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Summary 

• Globally, weedy plants are a major constraint to sustainable crop production. Much of the 

success of weeds rests with their ability to rapidly adapt in the face of human-mediated 

management of agroecosystems.  

• Alopecurus myosuroides (blackgrass) is a widespread and impactful weed affecting 

agriculture in Europe. Here we report a chromosome-scale genome assembly of 

blackgrass and use this reference genome to explore the genomic/genetic basis of non-

target site herbicide resistance (NTSR).  Based on our analysis of F2 seed families 

derived from two distinct blackgrass populations with the same NTSR phenotype, we 

demonstrate that the trait is polygenic and evolves from standing genetic variation.  

• We present evidence that selection for NTSR has signatures of both parallel and non-

parallel evolution. There are parallel and non-parallel changes at the transcriptional level 

of several stress- and defense-responsive gene families. At the genomic level, however, 

the genetic loci underpinning NTSR are different (non-parallel) between seed families.  

• We speculate that variation in the number, regulation and function of stress- and defense-

related gene families enable weedy species to rapidly evolve NTSR via exaptation of 

genes within large multi-functional gene families.  

• These results provide novel insights into the potential for, and nature of plant adaptation 

in rapidly changing environments. 

 

Key words: Blackgrass (Alopecurus myosuroides), Genome, Non-target site herbicide 

resistance, rapid plant adaptation 

 

Introduction 

Human-mediated environmental change is driving rapid evolutionary responses in the 

global biota (Palumbi, 2001; Hendry et al., 2011) and it is important to understand the outcome 

of these changes in natural and agricultural plant populations and communities.  Reference 

genomes offer glimpses into the adaptive potential of plants when challenged with novel stresses, 

while agricultural weeds have been proposed as ideal models to address fundamental questions 

in plant ecology and evolution (Neve et al., 2009; Vigueira et al., 2013; Kreiner et al., 2018; 

Baucom, 2019; Mahaut et al., 2020).   
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Herbicide use has become a mainstay of weed management. Unsurprisingly, heavy 

reliance on herbicides has resulted in the rapid and widespread evolution of resistance, making 

herbicide resistance a widely studied weedy trait (Heap, 2014; Gould et al., 2018). Two ‘types’ 

of herbicide resistance are recognized (Powles & Yu, 2010; Gaines et al., 2020). Target site 

resistance (TSR) refers to modification of the sequence, copy number and/or expression of the 

gene encoding the herbicide target enzyme. Non-target site resistance (NTSR) encompasses a 

range of mechanisms that limit herbicide delivery to its site of action. Typically, NTSR is 

inherited in a quantitative manner, but despite some advances in identifying and/or validating 

causal loci (Cummins et al., 2013; Delye, 2013; Tetard-Jones et al., 2018; Franco-Ortega et al., 

2021, Han et al., 2021), efforts to discern the genomic basis and evolutionary dynamics of this 

trait have been hampered by lack of access to genomic resources. 

The widespread evolution of herbicide resistance is an emblematic example of repeated 

(or convergent) evolution of plant defence in the face of an extreme, novel selection pressure 

(Baucom, 2016). In general, TSR has provided an example of genetic parallelism (Martin & 

Orgogozo, 2013) where the convergent evolution of resistance is underpinned by parallel 

patterns of selection at single major loci (Powles & Yu, 2010; Gaines et al., 2020). The genetic 

basis of NTSR is not fully resolved, but current evidence suggests that this trait is polygenic, that 

the genomic architecture of NTSR may be determined by selection at parallel and non-parallel 

genetic loci (Van Etten et al., 2020; Kreiner et al., 2021), via co-option (or exaptation) of 

standing genetic variation in plant stress- and defensive-responsive pathways (Hawkins et al, 

2019). Addressing these questions through studies of the genomic basis of NTSR has power to 

answer fundamental questions about the importance of genetic parallelism and non-parallelism, 

genomic constraint, genetic background (contingency) and standing genetic variation in rapid 

plant adaptation to a novel environmental stress (Allen Orr, 2005a,b; Losos, 2011; Lobkovsky & 

Koonin, 2012; Bolnick et al., 2018). 

The diploid, allogamous grass, Alopecurus myosuroides (blackgrass) is native to the 

Eastern Mediterranean and West Asia (Bulcke, 1975) but is now a widespread and impactful 

weed in agricultural crops in much of Europe (Menchari et al., 2007; Rosenhauer et al., 2013; 

Hicks et al., 2021) and in China (Liu et al., 2021). Blackgrass populations are prone to the rapid 

and widespread evolution of herbicide resistance. In a nationwide survey in England, most 

blackgrass populations exhibited resistance to multiple herbicide modes of action (Hicks et al., 
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2018). Resistance was conferred by coexisting TSR and NTSR mechanisms, with evidence that 

historical herbicide-use regimes favoured the evolution of the NTSR (Comont et al., 2020). 

Herbicide resistant blackgrass is estimated to cost UK farmers £0.4 billion per year (Varah et al., 

2020) and there is no evidence for fitness costs for any of a variety of life-history traits 

associated with NTSR (Comont et al., 2022). 

Access to genomes and genomic resources for weed species will greatly enhance the 

capacity to unravel contemporary adaptation in economically and ecologically important weedy 

plant species (Ravet et al., 2018). Here, we present a high-quality reference genome for 

blackgrass. We use these genome resources to reveal that patterns of convergent evolution of 

organismal- (whole plant assays) and gene expression-based phenotypes for NTSR-based 

resistance are conferred by non-parallel changes at mutiple genetic loci distributed widely 

throughout the blackgrass genome. 

 

Materials and methods 

Plant materials for genome sequencing and annotation 

Blackgrass seeds collected in 2017 from section 8 of the Rothamsted ‘Broadbalk’ long-

term experiment (Moss et al., 2004) were used to select an individual blackgrass plant for 

genome sequencing. Established in 1843, these field plots have never received herbicide 

application, and extensive testing of this population (Rothamsted) over the last 20 years has 

confirmed that it remains susceptible to all herbicides, representing a true wild-type blackgrass 

genotype. In addition, two field-collected blackgrass seed populations (Peldon and Lola91) 

previously characterized as being strongly non-target-site resistance (NTSR) to acetyl-CoA 

carboxylase (ACCase) inhibiting herbicides were used to generate F2 seed families (named CC2 

and CC5, respectively) for QTL-seq and RNA-seq analyses. Detailed protocols for the selection 

of a single herbicide sensitive plant for genome sequencing and for the development of CC2 and 

CC5 seed families are presented in the Supplementary Note. 

 

Genome survey  

A previous study has reported that blackgrass has seven chromosomes (Johnsson, 1944). 

In our study, genome size was estimated through flow cytometry and k-mer based analysis. Flow 

cytometry was conducted on four field collected blackgrass populations (the Rothamsted, 
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Lola91, and Peldon populations used within this study, plus a further herbicide susceptible 

population). Genome size estimates were generated for three replicate plants from each of these 

populations, against a known standard of the plant Allium schoenoprasum. Using these data, the 

blackgrass genome size was estimated as 3,312 – 3,423 Mb. K-mer based analysis from Illumina 

sequencing data of the Rothamsted population indicated a genome size of 3,400 Mb to 3,550 Mb. 

We also estimated the heterozygosity and repeat content of the blackgrass genome with GCE 

package (https://github.com/BioInfoTools/GCE), the results suggest the blackgrass genome 

exhibits high levels of heterozygosity (1.52%) and repeat content (84.2%).  

 

Genome sequencing  

A mix of single-molecule and short read sequencing data was collected for de novo 

genome assembly. These data include 513 Gb (144 X coverage) Pacbio continuous long reads, 

860 Gb (241 X coverage) Bionano optical maps, 126 Gb (35 X coverage) Hi-C reads, and 291 

Gb (81 X coverage) Illumia short reads. Detailed protocols for sequencing and assembly of the 

blackgrass genome are presented in the Supplementary Note. 

   

Genome assembly  

A de novo assembly of PacBio long reads into contigs was performed with MECAT2 

(Xiao et al., 2017). This produced 12,107 contigs with an N50 of 0.9 Mb and a total size of 4,906 

Mb. The assembled contigs were polished with PacBio long reads via Arrow 

(https://github.com/PacificBiosciences/SMRT-Link) and Illumina short reads with Pilon (v.1.20) 

(Walker et al., 2014). Polished contigs were repeat marked using WindowMasker (Morgulis et 

al., 2006) and then haplotype merged using HaploMerger2 (Huang et al., 2017) to address the 

high heterozygosity of the blackgrass genome. BioNano data were first filtered for molecule 

length (> 150Kb) and then aligned to primary contigs to select mapped molecules for de novo 

assembly to obtain the BioNano optical maps. The primary contigs and BioNano maps were 

combined to produce the base hybrid scaffold assembly. The Hi-C reads were aligned to the base 

assembly using the Juicer pipeline (Durand et al., 2016a). Hybrid scaffolds were then further 

scaffolded using the 3D-DNA pipeline (Dudchenko et al., 2017). The results were manually 

examined using the Juicebox Assembly Tools, an assembly-specific module in the Juicebox 

visualization system (Durand et al., 2016b). The Hi-C scaffolding resulted in seven 

https://github.com/BioInfoTools/GCE
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pseudomolecule chromosomes. Assembly gaps were identified and filled with Cobbler (v0.6.1) 

(Warren, 2016). The final assembly was polished again with PacBio long reads via Arrow and 

Illumina short reads via Pilon (Walker et al., 2014). Detailed methods are presented in the 

Supplementary Note.  

 

Genome assembly quality assessment  

The quality of the genome assembly was evaluated by the following analyses: (1) The 

Illumina short reads used for polishing were mapped to the genome assembly using BWA-MEM, 

and the mapping rate and genome coverage were examined. (2) The assembly was assessed for 

single-copy gene ortholog content with BUSCO (v.4.0.1) (Simao et al., 2015) using the 

embryophyta_odb10 database. (3) The long terminal repeat (LRT) assembly Index (Ou et al., 

2018) was calculated. (4) Correlation of the assembled chromosome length to the cytogenic 

chromosome length (Johnsson, 1944) was examined.  

 

Genome annotation  

A comprehensive non-redundant repeat library for the blackgrass genome was built using 

EDTA, a de novo transposable element (TE) annotator that integrates structure- and homology-

based approaches for TE identification (Ou et al., 2019). The EDTA pipeline incorporates 

LTRharvest, the parallel version of LTR_FINDER, LTR_retriever, GRF, TIR-Learner, 

HelitronScanner, and RepeatModeler as well as customized filtering scripts. Genome-wide 

prediction of ncRNAs, such as rRNA, small nuclear RNA and miRNA, was performed using the 

INFERNAL software (Nawrocki et al., 2009) to the Rfam database. The tRNA genes were 

predicted using tRNAscan-SE (Lowe & Eddy, 1997). 

Protein-coding genes were predicted by a combination of de novo prediction, homology-based 

and transcriptome-based strategies. SNAP (Korf, 2004), AUGUSTUS (Stanke et al., 2006) and 

GeneMark (Lomsadze et al., 2005) were used for ab initio gene predictions. For homology-based 

prediction, protein sequences of seven species (A.thaliana, O.sativa, S.bicolor, B.distachyon, 

H.vulgare, Z.mays and T.aestivum) were aligned to the genome assembly using GeMoMa 

program (Keilwagen et al., 2019) to provide homology-based evidence. For transcriptome-based 

prediction, RNA-seq data were generated from a diversity of blackgrass tissues collected over 

developmental time (leaf, main stem, root, developing flowers, mature flowers pre-anthesis, and 
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mature flowers with pollen). RNA-seq reads were processed to remove adapters and low-quality 

bases and assembled both de novo and genome-guided using Trinity (v.2.4.0) (Haas et al., 2013) 

followed by the PASA program (http://pasapipeline.github.io) to improve the gene structures.  

All predicted gene structures were integrated into consensus gene models using 

EVidenceModeler (Haas et al., 2008). Functional annotation of protein-coding genes was carried 

out by comparing alignments to the SwissProt, GenBank nonredundant protein (NR), 

InterProScan and EggNOG databases. Gene Ontology (GO) terms for each gene was obtained 

from InterPro descriptions. Additionally, the gene set was mapped to the KEGG pathway 

database using ‘BlastKOALA’ (https://www.kegg.jp/blastkoala/) (Kanehisa et al., 2016). 

 

Long terminal repeat retrotransposons (LTR-RTs) insertion time estimation and 

expression analysis  

As the direct repeat of an LTR-RT is identical upon insertion, the divergence between the 

LTR of an individual element reflects the time of the insertion. The insertion date (T) for each 

LTR-RT was computed by T = K/2μ, where K is the divergence rate and μ is the neutral 

mutation rate (K = -3/4*ln(1-d*4/3), μ =1.3 × 10-8) (Ma & Bennetzen, 2004). Sequence identity 

(%) between the 5' and 3' direct repeats of an LTR candidate is approximated using blastn, so the 

proportion of sequence differences is calculated as d = 100% - identity%. The TEtranscripts 

package (Jin et al., 2015) was used to estimate the expression of LTR-RTs and differential 

expression between samples was analysed in R version 4.0.2 (R Core Team, 2018) using DeSeq2 

(Love et al., 2014).   

 

Gene duplication and gene family expansion 

To identify orthologous and paralogous gene clusters, protein-coding genes from 

blackgrass and 11 other species (A.tauschii, T.urartu, H.vulgare, P.tenuiflora, B.distachyon, 

O.sativa, Z.mays, S.bicolor, S.italica, E.haploclada, A.thaliana) were analyzed using 

Orthofinder2 (v2.5.1) (Emms & Kelly, 2015). In cases where there were multiple transcript 

variants, the longest transcript was selected to represent the gene. A total of 476 single-copy 

orthologous genes were identified. Single-copy genes form each species were aligned using 

MUSCLE (Edgar, 2004) and the alignments were concatenated. The concatenated alignment was 

used to construct a maximum likelihood phylogenetic tree using RAxML (Stamatakis, 2014). 
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The MCMCTree program (Yang & Rannala, 2006) of PAML (Yang, 2007) was used to estimate 

the divergence time among 12 species. Three calibration time points were used based on 

previous publications and the TimeTree website (http://www.timetree.org) as normal priors to 

restrain the age of the node, including 146-154 Mya between Arabidopsis and rice, 68-72 Mya 

between rice and sorghum, and 49-53 Mya between barley and Brachypodium. Gene family 

expansion and contraction was determined by comparing the gene cluster size differences 

between the ancestor and each species with the CAFÉ program (De Bie et al., 2006).  CAFÉ 

uses a model of stochastic birth and death for gene family evolution and a Monte Carlo re-

sampling procedure to calculate the probability (P-value) of a gene family with the observed 

family size change (expansion or contraction). The threshold for significance was set at a P-value 

￼≤ .05. To determine possible whole genome duplication events in the blackgrass genome, we 

performed a self-alignment using LAST (v963) (Kielbasa et al., 2011) and identified syntenic 

blocks with MCscanX (Wang et al., 2012). For each gene pair within syntenic blocks, 

synonymous divergence levels (Ks) were calculated using the YN model in the KaKs_Calculator 

(Wang et al., 2010). The Ks values of all gene pairs were plotted to identify putative whole 

genome duplication events. To date the genome duplication and gene family expansion events, 

the formula T = Ks/2R was used, where R is the rate of divergence of nuclear genes in plants, 

which was set to 6.1 × 10-9, according to Lynch & Conery (2000). 

 

QTL-seq analysis (Bulk segregant analysis of SNPs)  

Leaf tissue was harvested from unsprayed tillers of all 25 ‘R’ and ‘S’ plants from each F2 

family. In all cases, young leaf material was collected over one hour at midday, from each plant 

into separate 5ml Eppendorf tubes. Each sample was immediately flash frozen in liquid nitrogen 

(LN2) and stored at -80°C. Samples were homogenised in LN2 using a micro-pestle. For bulk 

segregant analysis, four bulks were made by pooling DNA from all 25 selected individuals from 

each phenotypic group (herbicide resistant ‘R’, and susceptible ‘S’, in each of the CC2 and CC5 

F2 families). Illumina paired-end reads were processed to remove adapters and low-quality 

sequences using Trimmomatic (Bolger et al., 2014). Cleaned read data was generated after 

removing reads with >10% unidentified nucleotides (N), >30% bases had Phred quality scores 

less than 20, and <75 bp of read length. Cleaned reads were then mapped to the blackgrass 

reference genome using BWA. Variants were called using BCFtools (http://samtools.github.io/ 

http://www.timetree.org/
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bcftools) and filtered using VCFtools (http://vcftools.sourceforge.net). SNPs were subjected to 

quality control and removed if they met the following criteria: (1) non-biallelic SNPs, (2) read 

depth for SNP  >500 or <5, (3) mapping quality >40, (4) genotype quality >100, (5)  missing rate 

< 10%, (6) SNPs within <20 bp distance from nearby InDels. The QTL-seq pipeline was used for 

calculating the SNP-index, and the ∆SNP- index was then calculated by subtracting the SNP-

index of one bulk from that of another bulk (Takagi et al., 2013). 

 

RNA-seq analysis  

An RNA-seq analysis was also conducted using the 25-herbicide resistant ‘R’ and 

susceptible ‘S’ plants from each F2 family. For each phenotypic group, five replicate RNA-bulks 

were created by pooling RNA from five individual plants. RNA was sequenced using standard 

Illumina TruSeq mRNAseq protocols. The quality of the RNA sequences derived from each 

sample was assessed using FastQC v0.11.8 (Andrews, 2015) and preprocessed as described 

above.  The trimmed reads for each sample were mapped to the blackgrass genome using Hisat2 

v2.2.1 (Kim et al., 2019) with default parameters except for minimum alignment score 

parameters of L, 0, -0.6.  Reads that mapped to coding sequences of annotated genes were 

counted using featureCounts v1.6.4 (Liao et al., 2014) with default settings.  Differential gene 

expression between samples was analysed in R version 4.0.2 (R Core Team, 2018) using DeSeq2 

(Love et al., 2014). 

The expression of all technical replicates was checked prior to analysis. First, all counts 

data were transformed using the regularised log-transform function ‘rlog()’ of the DESeq2 

package. Transformed data were visualised using both a principal components analysis (PCA), 

and hierarchical clustering of the Euclidean distance between samples. Visual inspection of these 

results identified one clear outlier sample (CC5 ‘S’ sample A), which was excluded from further 

analysis. A pre-filtering step was used to remove genes with zero or low counts before 

differential expression analysis. First, counts were summed across technical replicates to leave 

only biological samples. Next, genes were removed if they did not have at least one read per 

million in at least four samples (where four is equal to the minimum number of reps per 

treatment level) as per Anders, et al. (Anders et al., 2013). The filtered, biological replicates 

were analysed using the ‘DESeq()’ function of the DESeq2 package in R, specifying four 

phenotypic groups: CC2 ‘S’, CC2 ‘R’, CC5 ‘S’, and CC5 ‘R’. In total, 19,937 genes and 19 

http://vcftools.sourceforge.net/
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biological replicate samples were included in this analysis. To generate lists of differentially 

expressed genes (DEGs), specific comparisons were extracted for the ‘R’ vs ‘S’ samples within 

each family from this fitted model. Only genes which were significant (P < 0.05) and with at 

least 1.5x fold difference in expression were categorised as differentially expressed. The 

resultant lists of DEGs for the CC2 and CC5 families were then intersected, to identify DEGs 

common to both. 

Gene ontology information was combined from the Swissprot, Eggnog, and Interpro 

annotation files to create a single Gene:GO association map, containing 905,051 associations 

between 28,498 genes and 13,192 GO terms. Gene ontology enrichment analysis was performed 

for the DEGs using TBtools (https://github.com/CJ-Chen/TBtools). The Gene:GO association 

map was specified as a custom gene category mapping to use for analysis, and resultant P-values 

were adjusted using the Benjamini and Hochberg method to control for false discovery rate. 

Additionally, overrepresentation of DEGs on each chromosome was tested using a Fishers’ exact 

test as per Giacomini et al. (2020). For each chromosome, the observed number of DEGs was 

tested against the expected number given chromosome length and number of genes encoded. 

Resultant P-values were Bonferroni-adjusted to account for multiple testing before ascribing 

significance. 

Gene co-expression network construction  

Trimmed means of M-values (TMM) were calculated from mapped RNAseq data using 

the edge-R package in R (Robinson et al., 2010) to construct a gene expression matrix (GEM).  

The GEM was log2 transformed and quantile normalized in R (Team, 2018).  The traditional 

gene co-expression network (GCN) was created using the Knowledge Independent Network 

Construction tool (KINC v.3.4.0) (Shealy et al., 2019).  A gene correlation matrix was 

constructed using the Spearman rank correlation coefficient approach (Song et al., 2012) with 

the following KINC specific parameters: --minsamp 15 –minexp -inf –mincorr 0.5 –maxcorr 

0.99.  A threshold for correlation was determined using the random matrix theory approach 

(RMT) with the following parameters: --tstart 0.95 –tstep 0.001 tstop 0.5 –threads 1 –epsilon 1e-

6 –mineigens 50 –spline true –minspace 10 –maxpace 40 –bins 60 and was determined to be 

0.919.  The network was extracted using the extract function and visualized in Cytoscape v.3.9.0 

(Shannon et al., 2003).  The condition specific GCN was constructed using the same GEM and 
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Spearman ranked correlation coefficient approach in KINC, but also incorporated a Gaussian 

mixed model (GMM) to determine differentially expressed gene pair clusters that represent 

condition specific sub-graphs.  Low powered edges were determined and filtered with the 

“corrpower” function with an alpha of 0.001 and power of 0.8.  An annotation file was prepared 

in text format with samples either being annotated as “resistant” or “susceptible” and used to run 

the “cond-test”.  Condition specific sub-graps were extracted and visualized in Cytoscape v.3.9.0 

(Shannon et al., 2003). 

 

Results 

Genome assembly and annotation  

Genome analysis indicated that blackgrass (A. myosuroides) has a large genome (3.31-

3.55 Gb) and exhibits heterozygosity of 1.52% and repeat content of 84.2% (Tables S1 and S2). 

The high repeat content likely accounts for the large genome size. We adopted a hierarchical 

sequencing approach that includes complementary single-molecule sequencing/mapping 

technologies coupled with deep coverage short read sequences to generate a pseudo-chromosome 

reference genome assembly for blackgrass (Fig. S1). The total primary contig length is 3,475 

Mb, which is consistent with our genome size estimations based on flow cytometry and k-mer 

analysis (3,312-3,423 Mb and 3,400-3,550 Mb, respectively). The final polished blackgrass 

genome assembly size was 3,572 Mb, including 3,400 (95.2%) Mb ordered as seven pseudo-

chromosomes with only 172 Mb of unanchored sequences (Fig. 1, Table1, Table S3).    

Both the euchromatic and heterochromatic components of the blackgrass genome are 

highly complete as supported by BUSCO scores (96.9% from the Embryophyta lineage) (Simao 

et al., 2015) and a long terminal repeat assembly index (Ou et al., 2018) (LAI: 9.6-35.2, mean 

value of 21.9, Table S4; Fig. S4). In addition, the Illumina short reads (81×) returned a 99.6% 

mapping rate and covered 99.9% of the assembled genome. We identified 8,026,403 

polymorphisms as SNPs or InDels (Fig. 1g), which corroborates the predicted heterozygosity 

level of the blackgrass genome. We also observed a high correlation (r = 0.98, Table S5) 

between the assembled chromosome and cytogenic chromosome lengths based on published data 

(Johnsson, 1944). 

We annotated 45,263 protein-coding genes (mean gene length of 2,864 bp) based on de 

novo, homology-based predictions, and transcriptome data from multiple tissues (Fig. S3). Genes 
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were unevenly distributed across the chromosomes with increased gene density toward the distal 

ends of chromosomes that recedes to low densities in the center (Fig. 1b). Among these protein-

coding genes, 2,385 were annotated as transcription factors. In addition, 4,258 non-coding RNAs 

were identified, including 1,369 transfer RNAs, 941 ribosomal RNAs, 513 micro RNAs and 

1,425 small nuclear RNAs (Fig. 1 for genome overview).  

 

Genome dynamics and non-target site resistance (NTSR) 

We annotated 2,851 Mb (81.7%) of sequence in the assembled genome as transposable 

elements (TEs) (Table S6). The dominant type of TE was long terminal repeat retrotransposons 

(LTR-RTs), representing approximately 80.3% (2290 Mb) of annotated TEs and amounting to 

65.6% of the blackgrass genome size (Fig.1d). Gypsy, Copia and unclassified retrotransposon 

elements contributed to 39.2%, 8.6% and 17.9% of the genome size, respectively (Fig. 1e-f). 

DNA transposons contributed to 14.5% of the genome (Fig. 2a). LTR-RTs are highly unstable 

and have played an important role in the evolution of plant genomes (Fedoroff, 2000). We 

observed a single peak of insertion time, occurring approximately 0.1 million years ago (Ma), for 

Gypsy, Copia, and unclassified retrotransposons in blackgrass, which suggests a recent burst of 

LTR retrotransposons in the genome (Fig. 2b). In addition, we observed a burst of 

retrotransposons in blackgrass that occurred more recently than those in barley (Hordeum 

vulgare) and goatgrass (Aegilops tauschii) but occurred at a similar time in rice (Oryza sativa) 

(Fig. 2c).  We observed that LTR-RTs exhibited different expression profiles between 

susceptible and resistant plants.  33 and 19 LTR-RTs exhibited different expression levels 

between susceptible and resistant plants in CC2 and CC5 families, respectively (Fig. 2d-e). 

However, common differentially expressed LTR-RTs were not observed between CC2 and CC5 

(Fig. 2f). These results indicate that different LTR-RTs were historically activated and 

potentially contribute to NTSR in our different blackgrass populations. 

 Genomic duplications, including gene family expansions, can be a result of 

polyploidization events and signatures of stress adaptations. In blackgrass, we observed two 

distinct peaks at Ks values of 0.1 and 0.8 (Fig. 3a). The peak at ~0.8 was shared in all grass 

species investigated, suggesting blackgrass underwent the same ancient whole genome 

duplication in the ancestor of Poaceae species ~65.6 million years ago (MYA) (Paterson et al., 

2004). The peak at 0.1 is not apparent in these other species, suggesting that this duplication 



13 
 

event is unique to blackgrass. We further examined paralogous gene content within the 

duplication events and found that the peak at 0.1 (corresponding to 8.2 MYA) was evidenced by 

a high density of 'co-located' paralogous genes on chromosomes 1, 2, and 3 (Fig. 1), accounting 

for 10% of total paralogous genes. These results suggest the blackgrass genome underwent 

small-scale local duplication events after the occurrence of whole genome duplication. To 

proximate gene family evolution between blackgrass and other grasses, we constructed a 

phylogenetic tree based on the concatenated sequence alignment of the 476 single-copy 

orthologous genes shared by blackgrass and 11 other species (Fig. 3b). We next examined gene 

family evolution through expansion and contraction events. A total of 33,757 orthologous gene 

families composed of 382,550 genes were identified from 12 species, of which 6,470 gene 

families were shared by all the species (Fig.  S4). In blackgrass, a total of 559 and 352 gene 

families were identified with significant expansion and contraction, respectively (P value < 

0.05). GO enrichment analysis of the expanded genes revealed that they were mainly related to 

multiple enzymatic functions, including glutathione transferase (GST), UDP-glycosyltransferase 

(UGT), and monooxygenases, all of which have been reported (Gaines et al., 2020) to be 

associated with non-target site herbicide resistance (Fig. 3c). Here, we define ‘NTSR-related 

gene families’ as GST, UGT, cytochrome P450 (P450), ATP-binding cassette transporters 

(ABC), and aldo-keto reductase (AKR). Using that definition, out of 5,440 genes from 559 

expanded families, 408 (7.5%) were identified as NTSR-related genes. The Ks values for these 

NTSR-related gene family expansion events were plotted for all paralog pairs within expanded 

gene set (Fig. 3d). Peaks at 0.09 (corresponding to 7.3 MYA) and 0.26 (corresponding to 21.7 

MYA) were observed for NTSR-related and non-NTSR gene families, respectively. Therefore, 

the expansion of the NTSR-related gene families greatly predated the use of herbicide, 

suggesting the possibility that standing genetic variation may have facilitated the rapid evolution 

of herbicide resistance contributing to weediness in this species. 

 

QTL-seq bulk segregant analysis for NTSR  

To identify the genomic regions controlling herbicide resistance, we performed bulk 

segregant analysis in the CC2 and CC5 families to identify ΔSNP values with trait significance 

(Takagi et al., 2013; Kumar et al., 2020). We obtained 3,402,057 and 3,205,888 reliable SNPs 

for each of the CC2 and CC5 families, respectively (Fig.  S5). We identified 7 significant QTLs 
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in the CC2 family distributed among chromosomes 2,3,5, and 6 (Table S7).  In the CC5 family 

we identified 8 QTLs distributed mainly on chromosome 3, with 1 region on chromosome 2 

(Table S7). A total of 371 genes were encoded within the 15 identified QTLs, with each QTL 

containing between 10 and 58 genes. Interestingly, there was no overlap between QTL regions 

identified in the two seed families (Fig. 4). Among the 15 identified QTL regions, seven contain 

genes that are differentially expressed between susceptible and resistant plants of either family; 

six of them contain transcription factors. The most significant QTL was identified on 

chromosome 2 in the CC2 family, which covered 2.5 Mb and contains 33 candidate genes. An 

NADPH-dependent aldo-keto reductase gene was present in this region which is upregulated in 

the resistant plants of both CC2 and CC5 families. Members of this gene family have been 

reported to be associated with herbicide detoxification in other weed species (Pan et al., 2019). 

These results suggest that although single large effect genes (like this aldo-keto reductase gene) 

could be conferring resistance, it is more likely that NTSR in blackgrass involves multiple 

independent loci (polygenic trait), and our data provides strong evidence that NTSR mutations 

are population specific.  

 

RNA-seq analysis of NTSR  

To identify differentially expressed genes between susceptible and resistant plants, we 

performed RNA-seq analysis in the most and least resistant fractions of the two seed families 

(CC2 and CC5). Principal components analysis of gene expression data (19,937 genes across 19 

biological samples) indicates both seed families and resistance phenotypes contain significant 

sources of variation between samples (Fig. 5a). Seed family (CC2 vs. CC5) was the stronger 

source of variance accounting for ~58% of the total variance on the first Principal Component 

(PC1). Within each seed family, the herbicide resistant ‘R’ samples form separate clusters from 

their susceptible ‘S’ counterparts on PC2, with this axis representing 12% of the total variance in 

gene expression. In each seed family, the ‘direction’ of separation of ‘R’ samples from ‘S’ on 

PC2 is the same. Principal components analysis of each seed family independently (Fig. S6) 

revealed that the ‘R’ and ‘S’ samples in each family formed separate clusters on the first 

principal component (PC1). Within the CC2 and CC5 families respectively, this PC accounted 

for 35% and 39% of the total variance in gene expression. These results demonstrate that 
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presence of the NTSR trait has a considerable impact on constitutive gene expression, even in the 

absence of herbicide treatment. 

Differential expression analysis between ‘R’ and ‘S’ samples across the two seed families 

identified 643 differentially expressed genes (Fig. 5b). A subset of 68 genes were found to be 

differentially expressed in both seed families. Hierarchical clustering of these 68 genes 

confirmed that resistance phenotype was a greater source of variability than seed family, and 

81% (55) of these 68 genes were upregulated in ‘R’ samples relative to ‘S’ for both families (Fig. 

5c). Within the 68 consistent DEGs we found three of eight previously recorded blackgrass 

NTSR candidate genes; ‘AmGSTF1’, ‘AmGSTU2’, and ‘AmOPR1’ (Cummins et al., 2013, 

Tetard-Jones et al. 2018). In each case, expression of these three candidate genes was 

significantly higher in the ‘R’ phenotype than the ‘S’ (Fig. S7), agreeing with previously 

reported findings. Additionally, three additional significant genes, ALOMY2G19998 (paralog of 

AKR4-1 in Echinochloa colona), ALOMY1G02321 (paralog of CYP81A10v7 in Lolium 

rigidum), and ALOMY6G42490 (paralog of ABCC8 in Echinochloa colona), were all 

upregulated in both CC2 and CC5 families (Fig. S7). The orthologs of these three NTSR-related 

genes have been validated to endow NTSR to various herbicides in other weed species (Pan et 

al., 2019; Han et al., 2021; Pan et al., 2021). These findings further reinforce the potential 

importance of these six genes, having now been implicated in the regulation of the herbicide 

metabolism phenotype across multiple populations, multiple independent studies, and even 

multiple species.  

Nevertheless, although 68 DEGs overlapped between the two families, the majority (341 

for the CC2 family, and 234 for the CC5 family) were unique to one family or the other (Fig. 

5b). Differential expression associated with herbicide resistance was observed for another 12 

P450s and five GSTs within the CC2 family, while five P450 genes displayed differential 

expression unique to the CC5 family. Two ABC transporters were identified as significant; one 

differentially expressed in the CC2 family, the other within the CC5 family. Comparably, several 

genes within the Glycosyltransferase, Drug/metabolite transporter, and Disease resistance NB-

LRR families were shown to have differential expression unique to one family or the other. 

Separate gene set enrichment analysis of DEGs for each family identified both shared and unique 

GO terms. Most of the shared overrepresented GO terms have been reported to be associated 

with NTSR, including glutathione transferase, UDP-glycosyltransferase, and some cytochrome 
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P450 superfamilies. ‘Xenobiotic transmembrane transporter’ activity was only overrepresented 

in CC5 (Fig. 5d-e), indicating a possible family-specific mechanism of resistance for CC5. These 

results add to the growing evidence supporting a role for these gene families in herbicide 

detoxification, while the extent of DEGs specific to each family implies that different NTSR 

blackgrass populations may acquire an individual ‘profile’ of differentially expressed genes from 

these gene families. 

In addition to previously reported genes and gene families, we found two transcription 

factors (ALOMY1G01646 and ALOMY2G19620), which were differentially expressed in both 

families, and the corresponding GO term (GO:0042221, “response to chemical") was 

significantly enriched in both CC2 (P value = 0.016) and CC5 (P value = 0.006). A further nine 

and seven transcription factors with altered expression were identified in the CC2 and CC5 

family respectively. Although not a causal link, this may represent some involvement of these 

genes in regulation of NTSR gene expression. Interestingly, two Acetyl-CoA synthetase-like 

ATP-dependent AMP-binding enzymes were consistently upregulated in resistant plants: 

ALOMY2G20910 and ALOMY6G44209. Their corresponding GO term (GO:0032787, 

“monocarboxylic acid metabolic process") was also significantly enriched in both CC2 (P value 

= 0.006) and CC5 (P value = 0.031). AMP-forming acetyl-CoA synthetases (ACS) catalyse the 

formation of acetyl-CoA, substrate for the ACCase enzyme which is the target for herbicidal 

inhibition. Altered expression of these two genes could signify some remodelling of this pathway 

upstream of the point of herbicidal inhibition. 

 

Co-localisation of NTSR-related features (QTLs and DEGs) 

In addition to the population-specific profile of DEGs, no overlap was observed between 

QTL regions identified in the two seed families (Table S7). However, 12 of the 15 total QTL 

regions were located on chromosomes 2 and 3 (Fig. 4). These two chromosomes also showed the 

greatest density of DEGs identified in the RNA-seq analysis, with almost half (33) of the 68 

consistent DEGs located on these two chromosomes, along with half of the previously reported 

NTSR candidate loci for this species (Fig. 4). In total, Chromosomes 2 and 3 combined 

accounted for 45% and 55% of the total DEGs observed in the CC2 and CC5 families 

respectively. Results of a Fishers’ exact test for overrepresentation of DEGs per chromosome 

confirmed that chromosome 2 (CC2 family) and chromosomes 2 and 3 (CC5 family) were 
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significantly enriched in resistance associated DEGs (Table S8). These results suggest that 

chromosomes 2 and 3 are ‘hot-spots’ for NTSR evolution in this species.  

To examine this further, we performed a comprehensive genome-wide analysis of the 

five principal NTSR-related gene families (GST, UGT, P450, ABC, and AKR) (Fig. 6). A total 

of 506, 93, 146, 278 and 45 genes were identified in the blackgrass genome for P450, GST, 

ABC, UGT and AKR, respectively. Overall, blackgrass has a larger proportion of NTSR-related 

genes (1,069, 2.48% of total gene number) in the genome compared to those in Arabidopsis 

(2.04%) and rice (2.18%) genomes (Table S9, Fig. 6a). Among the five NTSR-related gene 

families, blackgrass only has a smaller proportion for ABC family compared to Arabidopsis and 

rice. This observation is in line with the gene family expansion analysis, where P450, UGT, and 

GST families each contain a high ratio of expanded genes. For example, 180 (35.6%), 61 

(65.6%) and 129 (46.4%) genes were expanded in P450, GST and UGT gene families, 

respectively. However, only 50 and 28 NTSR-related genes were differentially expressed 

between susceptible and resistant plants in CC2 and CC5, respectively. A large proportion (50%) 

of these differentially expressed NTSR-related genes were located across chromosomes 2 and 3 

combined in both seed families (Table S10, Fig. 6b). Nevertheless, tests for overrepresentation 

were non-significant, in part due to the number of total NTSR-related genes also being high 

across these two chromosomes (416 of 1068 NTSR-related genes). Most of the differentially 

expressed NTSR-related genes were upregulated in resistant plants and 23 of them were shared 

between families, including 6, 6, 3, 7 and 1 shared genes for P450, GST, ABC, UGT and AKR, 

respectively (Fig. 6c). Predominantly, these results highlight that while genomic features 

associated with NTSR (QTLs and DEGs) are largely population-specific, their significant co-

localisation on chromosomes 2 and 3 reflects the importance of these two chromosomes during 

NTSR evolution. 

 

Genetic coordination of NTSR via gene co-expression network analysis 

Gene co-expression networks were constructed using traditional spearman-ranked and 

condition specific approaches that enable alternate strategies to examine the genetic coordination 

of NTSR mechanisms (Fig. 7a-b, respectively). The traditional spearman ranked coefficient 

approaches resulted in a total of 16,601 nodes connected by 16,130 edges (Fig. 7a).  Hub gene 

sub-graphs display significant co-expressed gene interaction pairs that include candidate genes 
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from the bulk segregant and RNA-seq studies.  We identified a total of 13 CC2 specific sub-

graphs and 20 for CC5 (Fig. S8a-d).  In CC2, we found the NTSR-related gene families 

identified in the QTL-seq analysis, such as GST, aldo-keto reductase, and Beta-keto acyl 

synthase co-expressed with various transcription factors and other genes that could be involved 

in their regulation (Fig. S8a-b).  A HMG transcriptional regulator is also positively correlated 

with two genes involved in metabolism: Tubulin/FtsZ family gene and a Ubiquitin carboxyl-

terminal hydrolase, and negatively correlated with an Alpha-N-acetylglucosaminidase, (Fig. 

S8e).  In the CC5 family sub-graphs, we identified alternate active genetic machinery that are co-

expressed with genes identified in the QTL regions, such as Cytochrome p450s, thioesterase, 

glycosyl hydrolase, pectinesterase, exostensin gene family, and others connected with various 

classes of transporters and transcription factors/regulators (Fig. S8c-d).  The condition specific 

network also partitioned clusters of co-expressed gene interactions pairs in both a family specific 

and overlapping manner (Fig. 7b).  For example, this approach also identified an aldo-keto 

reductase and protein tyrosine/serine/threonine kinase unique to CC2.  Oxioreductase, 

peroxidase, and vacuolar sorting were among CC5 specific clusters (Fig. S8f).  This approach 

also identified a largely connected subgraph of connected genes discovered in both CC2 and 

CC5 bulk-segregant and RNA-seq analysis (Fig. S8g). These network analyses further highlight 

that NTSR in blackgrass is likely to be due to a combination of core and population-specific loci 

that act in concert with one another.  

 

Discussion 

Despite the global impacts of weedy plants, few genomic resources have been developed 

for weed species (see Sharma et al., 2021). Here, we present a reference-grade genome assembly 

for Europe’s most devastating agricultural weed, Alopecurus myosuroides (Hicks et al., 2018; 

Varah et al., 2020), and demonstrate that (i) NTSR in blackgrass is a complex, polygenic trait 

that evolves from standing genetic variation within stress- and defence-related gene families and 

(ii) that the convergent evolution of the NTSR phenotype amongst two field-evolved populations 

has a notably different genetic basis amongst populations. 

F2 seed families were produced for two field-evolved blackgrass populations with very 

similar phenotypic resistance to the acetyl-CoA carboxylase (ACCase) inhibiting herbicides and 
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global, constitutive transcript profiles were compared for bulked resistant and susceptible 

individuals derived from the two seed families.  At the transcriptional level, 11% of the 

resistance associated DEGs were common to both seed families. These 68 common DEGs 

include several genes and gene families previously implicated in NTSR in blackgrass (Cummins 

et al., 2013; Tetard-Jones et al., 2018) and in a range of other weed species with evolved NTSR 

(Yang et al., 2018; Fang et al., 2019; Davies et al., 2020; Wang et al., 2020; Suzukawa et al., 

2021; Torra et al., 2021). There were also commonalities in the localization of genomic 

signatures for NTSR across the two populations.  For example, we found that Chromosomes 2 

and 3 were significantly enriched in both DEGs and QTL regions associated with resistance in 

both tested families. These results concur with those of Giacomini et al., (2020) who found 

physical clustering of differentially expressed genes in Amaranthus tuberculatus. Together, these 

results highlight that there are commonalities observed in the metabolic basis and broad genomic 

localisation of features associated with independently evolved NTSR. 

Our results are consistent with a growing body of evidence from studies that explore the 

transcriptomic basis of NTSR. These studies confirm that NTSR is conferred by the upregulation 

of individual genes that are members of large stress- and defence-related gene families; the 

cytochrome P450 monooxygenases, glutathione S-transferases, ATP-binding cassette (ABC) 

transporters, aldoketo-reductases, glucosyl transferases and others (e.g. Dimaano & Iwakami 

2021, Cummins et al. 2013, Pan et al. 2019, 2021, Huang et al 2021). Mounting evidence shows 

that these gene families are regularly implicated, and common genes were upregulated in both 

NTSR phenotypes studied here, and in NTSR populations of other species (Han et al. 2021, Pan 

et al 2019, 2021).  Together, these studies highlight a notable degree of parallelism in the 

metabolic NTSR phenotype. This would appear to indicate some constraint in the possible 

pathways via which NTSR can evolve. It is important to note, however, that the majority of 

DEGs identified in our study were not common amongst the two seed families; 89% were 

specific to one family or the other. This suggests that though a core of commonly over-expressed 

genes is key for the metabolic expression of NTSR amongst populations, a significant number of 

population-specific genes also contribute, indicating that both parallel and non-parallel changes 

occur at the level of plant metabolism associated with the independent evolution of NTSR. 



20 
 

Further studies that explore associated functional alleles in a greater number of evolved 

populations are warranted, and will be required to more completely understand the relative 

importance of parallelism and non-parallelism in the evolution of the NTSR transcriptome. 

Whilst the metabolic basis of NTSR amongst populations provides evidence for 

parallelism, our results unequivocally indicate that there is a discrete, non-parallel basis to NTSR 

at the genomic level. Of the fifteen significant QTLs identified (8 and 7 in the two seed families, 

respectively), there were no overlapping QTL regions, though significant QTLs were over-

represented on chromosomes 2 and 3 in each population. These observations suggest that while 

selection for NTSR may be localized to certain regions of the genome, the genetic basis of these 

traits is quite different amongst blackgrass populations. These results are consistent with the 

conclusion in Van-Etten et al. (2020) and Gupta et al. (2021), that NTSR in Ipomoea purpurea is 

conferred by multiple loci. Similarly, separate studies of HPPD resistance in different 

Amaranthus tuberculatus populations has highlighted distal regions of the genome showing 

signatures of selection for resistance (Kohlase et al. 2018, Murphy et al 2021). Our findings, 

combined with our co-expression network analysis, provides strong evidence that NTSR 

amongst blackgrass populations is divergent at the genomic level. 

Assessment of repetitive genome structure and duplication arrays suggests that these 

elements themselves might serve as an underlying mechanism facilitating rapid adaptation in 

blackgrass. For instance, high heterozygosity, expanded gene families (Fig.1), a relatively recent 

(and unique) genome duplication event (Fig.2), and clusters of TEs and LTR-RTs are signatures 

of a dynamic genome. It is notable that the paralogous genes associated with genome duplication 

in this species are located on chromosomes 1, 2 and 3, amongst the densest regions of significant 

QTLs and differentially expressed genes (Fig. 4). We speculate that high levels of variation in 

the number, regulation, and function of these defense-related gene families enable weedy species 

such as blackgrass to rapidly evolve NTSR via exaptation of genes within these large multi-

functional gene families. Variation within these gene families distributed amongst discrete 

genetic backgrounds of blackgrass likely underpin the potential for non-parallel evolution of 

NTSR.  
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Conclusion 

 We have established that NTSR in blackgrass is a polygenic trait, and that the genetic 

basis of NTSR can be markedly different between independently evolved populations; albeit 

underpinned by the upregulation of some common metabolic pathways. Notably, we find 

evidence for multiple quantitative trait loci (QTL) associated with the NTSR phenotype, but no 

evidence that these QTLs are the same amongst independently evolved populations. On this 

basis, we conclude that the landscape scale evolution of NTSR results from both parallel and 

non-parallel patterns of evolution across the genome, as reported by Van Etten, et al. (2020) and 

Kreiner, et al. (2021). These findings have wide significance for understanding the potential for 

rapid plant adaptation under novel and changing environments. They suggest that large and 

plastic plant genomes harbor sufficient standing genetic variation to enable rapid adaptation to 

novel stresses. The associated duplication and redundancy in plant genomes means that 

adaptation may not be mutation-limited and that the repeated evolution of resistance and/or 

tolerance relies on neither rare mutational events, nor hard selective sweeps. They also hint that 

complex adaptations to abiotic and biotic stresses are not constrained by genetic variation and 

architecture and that convergent phenotypes are shaped by population-specific genome structure 

and plasticity. 

 

Table and Figures:  

Table 1 Assembly statistics of the blackgrass genome.  
 

Characteristics Values 

Assembly size (bp) 3,572,044,634 

Number of scaffolds 2,512 

N50 scaffold length (bp) 2,255,730 

The largest scaffold (bp) 17,744,454 

Number of contigs 7,866 

N50 contig length (bp) 1,189,615 

The largest contig (bp) 9,284,242 

GC content (%) 44.66 

Total size of pseudomolecules (bp) 3,400,051,202 

Total size of unanchored sequences 171,993,432 

Ns in the assembly 80,915,468 
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Total size of retrotransposons (bp) 2,302,477,515 

Total size of DNA transposons (bp) 507,120,408 

Total size of repeat sequences (bp) 2,851,385,969 

Number of genes 45,263 

Average length of genes (bp) 2,864 

Average number of exons per gene 4.3 

Total size of genes (bp) 129,639,341 

Number of annotated genes 35,999 
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Fig. 1 Overview of the A. myosuroides genome. A circos graph shows the assembled seven 

chromosomes (a), distribution of protein-coding genes (b), distribution of GC content across the 

genome (c), distribution of transposable elements (d), distribution of Gypsy family of long 

terminal repeats retrotransposons (e), distribution of Copia family of long terminal repeats 

retrotransposons (f), distribution of SNP/Indel (g). All the histograms (from ‘a’ to ‘g’) were 

featured in a 1-Mb sliding window. Connecting line in the center of the diagram represents a 

genomic syntenic region covering at least 10 paralogues.  
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Fig. 2 The burst and expression of LTR retrotransposons (LTR-RTs). (a) Proportions of the 

major elements in the blackgrass genome, including Gypsy LTR-RTs, Copia LTR-RTs, 

unclassified LTR-RTs, DNA transposons, coding DNA and unannotated sequences. (b) The 

insertion time distribution of different types of LTR-RT in the blackgrass genome. (c) The 

insertion time distribution of intact LTR-RTs in the blackgrass genome compared to those in 

goatgrass (progenitor of the wheat D genome), barley and rice. (d-e) Volcano plots show 

differentially expressed LTR-RTs in CC2 and CC5 family, respectively. (f) The distribution of 

differentially expressed LTR-RTs on seven blackgrass chromosomes.  
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Fig. 3 Whole genome duplication and gene expansion. (a) The frequency distribution of 

synonymous substitution rates (Ks) of paralogous genes within each plant genome. A shared 

whole genome duplication event for grasses was assigned to the peak. (b) Phylogenetic tree of 12 

plant species and gene family expansion and contraction. Inferred divergence time is denoted at 

each node in black. The red and blue numbers above the species name indicate the total number 

of expanded and contracted gene families, respectively. (c) Gene Ontology (GO) enrichment 

analysis of expanded gene families in the blackgrass genome (molecular function category). (d) 

The frequency distribution of synonymous substitution rates (Ks) of expanded genes. Expanded 

genes include those from either NTSR-related or non-NTSR (other) gene families.  
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Fig. 4 Location across the genome of the differentially expressed genes (DEGs) associated with 

the NTSR trait. Green and purple circles show the position of DEGs identified in the CC2 and 

CC5 seed families respectively. Circle sizes are relative to the adjusted P-value, whereby larger 

circles denote stronger significance. DEGs consistent across both families are marked with black 

labels, while orange labels show the position of previously reported NTSR candidate genes. 

Lower sections show the change in ΔSNP index across these chromosomes for the CC2 (top) and 

CC5 (bottom) families. Shaded regions represent the 95% and 99% confidence bounds for each 

SNP. Vertical green and purple bars show the QTL regions for the CC2 and CC5 families, 

identified from their ΔSNP index. 
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Fig. 5 Differential gene expression analysis of the seed families CC2 and CC5, segregating for 

the NTSR herbicide resistance trait.  (a) Principal components analysis using all gene expression 

data. (b) Numbers of differentially expressed genes comparing the ‘R’ (green) and ‘S’ (purple) 

groups within each family. (c) Heatmap and hierarchical clustering of the 68 differentially 

expressed genes consistently associated with NTSR across both seed families. (d-e) Gene 

ontology terms, significantly overrepresented in the CC2 and CC5 families, respectively.  
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Fig. 6 The gene number, distribution, and expression for five NTSR-related gene families. (a) 

The number of genes identified for five NTSR-related gene families including cytochrome P450 

(P450), glutathione S-transferase (GST), ATP-binding cassette transporters (ABC), UDP-

glycosyltransferases (UGT), and Aldo-Keto reductase (AKR). (b) The distribution of 

differentially expressed genes from five NTSR-related gene families on seven blackgrass 

chromosomes. (c) Heatmap of the differentially expressed genes from five NTSR-related gene 

families. 

 

  



29 
 

 
Fig. 7 Genetic coordination of NTSR in CC2 and CC5 families.  (a) Traditional spearman-ranked 

gene co-expression network derived from RNA-seq expression that depicts common and unique 

genetic architecture underpinning NTSR in both the CC2 and CC5 families. Green nodes are 

unique to CC2, purple nodes are unique to CC5, and orange are common between both families.  

The graph was filtered for nodes with at least 2 connections. (b) Condition-specific gene co-

expression network derived from the RNA-seq data taking into consideration plant phenotype 

(herbicide susceptible/resistant). 
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