide concentration and could 
therefore increase the effect of a target-site mutation that causes 
a partial curvature shift. Wherever possible, tactics should be 
chosen for their effectiveness against both target-site and non-
target-site resistance.
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