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A B S T R A C T

Climate change has driven agriculture to alter farming methods for food production. This paper presents a new 
concept for monitoring, acquisition, management, analysis, and synthesis of ecological data, which captures the 
environmental determinants and direct gradients suited to a particular requirement for specific plant cultivation 
and sustainable agriculture. The purpose of this study is to investigate a smart seablite cultivation system. A 
novel digital agricultural method was developed and applied to digitised seablite cultivation. Machine learning 
was used to predict the future growth conditions of plants (seablites). The study identified the illustrative maps of 
seablite origins, a conceptual seablite smart farming model, essential factors for growing seablite, a digital circuit 
for cultivating seablite, and digital data of seablite growth phases comprised the digital data. The findings 
indicate that: (1) An indicator of soil salinity is a quantity of sodium chloride extracted from a seablite sample 
indicating its origin of environmental determinants. (2) Saline soil, saline water, pH, moisture, temperature, and 
sunlight are essential factors for seablite development. These factors are dependent on climate change and were 
measured using a smart seablite cultivation system. (3) Digital circuits of seablite cultivation provide a better 
understanding of the relationship between the essential factors for seablite growth and seablite growth phases. 
(4) Deep neural networks outperformed vector machines, with 86% accuracy at predicting future growth of 
seablites. Therefore, this finding showed that the essential seablite development factors can be manipulated as 
key controllers for agriculture in response to climate change and agriculture can be planned. Basic digitisation of 
specific plants aids plant migration. Digital agriculture is an important practice for agroecosystems.

1. Introduction

Sustainable agriculture involves the cultivation of plants to produce 
food commodities for humans and animals. Plant cultivation is critical 
for regional economic assessments and boosts the local economy 
(Chaichana et al., 2024; Chaichana, 2023; Chaichana and Chakra-
bandhu, 2021; Chaichana et al., 2021). However, climate change will 

impact plant cultivation over the next five decades, and agricultural 
practices will have to change because of environmental changes (Wang 
et al., 2022; He et al., 2021). As a result, agricultural practices will need 
to change to cultivate plants sustainably, ensuring the continued pro-
duction of food commodities. Therefore, digital agriculture is key to 
improving cultivation in this new agricultural era, revealing answer to 
the concept and development of ecological agriculture system that a 
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former scholar created almost half a century ago (Kiley-Worthington, 
1981). This system attempts to manage the sustainable biological sys-
tems but with no practice and no use of the digital technology. Digital 
agriculture complements this system through technological, economic, 
and environmental, indicating the ability of biological systems to 
maintain productive, diverse, and healthy overtime. Many scholars have 
used digital agriculture in technological term to maintain agricultural 
abundances, grassland managements, and perfect yields, as well as 
creating knowledge and skills to maximise the real profits of net pro-
duction in agriculture and ecosystems (Qiao et al., 2024; Chaichana 
et al., 2021; Higgins et al., 2019). In economic terms, the use of digital 
agriculture maximises returns that are limited to the required in-
vestments and the increase in employment must be small but appro-
priate to local conditions (Chaichana et al., 2024; Chaichana et al., 
2021). For example, investing in digital technology on farm increases 
productivities by using less labour but it complies with local content 
laws. Lastly, many researchers have used digital agriculture in envi-
ronmental terms to support by-product recycling, wastes reduction, 
animal ratio control (including humans) to plants, and maximising 
biomass production. Consequently, the self-reliance and stability char-
acteristics of biological systems suitable for sustainable agriculture have 
increased (Chaichana, 2020; Jónsson and Davíðsdóttir, 2016). Hence, 
digital agriculture has greatly advanced the concept and development of 
ecological agriculture system. Half a century ago it was impossible to 
implement sustainable agriculture and ecosystem.

Digital agriculture is a system that uses electronic equipment and/or 
computers for agriculture. This system involves the conversion of in-
formation into digitised data, represented as a series of 1 s and 0 s 
(Chaichana et al., 2017). It digitises, records, and shows agricultural 
information in the form of digital data and uses it to perform job tasks. 
This relates to agricultural computing (computing in agriculture), which 
uses Internet/offline data from machine to machine (Chaichana et al., 
2017). We can use data generated from digital agriculture to improve 
cultivation in three respects: cultivation of plants, green economy, and 
economic security. Bespoke plant culture refers to the practise of culti-
vating particular plants with a focus on plant migration, quality control, 
resource utilisation, resource conservation, and environmental protec-
tion (Chaichana and Chakrabandhu, 2021; Chaichana et al., 2021; 
Chaichana et al., 2017; Chaichana and Sun, 2024). A green economy 
aims to reduce ecological scarcity and environmental risks (Nandy et al., 
2022; Lee et al., 2022). Economic security, in this context, pertains to 
the concept of food and nutrition security, denoting the capacity of 
people to fulfil their dietary requirements (Moore et al., 2021; Wang 
et al., 2021). Consequently, it is evident that the green economy and 
economic security are completely linked to the bespoke cultivation of 
plants using digital agriculture.

There are numerous advantages to using digital agriculture 
(Muangprathub et al., 2019; Lekbangpong et al., 2019a; Pit-
akphongmetha et al., 2016; Boonnam et al., 2017; Kajornkasirat et al., 
2021; Lekbangpong et al., 2019b; Vincent et al., 2019; Abba et al., 
2019). In 2019, Muangprathub et al. (2019) described the use of elec-
tronic devices to develop smart farming practices. Node sensors (e.g., 
temperature, humidity, and ultrasonic sensors) were deployed in the 
crop field to digitise digital data. The web application was designed to 
display digital data and manipulate electronic devices in the crop field. 
Muangprathub suggested that digital agriculture is useful. It can be used 
to monitor a farm and automatically control the water pump to water 
the plants when they need water (Muangprathub et al., 2019). Conse-
quently, this saves resources, protects the environment, increases agri-
cultural productivity, and reduces production costs. Lekbangpong et al. 
(2019) proposed that electronic devices could control simulated weather 
within a greenhouse to grow St. John’s Wort, a flower found in Davon, 
England (Lekbangpong et al., 2019a). Their study demonstrated that 
digital sensors and systems successfully assisted and supported the 
growth of St. John’s Wort (Lekbangpong et al., 2019a; Lekbangpong 
et al., 2019b; Pitakphongmetha et al., 2016). In 2016, Pitakphongmetha 

et al. used an Internet of Things (IoT) planning platform to assist plant 
growth phases in hydroponics (Boonnam et al., 2017). Their electronic 
devices primarily include solenoid valves and temperature, humidity, 
and light controllers. Their research revealed that digital agriculture 
clearly assists farmers in meeting their needs, such as monitoring plant 
growth in numerous phases, planning irrigation systems, and supplying 
water to watering plants per day. Thus, this platform may help reduce 
water scarcity in the future (Boonnam et al., 2017; Kajornkasirat et al., 
2021).

Furthermore, Kajornkasirat et al. (2021) developed a web-based 
application for an information system regarding rubber plantations 
(Kajornkasirat et al., 2021). The data were digitised from the Thai 
Rubber Research Institute, and the generic attribute information 
included latex, rubberwood, price of rubber, rubber research, and spe-
cific industries. According to their findings, the digital data system 
assisted stakeholders, farmers, and the government with rubber plan-
tation administration (Kajornkasirat et al., 2021). Vincent et al. (2019)
described the electronic sensors used in agricultural farms to digitise the 
data for assessing land suitability and making agricultural recommen-
dations (Vincent et al., 2019). Vincent’s findings previewed that the 
farmers would benefit from the proposed digital agriculture in terms of 
decision-making on land suitability for cultivation. As a result, agricul-
tural recommendations regarding agricultural land have been divided 
into four tiers: unsuitable, moderately suitable, suitable, and more 
suitable. Abba et al. (2019) developed a low-cost IoT system for con-
trolling and monitoring irrigation systems (Abba et al., 2019). Abba’s 
digital platform is used to optimise water use for irrigation farming in 
remote locations while reducing the amount of supervision required. 
The practical usefulness and versatility of this innovation extended 
beyond the agricultural sector, benefiting not just farmers but also the 
local economy. Tsai and Lee (2024) analysed cultivation practices that 
affect the environmental sustainability of the agriculture system and 
resource use efficiency. Their findings show that changing cultivation 
practices significantly contributes to environmental sustainability and 
land use management. Consequently, adapting new cultivation methods 
can develop agricultural ecosystems to respond to regional economic 
and social systems (Tsai and Lee, 2024). Recent studies have shown that 
changes in agricultural methods improve the efficiency and sustain-
ability of agriculture and land use management. Climate change affects 
agricultural production can be reduced by changing cultivation prac-
tices (Zhang et al., 2024; Fathololoumi et al., 2024; Nsabiyeze et al., 
2024; Bouteska et al., 2024; Tsai and Lee, 2024).

In 2020, Ciruela-Lorenzo et al. (2020) proposed a digital diagnosis 
tool for digitising agricultural operations within the framework of smart 
agriculture. Their study showed that digital agriculture is transforming 
the agriculture sector into a more efficient and sustainable economic 
activity (Ciruela-Lorenzo et al., 2020). For example, the digitisation of 
activities includes using drones to control and optimise fertiliser appli-
cation in crop fields, using electronic devices to generate soil mapping 
and control the quality of the nutrients, and increasing farmers’ capacity 
to manage and control large crop fields. In addition, Jin et al. (2020)
digitised and collected weather information using an agricultural IoT 
system (Jin et al., 2020). They used digital agriculture to study the 
cultivation of Chinese goji berries in China. Jin’s study suggested that 
weather changes can be predicted and used to control and manage plant 
cultivation, hence facilitating the production of sustainable agricultural 
yields. The present research proposes a novel digital agricultural method 
to investigate a bespoke cultivation of seablite with the aim of under-
standing their migration possibility. The study demonstrates that ma-
chine learning (ML) may be used to anticipate and calculate future 
growth conditions of seablite. Fig. 1 shows the overall research on 
cultivating specific plants using digital agriculture, and the relationship 
among cultivation, digital agriculture, and ML, which management 
(bespoke cultivation technique) is a core domain. Present research in 
agricultural and biological sciences and decision sciences areas provides 
an empirical investigation of new concepts in monitoring, acquisition, 
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management, analysis, and synthesis of ecological data to produce 
ecological models for specific plant cultivation in driving successful 
agroecosystems.

2. Materials and methods

This study presents a new technique that is general and can be used 
more broadly for agricultural and aquaculture applications by following 
the diagram in Fig. 2 to find factors important to plant needs, fish needs, 
and water plants and animals’ needs. For instance, this new technique 
can be applied in aquaculture to find an essential factor for fish needs (e. 
g., dissolved oxygen, turbidity, ammonia, pH, and water temperature). 
Therefore, the proposed method (Fig. 2) was applied to find important 
factors in growing seablites for transplantation in different attitudes and 
weather conditions. Important factors in plant development were 
discovered using our technique to help plant adaptation processes occur 
in new areas to which plants migrate.

2.1. Data collection

The data collected were based on three domains: i) specific plant 
type, ii) study area, and iii) plant growth parameters. The choice of 
seablite as the specific plant type was made because it is a local vege-
table currently consumed by residents in Samut Sakhon, Thailand 
(Chaichana and Reeve, 2022). It has only been found in coastal regions, 
indicating its potential for cultivation as a commercially viable vege-
table crop in Thailand, Samut Sakhon, as shown in Fig. 3, was chosen as 

the study area because it has a long coastline that has potential for the 
growth of plentiful seablites. Finally, the parameters for growing sea-
blites included geospatial data, environmental determinants (soil con-
ditions, wind direction, sunlight, and marine climate), and direct 
gradients (salinity, pH, moisture, and temperature). Salt (sodium chlo-
ride) extraction from seablite was performed on March 4, 2021, using 
the “AOAC (2019) 937.09” reference method (Central Laboratory 
(Thailand) Co. Ltd., Samut Sakhon, Thailand).

2.2. Data classification and critical evaluation strategies

Empirical evidence is factual information that represents the 
important factors in the growth of seablites in Samut Sakhon. These 
factors were carefully collected using digital agriculture and electronic 

Fig. 1. Digital agriculture concept (a) and relationship (b).

Fig. 2. Generalisability of a methodology for broad applications in agriculture 
and aquaculture.
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devices that we developed for studying agricultural digitisation. The 
digitised data are collectively analysed and the digital circuits corre-
sponding to the digital data are designed. Critical evaluation was 
completed using our technique from previous studies (Chaichana et al., 
2011; Chaichana et al., 2021; Sun and Chaichana, 2016a; Sun and 
Chaichana, 2016b) and assessed in three areas: digital agriculture, plant 
migration of seablite, and the prediction of future seablite growth states.

2.3. Digital agriculture

Agricultural knowledge and techniques are gained through the 
farming experience of individuals in plant cultivation. Digital agricul-
ture is a conceptual methodology that transforms personal skills into 
digital information to facilitate sustainable agriculture and plant 
migration. A digital agricultural device was developed to digitise plant 
cultivation data to study a specific plant and was applied to a bespoke 
cultivation of seablite. Fig. 4 shows the development of the digital 
agricultural device. The seablites were manually cultivated in lowland 
areas. Originally, they were migrated from coastal areas. The basic 
factors of the seablite cultivation data are listed in Table 1.

Boolean algebra is a mathematical logic in which the variable values 
are either true or false, typically denoted as 1 and 0, respectively. The 
basic operations of Boolean algebra are conjunction, disjunction, and 
negation, expressed by the corresponding binary operators AND, OR, 
and the unary operator NOT, respectively. A predictive model was 
successfully developed using the data collected in Section A. In addition, 
the geospatial data of the seablites were studied together with the 
environmental determinants and direct gradients used to build a pre-

dictive model. Fig. 5 clearly shows the relationship between geological 
and topological embedding with environmental determinants and direct 
gradients. Thus, a digital circuit was designed using logic AND gates as 
the primary predictive model, and its output is expressed as follows: 

Q = (A.B.C.D).(E.F) (1) 

The Boolean logic was used to define the relationship between basic 
factors for cultivating seablite, which was then converted into a digital 
circuit, as shown in Fig. 6a, and the truth table of the proposed logic 
circuit is shown in Table 2.

2.4. Plant migration of seablite

Rapid climate change has the potential to alter regional bioclimatic 
agricultural localities. Plant species respond differently through 
phenotypic plasticity, evolutionary adaptation, migration, and extinc-
tion (Chaichana et al., 2022; Vitt et al., 2010; Neilson et al., 2005). 
Consequently, plant migration has increased because of the potential 
impacts of global climate change. Plants engage in the natural process of 
dispersal and expansion of their growing zones as a means of ensuring 
their survival. Plant migration is of two types: plant migration by nature 
and plant migration facilitated by humans and animals. For example, 
dandelion seeds are naturally moved by the wind. Therefore, the 
workflow diagram of seablite migration by humans from the seashore to 
lowland areas is shown in Fig. 6a, illustrating a predictive model of 
seablite origin in the upper part and the digital circuit of seablite 
cultivation in the lower section.

2.5. Prediction of the future seablite growth conditions

Seablite data were successfully digitised using our developed digital 
agriculture device, and the essential factors for seablite migration were 
uncovered. Seablite digital data are the inputs for the ML algorithms to 
predict the possibility of future seablite growth conditions. Deep neural 
networks (DNN) and support vector machines (SVM) were selected as 
automated prediction models to compute the future growth phases of 

Fig. 3. Study area.

Fig. 4. Digital agriculture devices.

Table 1 
Seablite cultivation factors.

No Factors Measurements

1 Salinity Saline/Non saline
2 pH Acidity(3 to < 7)/Neutrality(7)/Alkalinity(>7 to 10)
3 Moisture Dry/Wet
4 Wind Kilometre per hour, km/h
5 Temperature Celsius, ◦C

Fig. 5. Digital circuit converted from the predictive model of seablite origin.
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seablites.
ML involves the use of machines to execute tasks. DNNs and SVMs 

are algorithmic tools in the AI domain. In general, statistical learning 
theory is an ML framework that includes SVM (Basha and Rajput, 2019) 
and fuzzy clustering systems (Chaichana et al., 2007). However, our 
previous study showed that the three most popular classifier algorithms 
in ML are Naïve Bayes, decision trees, and SVM. SVM is the most 
effective algorithm, with 88.85 % accuracy, compared with the decision 
tree (80.25 % accuracy) and Naïve Bayes (71.34 % accuracy) (Boonnam 
et al., 2022). Deep learning is an ML method based on artificial neural 
networks. Deep-learning architectures include DNNs, deep belief net-
works, deep reinforcement learning, recurrent neural networks, and 
convolutional neural networks (Goodfellow et al., 2016). Recently, 
DNNs have demonstrated interpretation and discriminative learning 
capabilities over a wide range of applications (Mahmood et al., 2017). 
Therefore, the SVM and DNNs were selected and implemented in 
MATLAB R2017b (MathWorks, Inc., Natick, Massachusetts, USA) in the 
present study.

There are four types of learning models that depend on data input 
into ML algorithms: supervised learning, unsupervised learning, semi- 
supervised learning, and reinforcement learning (Salian, 2018). Super-
vised learning is a task under supervision with input data that can be 
labelled as a training dataset and compared with the test dataset prior to 
generating the prediction results. Unsupervised learning is a task 

involving input data that cannot be easily labelled, and researchers 
cannot presume prediction results such as clustering, anomaly detection, 
and association. Semi-supervised learning involves both labelled and 
unlabelled input data commonly used in medical imaging research, such 
as generative adversarial networks (Goodfellow et al., 2016). Rein-
forcement learning is an iterative task with intelligent agents attempting 
to accomplish a particular goal or improve performance on a specific 
task, and it is normally employed in video game research. Hence, in this 
study, an unsupervised learning technique was used to analyse un-
structured seablite digital data.

In addition, future seablite growth conditions were considered after 
successfully migrating seablites for cultivation in the lowland regions. 
They have been cultivated far from coastal areas. However, the follow- 
up of seablite development can be predicted using AI, with the two 
subsets of ML (DNNs and SVM) being used. Thus, the accuracy can be 
expressed as follows: 

Accuracy = (AIprediction)/(actualmeasurement) × 100 (2) 

where the AI prediction results are obtained from the outputs of both the 
DNNs and SVM. The actual measurement results were collected from the 
implementation of the developed digital agriculture method.

3. Results

Specific plant cultivation of seablite was performed in Samut 
Sakhon. The analysis of seablite cultivation was studied, and electronic 
information was digitised using our digital agriculture concept and de-
vice. A digital circuit for a bespoke cultivation of seablite was used to 
produce unstructured seablite digital data. These digital data were used 
as inputs for the ML models to predict future seablite growth conditions.

3.1. Data visualisation and interpretation

Qualitative data were obtained from a study on seablite distribution 
in Samut, Sakhon. The empirical evidence is shown in Fig. 6b. A 
maximum number of 1,365 seablite sources were found in the Ban Bo 
sub-district. The Krak Krok sub-district has a lot of residential buildings; 
therefore, the seablite sources could not be identified.

Fig. 6a. Example of single seablite source.

Table 2 
Truth table for basic seablite cultivation.

Inputs Output

A 
Seablite 
Seeds

B 
Salinity

C 
pH

D 
Moisture

E 
Wind

F 
Temperature

Q 
Seablite 
Origin

1 1 1 1 1 1 1
0 1 1 1 1 1 0
0 0 1 1 1 1 0
0 0 0 1 1 1 0
0 0 0 0 1 1 0
0 0 0 0 0 1 0
0 0 0 0 0 0 0
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3.2. Soil modelling for seablite

Generally, the soil responds to climate change. The plant growth 
parameters of seablite cultivation were studied in Samut Sakhon and 
then captured, as shown in Fig. 7, and paired with those in Fig. 6. The 
amount of salt extracted from the seablite sample can be used to char-
acterise the current soil condition.

3.3. Bespoke cultivation of seablite

Bespoke cultivation of seablite has been studied, and seablite 
migration has been successfully completed. Seablites were migrated 
from seashore areas for cultivation in lowland regions. Current study has 
modelled the essential seablite growth factors and temperature changes 
required for plant migration. The bespoke seablite cultivation experi-
ment was conducted for two consecutive periods, each lasting 14 days/2 
weeks. The experimental results indicated that watering seablite with 

seawater is the key to keeping seablite alive and growing. In contrast, 
watering the seablite with still water/tap water (not drinking water) 
caused the seablite to die within seven days/week. The theory in Section 
C, digital agriculture, was applied to capture the bespoke cultivation 
practises of seablite. Consequently, the actual factors for growing sea-
blite were measured using a digital agricultural device and are listed in 

Fig. 6b. Seablite distribution map.

Fig. 7. Soil model of the bespoke seablite cultivation.

Table 3 
Factors affecting bespoke cultivation of seablite.

No Factors Values Digital Bit

1 Soil Saline 1
2 Water Saline 1
3 pH ≈7 1
4 Moisture Wet 1
5 Temperature ≈30 ◦C 1
6 Sunlight ≈10 hrs/day 1
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Table 3. The cultivation factors of seablite were converted into digital 
form, with a value of 1 assigned if the measurement values met the 
conditions shown in Fig. 7.

3.4. Digital circuit of bespoke cultivation of seablite

The current digital circuit was built based on primary data obtained 
from the experimental results of a bespoke seablite cultivation. Fig. 8
shows the digital circuit built using the data provided in Table 3 and 
Figs. 6 and 7, based on the digital agriculture theory in Section 2.3.

The digital bits were collected in two distinct time periods (morning 
and afternoon) per day. These measurements were taken at regular in-
tervals of half an hour throughout the day, and the average value was 
calculated. Table 4 lists the factors resulting in decline in seablite 
growth. Saline water and soil are important inputs to the digital circuit 
shown in Fig. 8. Table 5 lists the growth conditions of seablite devel-
opment. Saline water is a key controller for growing seablite and is 
considered a vital input for the digital circuit of bespoke seablite culti-
vation (see Fig. 8).

3.5. Prediction of the future seablite growth conditions

The digital data phases of seablite development in Table 5 are the 
input data for automatic predictions of seablite growth using the DNNs 
and SVM methods. Tables 6 and 7 list the prediction results obtained 
using the DNNs and SVM methods, respectively. These predictions were 
assumed to be the digital phases from day 8 to 14. These predictions 
served as the inputs for the digital circuit shown in Fig. 8, with the 
purpose of generating the output corresponding to the seablite growth 
conditions.

3.6. Accuracy of ML prediction results

The outputs of the seablite growth phases were successfully 
computed using the digital circuit of a bespoke cultivation of seablite, as 
shown in Fig. 8. The DNNs and SVM outputs obtained from the AI 
prediction were compared with the actual seablite growth phases. The 
accuracy parameters are listed in Table 8 and were computed using 
Equation (2).

4. Discussion

Recent research is the first to describe a new approach in monitoring, 
acquisition, management, analysis, and synthesis of ecological data for 
growing specific plants and sustainable agriculture using digital circuits, 
Boolean logic, and truth tables. This digital circuit clearly explains the 
new concept of digital agriculture, which captures the environmental 
determinants and direct gradients suited to a particular requirement for 
specific plant cultivation. In addition, the digitisation technique pro-
posed in the present study helps maintain and support plant growth 
phases (see Figs. 7 and 8 and Tables 3 and 5). The digital agriculture 
concept (Fig. 1) shows that if sufficient plant growth data is collected, a 
specific plant cultivation/migration might be able to overcome climate 

change. These data can be beneficial to several research fields, such as 
economics, logistics, engineering, agriculture, ecosystems, and the 
environment. Specific plant cultivation data are typically collected by 
farmers with many years of experience, and these experiences and 
knowledge are difficult to pass on to the next generation. Thus, digital 
agriculture can be applied to transform farmers’ experiences and 
knowledge into digital data. We can then develop a digital database and 
manage the environmental determinants and direct gradients suitable 
for specific plant growths.

In this study, a bespoke seablite cultivation system using digital 
agriculture and ML was used to build AI models for predicting future 
seablite growth conditions. We have developed a novel digital agricul-
tural technique that can be applied to digitised seablite cultivation 
systems. We observed that seablite growth/migration mainly depended 
on saline water (see Figs. 6 and 7); this was proved by the digital circuit 
of the bespoke seablite cultivator (see Fig. 8). Additionally, the digital 
output of the Boolean circuit clearly indicated that seablite growth 
depended on saline water (see Table 4); otherwise, seablite growth 
conditions declined. This was proven by our cultivation experiment of 
seablite migration, which showed that watering seablite with seawater 
maintained the salinity levels of soil and its pH but moisture and tem-
perature were dependent on sunlight. Sunlight was used as an uncon-
trollable variable in our study that depends on geographical factors.

In addition, we used the unsupervised ML of both DNNs and SVM to 
study unstructured seablite digital data (input section in Table 5). The 
outputs of the DNNs and SVM are the input sections listed in Tables 6 
and 7, respectively. These data were the inputs of the digital circuit of 
the bespoke cultivation of seablite in Fig. 8 to achieve the output of the 
seablite growth conditions (output section in Tables 6 and 7). Conse-
quently, the computation of accuracy parameters indicated that DNNs 
outperformed SVM and achieved 86 % accuracy in the prediction of the 
output of seablite growth conditions (Table 8). Our results obtained 
from DNNs are in line with those of recent studies, which confirmed that 
DNNs are preferred in an unsupervised manner and with unstructured 
data (Usama et al., 2019; Jain et al., 2021). Hence, our preliminary 
results accurately describe the relationship between the digital agri-
culture model and seablite cultivation system. The results obtained from 
these ML models demonstrate the possibility of predicting future sea-
blite growth conditions.

Technological advancements in electronics can challenge agricul-
ture, ecosystems, and the environment (Furber, 2017). Recently, smart 
and precise farming has received considerable attention in agriculture 
[10,11]. However, the use of electronic devices in agriculture has been 
limited. Many studies have reported the use of electronic devices to 
support agricultural production and yields (Muangprathub et al., 2019; 
Lekbangpong et al., 2019a; Pitakphongmetha et al., 2016; Boonnam 
et al., 2017; Kajornkasirat et al., 2021; Lekbangpong et al., 2019b; 
Vincent et al., 2019; Abba et al., 2019; Ciruela-Lorenzo, et al., 2020; Jin 
et al., 2020). Nevertheless, only our studies have proposed a digital 
agriculture concept to promote the use of electronic devices in agricul-
ture, particularly in plant cultivation and migration (Chaichana and 
Chakrabandhu, 2021; Chaichana and Reeve, 2022; Chaichana et al., 
2022). Moreover, we focused on the present and future policies in 
decarbonising agriculture, forestry, and land use sectors (Thompson, 
2022; Ekins, 2022). These efforts underscore the growing significance of 
digital agriculture practices in addressing environmental concerns (e.g., 
modelling greenhouse gas (GHG) and carbon dioxide (CO2) in agricul-
ture or land use, the study of plant growth parameters, and GHG and/or 
CO2 impacts plant biology or migration of plants).

Our feasibility study showed promising results for a bespoke seablite 
cultivation system using digital agriculture and ML. However, there 
were some limitations in this study. First, only a single plant type was 
studied. We only analysed the seablite distribution, modelling the sea-
blite soil using digital circuits. However, this limitation is complemen-
tary to the digital agriculture concept. Second, only Samut Sakhon was 
chosen as the study area because it has a long coastline and the locals Fig. 8. Digital circuit of a bespoke cultivation of seablite.
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consume seablite as their main food source. This reveals the possibility 
of cultivating seablites in other regions. Thus, we successfully analysed 
the spatial modelling of the seablite distribution. Third, we used only 
our digital agricultural device to measure the environmental de-
terminants and direct gradients of the seablite. Thus, our digitised sea-
blite cultivation system created unstructured digital data, which may be 
difficult for ML. Finally, only two ML models were selected to predict the 
seablite growth conditions in our study. Notably, we selected DNNs and 
SVM based on our experience with data analysis (Chaichana et al., 2007; 
Boonnam et al., 2022; Chaichana and Reeve, 2022; Supot et al., 2007).

5. Conclusions

This finding indicates a positive outcome to represent novel agri-
cultural systems capable of effectively managing and monitoring envi-
ronmental data of targeted plant cultivation and migration. The soil 
model has also conducted experiments to explain soil indicators that 
indicate the origin of environmental determinants. The essential factors 
for seablite development are saline soil, saline water, pH, moisture, 
temperature, and sunlight. Digital circuits of seablite cultivation char-
acterise the relationship between the essential factors for seablite 

Table 4 
Digital data showing declining growth of seablites.

Parameters Digital States

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Inputs Saline Water 1 1 1 0 0 0 0 0 0 0 0 0 0 0
Saline Soil 1 1 0 0 0 0 0 0 0 0 0 0 0 0
pH 1 1 1 0 0 0 0 0 0 0 0 0 0 0
Moisture 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Temperature 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Sunlight 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Output Seablite Growth 1 1 1 0 0 0 0 0 0 0 0 0 0 0

Table 5 
Digital data for seablite growth development.

Parameters Digital States

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Inputs Saline Water 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Saline Soil 0 0 0 1 1 1 1 1 1 1 1 1 1 1
pH 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Moisture 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Temperature 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Sunlight 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Output Seablite Growth 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Table 6 
AI-predicted results obtained from DNNs algorithm.

Parameters Digital States

Day 8 Day 9 Day 10 Day 11 Day 12 Day 13 Day 14

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Inputs Saline Water 1 0 1 1 1 1 1 1 1 1 1 1 1 1
Saline Soil 0 0 0 1 1 1 1 0 1 1 1 1 1 1
pH 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Moisture 1 1 0 1 1 1 1 1 1 0 1 1 1 1
Temperature 1 1 1 0 1 1 1 1 1 1 1 1 1 1
Sunlight 1 1 1 1 1 1 0 0 1 1 1 1 1 1

Output Seablite Growth 1 0 1 1 1 1 1 1 1 1 1 1 1 1

Table 7 
AI-predicted results obtained from SVM algorithm.

Parameters Digital States

Day 8 Day 9 Day 10 Day 11 Day 12 Day 13 Day 14

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Inputs Saline Water 1 1 1 0 1 1 1 0 1 1 1 1 1 1
Saline Soil 1 0 1 1 1 1 1 1 0 1 1 1 1 1
pH 1 1 1 1 1 0 1 1 1 1 1 1 1 1
Moisture 1 1 1 0 1 1 1 1 0 0 1 1 1 1
Temperature 1 0 1 1 0 0 0 1 1 1 1 0 1 1
Sunlight 1 1 1 1 1 0 0 0 1 1 1 1 1 1

Output Seablite Growth 1 1 1 0 1 0 1 0 0 1 1 1 1 1
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growth and seablite growth phases. ML results revealed that DNN per-
formed better than SVM with an accuracy of 86 % when predicting the 
growth conditions of seablite. This research suggests that the digitisation 
of specific plant cultivation practises, which assist in farming under 
changing climatic conditions and facilitate plant migration, together 
with the adoption of digital agriculture, are important strategies for 
ensuring future food supply and promoting sustainable agriculture. 
Therefore, our digitisation methodology for the cultivation of a partic-
ular plant can be considered as digital agricultural knowledge and 
management. As an effective method for cultivating specific plants, 
other types of plants shall be studied to support future policies for 
reducing carbon emissions, agriculture, forestry, and land use.
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