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13 Abstract

14 Fertilizer applications can enhance soil fertility, pasture growth and thereby increaseing 

15 production.  Nitrogen fertilizer has, however, been identified as a significant source of nitrous 

16 oxide (N2O) emissions from agriculture if not used correctly and can thereby increase the 

17 environmental damage costs associated with agricultural production. The optimum use of organic 

18 fertilizers requires an improved understanding of nutrient cycles and their controls. Against this 

19 context, the objective of this research was to evaluate the scope for reducing N2O emissions from 

20 grassland using a number of manure management practices including more frequent applications 

21 of smaller doses and different methods of application. We used a modified UK-DNDC model and 

mailto:junyew@athabascau.ca
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22 N2O emissions from grasslands at Pwllpeiran (PW), UK, during the calibration period in autumn, 

23 were 1.35 kg N/ha/y (cattle slurry) and 0.95 kg N/ha/y (farmyard manure), and while 2.31 kg 

24 N/ha/y (cattle slurry) and 1.08 kg N/ha/y (farmyard manure) during the validation period in spring, 

25 compared to 1.43 kg N/ha/y (cattle slurry) and 0.29 kg N/ha/y (farmyard manure) during the spring 

26 at North Wyke (NW), UK. The modelling results suggested that the time period between fertilizer 

27 application and sample measurement (TPFA), rainfall and the daily average air temperature are 

28 key factors for N2O emissions. Also, the emission factor (EF) varies spatio-temporally (0-2%) 

29 compared to the assumed uniform 1% EF used by theassumption of IPCC. Predicted N2O 

30 emissions were positively and linearly (R2≈1) related with N loadings under all scenarios. During 

31 the scenario analysis, the use of high frequency, low dose fertilizer applications compared to a 

32 single one off application was predicted to reduce N2O peak fluxes and overall emissions for cattle 

33 slurry during the autumn and spring seasons at the PW and NW experimental sites by 17% and 

34 15%, respectively. These results demonstrated that an optimised application regime using outputs 

35 from the modelling approach is a promising tool for supporting environmentally-friendly precision 

36 agriculture.    

37 Keywords

38 UK-DNDC, emission factor, farmyard manure, greenhouse gases (GHG), nitrous oxide, cattle 

39 slurry 

40

41 1. Introduction

42    Grazed grasslands provide us with food, biodiversity, and landscapes of high aesthetic quality, 

43 whilst also offering considerable potential to enhance carbon storage and watershed functioning 

http://www.environmentdata.org/archive/vocabpref:21792
http://www.environmentdata.org/archive/vocabpref:21792
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44 (Xu et al., 2019; Chianese et al., 2009). Grasslands and intensively managed pasture represent 

45 about 30% of the total global land use area and about 70% of the total agricultural expanse (Latham 

46 et al., 2014). Grazing livestock produce 33%–50% of global total agricultural gross domestic 

47 product (GDP) (Herrero et al., 2013). However, a number of challenges and risks exist for grazing 

48 ecosystems due to a range of interconnected factors including, climate change, excessive nutrient 

49 runoff, soil degradation, water shortages, changes in market demands, nitrous oxide (N2O) 

50 emissions and over-grazing (Pulido et al., 2018; Thomas et al., 2018; Orr et al., 2016; Chen et al., 

51 2008; Baral et al., 2014; Kim et al., 2014). 

52     Agricultural soils contribute about 65% of global nitrous oxide (N2O) emissions (Reay et al., 

53 2012), and this greenhouse gas has a warming potential of approximately 300 times that of carbon 

54 dioxide (CO2) over 100 years. In the UK, agriculture contributes up to 75% of N2O emissions, of 

55 which 75% originate from agricultural soils following nitrogen fertilizer (both synthetic and 

56 organic) applications (Brown et al., 2016). In addition to the greenhouse effect, N2O also plays an 

57 important role in ozone depletion (Smith, 2017). It has been reported that the contributions of 

58 organic fertilizer applications to N2O emissions in the EU were approximately equal to 85% of 

59 synthetic fertilizers (Velthof et al., 2015).

60      Key components of grassland management include grazing intensity resulting from livestock 

61 stocking density and grazing regime, fertilization applications and, in some environmental settings, 

62 irrigation. Fertilizer inputs are important for pasture and forage productivity and corresponding 

63 livestock productivity (Bump and Baanante, 1996). However, fertilizer nitrogen can be a 

64 significant source of N2O emissions from agriculture if not used correctly (Bodirsky et al., 2012). 

65 Furthermore, fertilizer use is very expensive in terms of both private and public costs. Optimized 

66 livestock production can reduce negative environmental impacts and assist adaptation to climate 
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67 change if site-specific best management practices (BMP) are targeted to the four critical areas of 

68 on-farm nutrient management (source, rate, time and place) (Patil et al., 2018; Goulding et al., 

69 2008). As a result, much effort has been made to assess the influence of inorganic and organic 

70 fertilizers on nutrient cycles, N2O emissions and soil health (Bhogal et al., 2011; Evanylo et al., 

71 2008; Patil et al., 2018; ,Li et al., 2013; Noirot- Cosson et al., 2017; Diego et al., 2017). For 

72 example, Pires et al., (2015) reported that the currently excessive use of N fertilizers not only 

73 decreases efficiency, but also increases the CO2 concentrations in atmosphere. The optimum use 

74 of inputs using the 4R (Right source, Right rate, Right time, and Right place) principles will 

75 enhance the efficiency, reduce the emissions, and improve the economic conditions of thosee 

76 persons directly and indirectly attached with the farming sector. Lassaletta et al., (2014) concluded 

77 that more than half of the total N applied to the vegetation without following the 4R technique 

78 hasis no beneficial impactuse and subsequently degradesaffects the sustainability of land, air, and 

79 water resources over theon a longer terms. Patil et al., (2018) showed that effective scheduling of 

80 organic fertilizers improves the quantity and quality of sunflowers compared to recommended 

81 traditional practices. 

82    Organic fertilizer applications have potential benefits for grassland compared to synthetic 

83 fertilizers, including: (1) increasing soil organic matter; (2) improving soil quality; (3) producing 

84 organic foods, and; (4) increasing productivity (Zheng et al., 2010; Wang, 2014; FAO, 2017). 

85 Consequently, organic fertilizers, such as FYM and cattle slurry (CS), are increasingly applied in 

86 agriculture because of these wide-ranging benefits. However, organic fertilizers are more complex 

87 than synthetic fertilizers due to varying compositions, as evidenced, for example, by the substantial 

88 range in C/N ratios from 13 for FYM to 2 for cattle slurry (Bouwman et al., 1997; McTaggart et 

89 al., 1999; Akiyama et al., 2004; Green, 2015). Factors such as compositional variability mean that 
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90 it is more challenging to optimize organic fertilization management in grasslands in terms of 

91 timing, frequency, and rates of application. 

92     Process-based models, such as Denitrification and Decomposition (DNDC), can simulate the 

93 dynamics of nutrient cycles, soil carbon, and greenhouse gas (GHG) emissions for assisting the 

94 improved understanding of nitrogen cycles and their controls in grassland systems. DNDC can, 

95 for instance, help reduce the need for replicated laboratory and fileld experiments and optimize 

96 organic fertilizer management (Shen et al., 2018a; 2018b; Li et al., 1992; Yadav and Wang, 2017). 

97 Gilhespy et al., (2014) presented the different phases of DNDC development for taking into 

98 account integrated affects of soil, climate, vegetation type, management practices, and 

99 biogeochemical processes. Zhang and Niu (2016) reviewed the plant growth sub-model of DNDC. 

100 Shen et al. (2018a) modified the UK-DNDC model to analyse the effects of green compost and 

101 FYM applied on winter wheat and grasslands on N2O fluxes at three UK research farms, whilst 

102 Shen et al., (2018b) studied N2O emissions associated with slurry and digestate applications. The 

103 latter study reported that although organic fertilizers enhance soil fertility and crop yields, they 

104 have the potential tobut might increase N2O emissions due to lower carbon and nitrogen ratios. 

105 While Shen et al. (2018a; 2018b) developed DNDC functions for new organic fertilizers, such as 

106 digestate and green compost, the effects of fertilization management and seasonality were not 

107 simulated at the study sites. Many studies have shown, nevertheless, that N2O emissions can be 

108 affected significantly by fertilization management including type (inorganic, organic), application 

109 timing, application rate,, method of application (Deng et al., 2016; Zhao et al., 2016), and 

110 environmental factors including seasonality. Therefore, there is a need for combining newly 

111 available field data and modelling tools, such as DNDC, to explore optimized organic fertilization 
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112 management under site-specific combinations of climate, soil and grazing, as captured by existing 

113 UK research farms. 

114   Because DNDC can be used for a Tier 3 approach to estimating the emission factors (EF) for 

115 N2O, it has been widely used for simulations of annual N2O emissions from various agricultural 

116 soils treated with CS and FYM, including accounting for spatial and temporal variabilities (Kim 

117 et al., 2013; Shen et al., 2018a,b). DNDC requires a range of input data including, for example, 

118 soil hydraulic, chemical property, vegetation, and climatic parameters. The simplified regression 

119 model for N2O emission factors can therefore be a useful means of simplifying the data needs of 

120 process-based tools.  

121    In this study, the overall aim was to evaluate the efficiency and impacts of fertilizer management, 

122 (i.e. manure application rate and split applications in grassland systems), on N2O emissions. The 

123 research hypothesis was: split fertilizer applications according to crop physiological stages, as 

124 opposed to a one time application, can optimize farm management for reducing N2O emissions. 

125 The specific objectives were: (1) to assess the effects of fertilizer management, in the form of 

126 more frequent doses and different application methods, on N2O emissions in grasslands; (2) to 

127 simulate N2O fluxes from two UK soils treated with FYM and CS fertilizers using the UK-DNDC 

128 model parameterised for specific soil, time between fertilizer application and measurement, and 

129 environmental factors, (3) to determine emission factors based on simulated N2O emissions due 

130 to application of  the two fertilizers to soils, and; (4) to develop a meta-model to explore the effects 

131 of climatic parameters (average daily temperature, precipitations) and the time interval (days) 

132 between fertilizer application and subsequent (different times) sample measurements (TPFA) on 

133 N2O emissions. 

134 2. Material and Methods
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135 2.1. Research Sites

136 Two UK research sites were selected at Pwllpeiran (PW), Wales, and North Wyke (NW), England 

137 (Fig. 1) for sensitivity analysis of DNDC under different environment and management conditions. 

138 These two farms provide suitable datasets for two years (2011-2012) for representing variability 

139 in soil and climatic conditions (Nicholson et al., 2017; Cardenas et al., 2010; 2019; Orr et al., 

140 2016). Table 1 summarisesshows the research site coordinates, soil physical and chemical 

141 properties, climatic data, manure application scheduling data, and crop type for different 

142 treatments during the autumn and spring at PW, and spring at NW. The treatments comprised a 

143 control, plus FYM and CS inputs using surface broadcasting (CS-SB), and CS application using a 

144 trailing shoe (CS-TS). 

145

146 <Figure 1>

147
148 <Table 1>
149
150 The FYM is generated by beef cattle dung, urine, bedding material (such as straw) and uneaten 

151 forage, whereas the CS comprises dung, urine and includes rainwater if stored in an uncovered 

152 store (Pain and Menzi, 2011). The plants have immediate access to the small portion of N available 

153 in organic amendments;, however, the remaining larger percentage of N is available after the 

154 decomposition of FYM. Irrigation water was not applied Dduring the experimental periods at the 

155 two research farms. , irrigation water was not applied.

156 2.2. The DNDC model

157 2.2.1. Model description 

158 Li et al. (1992) developed the process-based DNDC model for simulation of GHG emissions (EPA, 

159 1995) in the USA. DNDC is composed of ecological drivers (climate, soil, vegetation, and human 
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160 activity) and soil environmental factors (temperature, moisture, pH, Eh, and substrates NH4
+, NO3

-, 

161 DOC after decomposition). The soil temperature and moisture profiles are determined by the soil 

162 and climate module. Depending on the soil and climatic conditions, the vegetation module of 

163 DNDC numerically simulates daily crop growth, nitrogen uptake, and root respiration. As a result, 

164 this module calculates biomass yields. The crop growth module is again composed of sub-routines 

165 for controlling management practices such as crop rotation, tilling, irrigation, fertilizer 

166 applications, and manure additions (Li et al., 1994). The decomposition module consists of four 

167 soil carbon pools forincluding litter, microbial biomass, humads, and humus. This module 

168 simulates daily substrates (NH4
+, NO3

-, DOC) as a function of prevailing soil temperature and 

169 moisture.  

170     The final module for nitrification and denitrification hasve been improved using the concept of 

171 the anaerobic balloon, which swells and shrinks as a function of soil redox potential (Li et al., 

172 2004).  The substrates (such as DOC, NH4
+ and NO3

-) allocated to the anaerobic or aerobic 

173 compartments of each layer enable nitrification and denitrification processes to occur 

174 simultaneously.

175     For the current study, we used UK-DNDC because this version has been calibrated and validated 

176 under the UK-specific conditions for soil and climate combinations. In UK-DNDC, the soil is 

177 considered as a series of discrete horizontal layers ranging from 0-50 cm depth. Some soil 

178 properties (bulk density, porosity, hydraulic parameters) are assumed to be constant in each layer, 

179 but most of the soil properties (soil moisture, temperature, pH, field capacity, wilting point, carbon 

180 and nitrogen pools) can vary between layers. The model simulates dynamic variables for each 

181 layer for each time step. Since the observed data collected at the two study sites was measured at 

182 10 cm soil depth, the model simulations were used to output predictions at the same depth.
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183 2.2.2. Input parameters 

184 Input parameters are daily weather data, soil physical and chemical properties, plants, and 

185 agricultural practices. Agricultural practices include tillage, fertilization, manuring, irrigation, and 

186 grazing/cutting. The soil parameters, including soil pH, SOC, NO3
-, NH4

+ for both study sites, are 

187 summarised in Table 1. The total N (kg-N/ha) contents in organic fertilizers for the CS-SB, CS-

188 TS, and FYM treatments applied during the autumn and spring at PW and the spring at NW are 

189 also shown in Table 1.  

190 Table 2 presents the nitrogen loadings for two fertilizers applied at the study sites, following the 

191 methods of Kim et al., (2013). The default C/N ratios were considered in DNDC to determine the 

192 carbon loading of FYM and CS treatments applied to the two study sites (Table 2). The term factor 

193 used in Table 2 shows the nitrogen loading according to Kim et al. (2013) for the reference case 

194 (factor = 1), 1.5 times the reference, and 2 times the reference.  

195 Measurements of direct N2O-N were made using 5 static chambers (0.8 m2 total surface area) per 

196 plot over 12 months after manure applications. Gas samples were analysed by gas chromatography. 

197 The measured daily fluxes were regressed through linear gas accumulation. For further details, 

198 readers are referred to Chadwick et al. (2014) and Nicholson et al. (2017). Standard protocols were 

199 deployed for measuring soil moisture and soil temperature (Nicholson et al., 2017; Cardenas et al., 

200 2010; Orr et al., 2016).  

201 <Table 2> 

202 For comparing and controlling the N2O peak and overall annual emissions, CS was applied by two 

203 different methods, including one single time application and split applications according to the 

204 grass crop physiological stages (Moore et al., 1991) as shown in Table 3.   

205 <Table 3>
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206 As the soil at the two experimental sites is typically wet given the prevailing climatic conditions 

207 on the western side of the UK, UK-DNDC simulations assumed field capacity initially, with soil 

208 moisture varying from that point onwards as a function of soil and climatic parameter variability 

209 during the simulation period. 

210 2.3. Emission factors for nitrous oxide

211 The emission factor (EF) is a measure of transformation proficiency of nitrogen available in 

212 fertilizer into N2O emissions: 

213 (1)EF = N2Of - N2Oc

Na
100%

214 Where: N2Of is the total N2O produced from the fertilized soils (kg N/ha/y);. N2Oc is the N2O 

215 produced from the soil without application of fertilizer (kg N/ha/y), and;. Na is the total nitrogen 

216 (kg N/ha/y) available in the fertilizer applied to the soil.

217 The default EF fixed by IPCC Tier 1 is 0.01 (1%) and is related with N2O emissions due to fertilizer 

218 applications toin agricultural soils (Eggleston et al., 2006). The net emission flux, Nnet, is strongly 

219 linear with Na:.

220 (2)Nnet = EF ×  Na

221 2.4. Statistical measures for UK-DNDC performance evaluation

222 The performance of UK-DNDC was evaluated using the observed N2O emission data at the two 

223 UK sites. The Ccoefficient of determination (R2) and the root mean square error (RMSE) wereare 

224 used for testing model performance. index of how well the modeled results reproduce observed 

225 data. The relative error (RE) wasis used to compare approximations between the modeled results 

226 and the observed data:

227 (3)R2 =
(∑n

i = 1(Si - Sm,i)(Oi - Om,i))
2

∑n
i = 1(Si - Sm,i)

2
(Oi - Om,i)2
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228 (4)RMSE = ∑n
i = 1(Si - Oi)2

n

229 (5)RE = Oi - Si

Oi

230 Where: the subscripts i and m represent the index number and average value, respectively. The 

231 symbols S and O are UK-DNDC simulated and observed values, respectively. n is the total number 

232 of values. Based on the research objectives, statistical criteria for evaluating model performance 

233 were set as R2>0.5, and average RMSE<0.5. 

234 2.5. UK-DNDC calibration and validation

235 The UK-DNDC simulations were performed from 1 January to 31 December (Julian days) and 

236 annual (365 days) simulated and observed values were used to compare the cumulative N2O 

237 emissions. The UK-DNDC model calibration was based on autumn and validation for spring at 

238 PW. The trapezoidal rule of interpolation wasis used to calculate the observed annual fluxes 

239 between measurement points. 

240 The UK-DNDC model was tested against the datasets of water filled pore space (WFPS), soil 

241 temperature and N2O emissions from the two study farms (Fig. 1). We firstly calibrated and 

242 validated the WFPS and soil temperature to calculate their correlation coefficient, R2, (Eq. 3), 

243 RSME (Eq. 4) and RE (Eq. (5). (Fig. 2). Then, we calibrated and validated daily N2O flux (Figs. 3, 

244 4 and 5). We also calibrated annual N2O emissions (Figs., 6 and 7). The best fitness parameters 

245 were obtained by finding the maximum coefficient of determination (R2) and the minimum root 

246 mean square error, RMSE (%), through OFAT (one factor at a time) analysis. After calibration, 

247 the RMSE between annual observed and simulated values for N2O emissions reduced from 2.7 

248 (3.48 kg N/ha/y) to 1.51 (2.31 kg N/ha/y) in the case of the CS-SB treatment, and from 2.31 (3.49 

249 kg N/ha/y) to 1.19 (2.33 kg N/ha/y) for CS-TS in the spring at PW. After calibrationed and 

250 validationed, UK-DNDC was used to simulate different rates of nitrogen loading to explore 
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251 relationships between nitrogen loading and annual N2O emissions under site-specific conditions 

252 and to explore optimal organic fertilizer applications and strategies in the two intensively managed 

253 grassland settings. 

254 2.6. Nitrous oxide flux and a EF linear model

255 As there is a strong relationship between N2O flux and N loading applied to agricultural soils, a 

256 linear regression model can be developed for reducing the input and calculation requirements 

257 (Cardenas et al., 2010).

258 (6)w = aN + b

259 (7)a = w(N) - w(control)
N = EF

260 Where: w and N represent the N2O emission flux (kg N/ha/y) and nitrogen loading (kg N/ha/y), 

261 respectively. The slope “a” is equivalent to the EF and intercept “b” is the controlled emission flux 

262 (kg N/ha/y). 

263 Although equation (6) is fit to describe the linear relationship on an annual basis, this relationship 

264 does not work on a daily time step due to the spatio-temporal variability of soil properties and 

265 climate change impacts (Laville et al., 2011). 

266 3. Results and discussion

267 We examined the performance of UK-DNDC against the observed data for WFPS, soil 

268 temperature, and N2O emissions at the two study sites. We subsequently performed scenario 

269 analyses to explore optimal timing, and applications for organic fertilizers.   

270 3.1. Daily WFPS and soil temperature 

271 The UK-DNDC model simulates soil temperature based on WFPS (%) and soil hydraulic 

272 properties at a daily time step. Although the averaged observed event rainfall at both PW and NW 

273 is in the range of 7-10 mm, the variability of rainfall is different in terms of variance and standard 
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274 deviation. This variability has an important influence on N2O emissions. The simulated and 

275 observed WFPS (%) for both locations are in good agreement in terms of relative error (RE: 0.09-

276 0.15) and RMSE (0.11-0.17), but the magnitude of the R2 (0.12-0.27) is low (Fig. 2A). The reason 

277 for this relates to the irregular time intervals of the observed values. In the UK-DNDC model, the 

278 simulated values of WFPS are continuous and based on the previous time step value (Shen et al., 

279 2018a). The model fit could be further improved by collecting continuous observed values, but 

280 this option is physically impossible. Fig.2B shows that the model captured the variations in soil 

281 temperature and matched the observed data well. However, the air temperature is slightly lower 

282 than the soil temperature due to being open to the atmosphere in both locations and climates. This 

283 can be explained by the fact that the UK-DNDC model simulates soil temperature and WFPS (%) 

284 using the thermos-hydraulic model at a daily time step. Because the heat transfer in soil is 

285 calculated using the Fourier law, the soil temperature is a balance between heat dissipation and 

286 soil heat capacity. When the heat capacity is larger than heat dissipation, the soil temperature could 

287 be slightly higher than the air temperature due to being open to the atmosphere in both locations 

288 and climates. Also, the continuous aerobic and anaerobic chemical reactions and subsequent heat 

289 transfer between soil layers is slow so more heat is kept in the soil, resulting in a warmerhotter 

290 internal soil layer than the atmosphere. 

291 <Figure 2A>

292 <Figure 2B>

293 3.2. Daily nitrous oxide fluxes 

294 Fig. 3A shows the observed and simulated values for N2O emissions for the four treatments 

295 including CS surface broadcasting (CS-SB, Fig. 3A(c)), CS trailing shoe (CS-TS, Fig. 3A(d)), and 

296 FYM (Fig. 3A(b)), plus theand control treatment (Fig. 3A(a) for the autumn at PW. The simulated 
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297 values of N2O emissions follow the same trend of the observed values, but again the model fit is 

298 poor due to the irregular interval of the observed measurements. ForIn the control and FYM 

299 treatments (Fig. 3A(a), 3A(b)), the magnitude of N2O emissions varied between 0-12 g-N/ha/d, 

300 but the treatments (Fig. 3A(c), 3A(d)) showed higher emission ranges between 0-80 g-N/ha/d. This 

301 greater magnitude is due to CS applications of 24 kg-N/ha in both treatments compared to the 

302 control. The FYM treatment received 131 kg-N/ha but the emission was in the same range as the 

303 control treatment, reflecting the fact that readily available nitrogen is only 0.9 kg/ha in FYM 

304 compared to 9.4 kg/ha for the CS treatments. For daily N2O fluxes, CS holds more water than 

305 FYM. UK-DNDC generally over-predicts N2O emissions. This could be due to poor representation 

306 of water factors in the denitrification process, in which the water is assumed to be constant. The N 

307 loading rates were low compared to typical applications. In the latter, the application rates normally 

308 vary between 200-250 kg N/ha for FYM and 150-400 kg-N/ha in the case of CS (Thomas and Hao, 

309 2017; Kim et al., 2013). The lower application rates at the study sites reduced the N2O emissions. 

310 The decision of whether to apply FYM or CS depends on the soil fertility status, crop N demand, 

311 and level of precision technology available for supporting field application. At the experimental 

312 sites, the soil fertility is relatively good and N demands are limited due to the prevalence of short 

313 root grassland compared with longer root crops; therefore, the application rates of CS and FYM 

314 are quite low compared to typical application rates reported more generally.  At the experimental 

315 sites, the gradient of application rates wasere used for a comparison of among lower and higher 

316 rates.   

317 <Figure 3A>

318 Fig. 3B compares the observed and simulated values of N2O emissions for the three treatments 

319 (CS-SB, CS-TS, and FYM) and control treatment for the spring at PW. The simulated values for 
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320 N2O emissions follow the same trend of the observed values, but again the model fit was not good 

321 because of the irregular interval of observed measurements (TPFA). In the control and FYM 

322 treatment (Fig. 3B(a), 3B(b)), the magnitude of N2O emissions varied between 0-20 g-N/ha/d, 

323 compared with the higher magnitude of between 0-130 g N/ha/d for the treatments (Fig. 3B(c), 

324 3B(d)). This greater magnitude reflected the CS applications of 67 kg N/ha in both treatments. In 

325 contrast, the FYM treatment received a nitrogen application of 122 kg N/ha but the emissions were 

326 in the same range as the control treatment, reflecting the fact that readily available nitrogen in 

327 FYM is only 0.5 kg/ha compared to 35 kg/ha for the CS treatments. Here, it is important to bear in 

328 mind that readily available nitrogen from manure is 5 times greater in spring compared to autumn 

329 since more intense and recurring rainfall allows for a greater magnitude of redox potential (Eh) and 

330 subsequently a higher magnitude of N2O emissions.    

331 <Figure 3B>

332 Fig. 3C compares the observed and simulated values of N2O emissions for the threefour treatments 

333 and theincluding control for the spring at NW. The magnitude of N2O emissions varied between 

334 0-20 g N/ha/d for the control, but between 0-200 g N/ha/d for the treatments. The latter reflected 

335 the CS applications of 77.4 kg-N/ha in both treatments. The FYM treatment received an 

336 application of 144 kg N/ha but the emission was in the same range as the control since readily 

337 available nitrogen in FYM is only 0.67 kg N/ha compared to 43.5 kg N/ha for the CS treatment. 

338 The readily available nitrogen in manure is 20% greater in spring at NW compared to spring at 

339 PW. As the N2O emission depends on the rainfall intensity, initial soil moisture and temperature, 

340 application rate, timing, and frequency, the magnitude of simulated peak N2O emission under the 

341 CS-SB and CS-TS treatments was greater (200 g N/ha/d) during the spring at NW than the 

342 magnitude (140 g N/ha/d) during the spring at PW. Furthermore, the rainfall during the spring at 
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343 PW is less intense and erratic compared to spring at NW. In the case of the FYM treatment during 

344 the spring at PW and NW, the average N2O emission remains within 2-5 g N/ha/d, but the N2O 

345 emission during the spring at PW (Fig. 3C) is more erratic than during spring at NW (Fig. 3C). 

346 This may be due to the erratic patterns of rainfall, soil temperature, and WFPS (%). 

347 Regarding the mismatch between daily observed and simulated N2O emissions, there are multiple 

348 reasons including the irregular intervals of the empirical data for soil WFPS and soil temperature 

349 and the impact of delayed bacterial activity due to daily corresponding temperature and/or rainfall 

350 events. During a specific day, the optimum range of soil WFPS and soil temperature favours 

351 biogeochemical processing due to nitrification and denitrification and subsequently N2O 

352 emissions. The magnitude of emissions again depends on the fertilizer (organic/inorganic) rate. It 

353 means that if the soil WFPS and soil temperature are not within the optimum range, the bacterial 

354 activity slows down and results in an underestimation/ overestimation for the simulated N2O 

355 emissions. Actually, the UK-DNDC model works well for annual emission fluxes (cumulative 

356 daily emissions), compared to daily emissions, due to the reasons mentioned above. Bearing the 

357 above in mind, the calibration and validation of annual emission fluxes under the different 

358 treatments, locations, and weather conditions, shows acceptable statistical performance (Table 4).

359 <Figure 3C>

360 Generally speaking, UK-DNDC generally over-predicts daily N2O fluxes for the CS treatment. 

361 The UK-DNDC model was calibrated by fitting the stress coefficient of manure (Smn) in the main 

362 nitrifier and denitrifier equations, which are one of the main drivers for optimizing annual N2O 

363 emissions and peaks. Table 4 presents the results for the calibration and validation periods at PW. 

364 The R2 is above 0.5 under all treatments during autumn (calibration) and all treatments, except CS-

365 TS, during spring (validation), which suggested that simulated and observed annual N2O emissions 
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366 wereare in good agreement. Similarly the RMSE was predicted to be below 0.62 (having R2>0.5 

367 in most cases) under all treatments during the autumn (calibration) and all treatments except CS-

368 SB and CS-TS during spring (validation). 

369 <Table 4>
370
371 3.3. Annual nitrous oxide emissions and emission factors

372 Many national and international reports, such as the annual IPCC report forof GHGs report total 

373 emissions including seasonal and annual values rather than high resolution estimates. Therefore, 

374 UK-DNDC was also calibrated (during the autumn season at PW) and validated (during the spring 

375 season at PW) for annual N2O emissions. Fig. 4 shows simulated and observed annual N2O 

376 emissions under the CS-SB, CS-TS, and FYM treatments for the autumn and spring at PW and the 

377 spring at NW. The simulated emissions were relatively higher than the observed data in the case 

378 of the CS-SB (2.31 kg-N/ha/y versus observed 0.80 kg-N/ha/y), and CS-TS (2.33 kg-N/ha/y versus 

379 1.20 kg-N/ha/y) treatments for spring at PW. In all other treatments, the model overestimated the 

380 annual emissions for the CS applications by 10-20% compared to the observed data, while it 

381 underestimated the emissions for FYM. This may be because the observed data is not available for 

382 the non-growth period in the winter and we used trapezoidal interpolation for the annual 

383 cumulative emissions, resulting in an overestimation bias.     

384     The highest observed emission is from FYM for the autumn and spring seasons at PW (1.28 kg-

385 N/ha/y, 1.277 kg-N/ha/y, respectively) due to the erratic rainfall patterns (Dobbie et al., 1999). The 

386 nitrogen loading (144 kg-N/ha/y) is greatest during the spring season at NW compared to autumn 

387 (131 kg-N/ha/y) and spring (122 kg-N/ha/y) at PW, but the erratic pattern of rainfall and WFPS at 

388 PW is more favourable than at NW. In addition, a higher soil pH value (>7) favours denitrification 

389 (Li et al., 1992), whereas a low pH (<5.6) strongly inhibits soil microbial nitrification and 

390 denitrification (Wang et al., 2013). The R2 for the controls treatments ranged from 0.01 in the 
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391 spring season at PW (Fig. 3B(a)) to 0.17 in the autumn season at PW (Fig. 3A(a)), while the R2 

392 for the other treatments ranged from 0.01 (CS-SB applied during the spring season at PW, (Fig. 

393 3B(c)) to 0.17 (CS-SB applied during autumn season at PW, Fig. 3A(c)). PotentialThe R reasons 

394 for theof lower value of correlation coefficients forin some treatments can include: (1) the daily 

395 N2O emission is strongly correlated with corresponding daily temperature and rainfall (Giltrap et 

396 al., 2010). It also meanings that these climatic parameters are strong drivers of nitrous oxide 

397 emissions without depending on the measured day, and; (2) the bacterial activity is delayed for 

398 several days due to the temperature and rainfall events and corresponding temperatures but is then 

399 and stimulateds due to an increase in temperature. 

400   The modelled N2O fluxes treated with CS-SB and CS-TS for the autumn and spring seasons at 

401 PW and for the spring season at NW were higher than the observed valuesones (Fig. 6) because 

402 the modelled peak values were more numerous and higher (Fig. 3A©, 3A(d), 3B©, 3B(d), 3C©, 

403 3C(d)), but thean opposite trend was observed in the other treatmentsexperiments (Fig. 3A(b), 

404 3B(b), 3C(b)) (i.e. the modelled N2O fluxes for the spring and autumn seasons at PW treated with 

405 FYM, and for the spring season at NW treated with FYM were lower than the observed ones). The 

406 over and under predictions of observed annual N2O emissions using the UK-DNDC model reflect 

407 the irregular intervals of observation, soil WFPS and the soil temperature status at a specific day 

408 and time. 

409 <Figure 4>

410 Using eq.1 (Fig. 6) and modelled data, EFs for FYM and CS at the two sites were also calculated. 

411 The modelled EF exceeded the observed EFs except for the FYM treatment during the autumn and 

412 spring seasons at PW and the spring season at NW. The IPCC Tier 1 default (EF=1%) 

413 underestimated the observed EF (<1%) in all cases except the CS-SB treatment during the autumn 
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414 season at PW, and overestimated the simulated EFs (1% > EF <2%) for all cases except FYM 

415 during the autumn and spring seasons at PW and the spring season at NW. One of the reasons is 

416 that the some values of the observed emissions were negative (Fig. 3B, 3C), whereas modelled 

417 emission values produced by UK-DNDC were all positive (Myrgiotis et al., 2016). The both 

418 negative and positive values offset each other. Another reason is that, the UK-DNDC model 

419 produced many sharp and narrow peaks at low emissions in the case of the FYM treatment (Fig. 

420 3A(b), 3B(b), 3C(b)), which contributed smaller percentages to the overall modelled emissions. 

421

422

423

424 3.4. Effect of nitrogen loading rates on annual nitrous oxide emissions and EFs

425 Optimized fertilizer applications can mitigate N2O emissions from grazing lands. N2O emissions, 

426 with respect to fertilizer N input, depend on location, climate, crop type, fertilizer type, soil 

427 properties, N2O emission measurement period, N input rates, biomass yield, cumulative N2O 

428 emissions and the N2O EF. Kim et al., (2013) applied four different levels of N inputs based on 

429 the 26 published datasets. These experimental sites were distributed globally in Canada, USA, and 

430 Europe. Their application rates on grassland are almost the same factor (1.5× and 2×). Therefore 

431 we used scenarios for FYM and CS by increasing by factors of 1.5 and 2 times the experimental 

432 loadings at the two study sites (Table 2) (Kim et al., 2013; Shen et al., 2018). The annual N2O 

433 fluxes increased as a result of increasing the fertilizer loadings (CS and FYM) at both sites (Fig. 

434 5). The response of the N2O emissions as a function of nitrogen loading was similar in the case of 

435 CS-SB and CS-TS, as wasnd the gradual change (almost constant) due to the smaller percentage 

436 of readily available nitrogen in FYM compared to CS for the spring and autumn seasons at PW 

437 and the spring season at NW. The different scenarios of nitrogen loading forecasted the simulated 
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438 emission fluxes and a regression model between nitrogen loading and emission fluxes wasere 

439 developed (Eq. 6).

440 <Figure 5>

441 The fitted constants “a” and “b” for the scenario analysis and the corresponding linear lines are 

442 shown in Table 5 and Fig. 5, respectively. All of the coefficients of determination (R2) exceeded 

443 0.99 (Table 5), which indicates that the N2O emissions increase linearly with increasing nitrogen 

444 loading. The projected constants (EFs) (Table 5) were much lower than 0.01 (1%) in most of the 

445 cases except the CS-SB and CS-TS treatments during the spring season at PW. The maximum EF 

446 was 2% for CS under the trailing shoe application method applied during the spring season at PW, 

447 and the minimum EF was 0.002% for FYM applied during the spring season at NW. The annual 

448 N2O fluxes as a function of nitrogen loading are strongly (R2 ≈ 1) dependent on each other in all 

449 cases. For every 50 kg-N/ha/y of nitrogen loading, there was an increase of 0.5 kg-N/ha/y in the 

450 simulated annual N2O emissions, which shows 1% emission flux in almost all cases except the 

451 FYM treatment, as shown in Figure 5. This response is due to the slower rate of degradation of 

452 FYM compared to CS.     

453 <Table 5>

454 According to Kim et al., (2013), the relationship between N input and direct N2O emissions follows 

455 three successive phases using the optimal N uptakes of both vegetation and soil microbes as 

456 boundaries. As N input initially increases (phase I), the N provided is consumed by plants and 

457 microbes, and N2O emissions are primarily controlled by plant vs microbial competition for the 

458 available N. Therefore, in phase I, direct N2O emissions increase linearly. Subsequently, as N 

459 additions exceed optimal N plant uptake rates, phase II would exhibit exponential increases of 

460 direct N2O emissions, since soil N2O production increases rapidly with excess N supply. Finally, 
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461 as N additions continue to increase progressively beyond the capacity of soil microbes to take up 

462 and utilize N (Phase III), the rate of N2O production would slow down and reach a steady state. 

463 Accordingly, the N input ranges of phases I, II, and III may change. If the N input range of phase 

464 I is larger than the tested range of N input, it would appear to be a linear response of direct N2O 

465 emission and N input as verified in Figure 5. of the manuscript. In contrast, if the N input range of 

466 phase I is smaller than the tested range of N input, an abrupt increase in direct N2O emissions 

467 would occur inside the tested range of N input and it would appear as an exponential response of 

468 direct N2O emissions with N input, as reported byfitted well by Kim et al., (2013). 

469     The optimal N uptakes of both vegetation and soil microbes may change depending on 

470 vegetation type, climate conditions (e.g. temperature, precipitation) and soil properties (e.g. Ph, 

471 redox potential, soil aeration, organic and mineral N, amount and availability of C, texture, 

472 mineralogy ). All these conditions used in this manuscript are different from those used in the 

473 study by Kim et al., (2013); therefore, regression models can be fitted well using both linear and 

474 non-linear models, depending on optimal N uptake by both vegetation and soil microbes at the 

475 locality in question.

476 3.5. Effects of N loading timing, dose and times on daily N2O fluxes

477 Fig. 6 shows the correlation coefficients between observed annual N2O emissions and three 

478 dynamic variables including TPFA, daily rainfall, and daily air temperature under the three 

479 treatments, including the control, CS, and FYM for autumn and spring at PW and spring at NW.  

480 The N2O emissions occurs due to the nitrification and denitrification processes, which are strongly 

481 related with these dynamic variables (Smith et al., 2003). The Arrhenius equation causes these 

482 chemical reactions to occur and N2O emissions depend on temperature and soil aggregation (Smith 

483 et al., 2003).  The variable WFPS does not take part directly in the reactions;, however, the 
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484 completion of these reactions depends on soluble substrates and oxygen as required by 

485 microorganisms. Under all casestreatments (control, CS, and FYM), and for both the spring and 

486 autumn seasons at PW and the spring season at NW, the variable air temperature shows positive 

487 and rainfall negative correlation coefficients. Whereas, tThe third variable, TFPA, 

488 exhibitedrepresents the negative correlation under all treatments and seasons at both PW and NW. 

489 This shows that with the increase of TFPA, the soil N content will decrease, which is logical. and 

490 makes sense. Based on the positive and negative magnitude of correlation coefficients betweenof 

491 TFPA, rainfall and temperature, it can be concluded that N2O emissions at both research farms 

492 increases with the increase of temperature and decreases with the increase of magnitude of rainfall 

493 and TFPS.

494 <Figure 6>

495 3.6. Effect of scheduled and unscheduled fertilizer application on nitrous oxide emissions

496 The optimization of fertilizer input requires scheduled (split application during the growing 

497 season) and precise fertigation based on the required nitrogen in the soil under different crop 

498 physiological stages (Moore et al., 1996). These frequent but scheduled doses, according to the 

499 crop physiological stages, significantly reduce peaks and overall emissions compared to a one-

500 time (unscheduled) application of fertilizer (Table 3). The optimum timing of organic fertilizer 

501 applications should not affect the silage quality, marginal profit, and grazing livestock. In order to 

502 quantify the reduction in peaks using both methods, the CS-TS treatment was selected for the 

503 autumn and spring seasons at PW and the spring season at NW (Fig. 7). The reason is that readily 

504 available nitrogen (RAN) in FYM is present in a smaller percentage compared to CS, which will 

505 take longer to degrade and be available to plants. The reduction in peak fluxes (schedule vs 

506 unscheduled) was 85% for the autumn season at PW (Fig. 7(a)) and 50% for spring at PW (Fig. 
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507 7(b)) and NW (Fig. 7(c)). The overall annual N2O emissions (schedule vs unscheduled) decreased 

508 by 17% and 15% for the autumn season at PW and the spring season at NW, respectively 

509 (Lassaletta, 2014, Pires et al., 2015). On the other hand, these emissions can also show increases, 

510 such as an increase inof overall annual emissions by 9% in the case of the spring season at PW. 

511 This makes sense as N2O emissions are a function of air temperature, precipitation, and TPFA. 

512      In practice, it is well realized that fertilizer best management practices (BMP) should utilize the 

513 4R principle (Right source, Right rate, Right time, and Right place). This is embodied in Nutrient 

514 Stewardship addressing the right fertilizer source, at the right rate, the right time, and in the right 

515 place (IFA, 2007; Lassaletta et al., 2014; Wang et al., 2016). However, although at a first glance, 

516 this best management appears simple, it is, in fact, complex with respect to considering how to 

517 split nitrogen applications according to plant growth stages, especially in the context of ambient 

518 weather and soil conditions. Our results showed that NUE could be much improved by changing 

519 from low frequently split to high frequently split applications, such as changing from 1 time to 4 

520 times. However, the corresponding improvement in NUE decreases if the frequency of split 

521 applications is even higher, as reported by Cardenas et al (2019).  Cardenas et al., (2019) compared 

522 N2O emissions associated with 4 split applications of inorganic fertilizers (AN320) with 6 split 

523 applications (AN320-split) (in their Fig. 4 and Table 2). However, it is important to note here that 

524 the times of the additional 2 applications were very close compared with the 4 time application 

525 scenario. Since both split application scenarios reported by Cardenas et al. (2019) were high 

526 frequency, their results did not show any significant effects of the number of split applications on 

527 N2O emissions. 

528     Atmospheric CO2 enrichment could inhibit the assimilation of nitrate into organic nitrogen 

529 compounds (Bloom et al., 2010). The DNDC model takes into account the atmospheric 
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530 background CO2 concentration with a default value of 350 ppm, which affects plant 

531 photosynthesis. Also, according to Bloom et al., (2010), the concentration of CO2 in the earth’s 

532 atmosphere ranges between 280 and 390 ppm, which confirms that the default value used in DNDC 

533 is within this reported range. It is predicted that this concentration will reach between 530 and 970 

534 ppm by the end of 21st century. Within this range of CO2 concentrations, plant photosynthesis 

535 behaves normally and therefore, there is no significant impact on N2O emissions. Of course, if this 

536 concentration doubles, as predicted by Bloom et al., (2010), the response of higher plants to a CO2 

537 doubling would be a decline in nitrogen status. Overall, this means that the frequency of split 

538 applications of organic/inorganic fertilizers according to crop physiological stages would likely 

539 decrease the emission rate and overall emissions (Reich et al., 2018).  

540     Some comparisons between organic and inorganic sources of nitrogen showed the influence of 

541 fertilizer types on N2O flux (Cardenas et al., 2019; Shen et al., 2018; 2020; Thomas and Hao, 

542 2017). Cardenas et al., (2019) concluded that these emissions depend on the type and rate of N 

543 applied. For organic fertilizers, readily available nitrogen is much less than that reported for 

544 inorganic fertilizers; therefore, the emission rate, overall emission and emission factor (EF) is 

545 much lower than for inorganic fertilizers. Even within different forms of organic fertilizer such as 

546 cattle manure, digestate, and separated solids, the emission rate varies. For example, Thomas and 

547 Hao (2017) concluded that liquid biogas residues have a higher risk for N2O emissions than both 

548 the separated solid fraction of the biogas residues and undigested cattle manure. Similarly, Shen 

549 et al., (2018; 2020) modelled N2O emission following application of farmyard manure and green 

550 compost. The results showed that organic fertilizers applied to soils may increase nitrous oxide 

551 emissions due to their lower C/N rations, and therefore potentially contribute to global warming. 
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552 It was further concluded that N2O emission is mainly related to air temperature, precipitation, as 

553 well as the time period between fertilizer application and sample measurement. 

554     Keeping in view the reduction in peaks and overall emissions compared to one-time 

555 applications, it was concluded that scheduling compared to one-time applications per season 

556 (unscheduled) is an important factor for sustaining soil and water productivity, and reducing N2O 

557 emissions for environmentally-friendly smart agriculture and for contributing to a climate change 

558 mitigation strategy. Therefore, our results are not in conflict with those reported by Cardenas et 

559 al.’s (2019). Our results imply there is an optimal number of split applications. Our model can be 

560 helpful to determine additional nitrogen needs. Timeliness of application is essential to be sure 

561 plant yields do not suffer from nitrogen deficiency.

562 <Figure 7>

563 4. Conclusions

564 Organic fertilizers such as FYM and CS, are increasingly applied in agriculture because of the 

565 benefits they provide in terms of plant nutrients, and soil quality. However, the varying 

566 compositions of organic fertilizers, causes difficulties for precision fertilizer management. 

567 Therefore, it is still a challenge to plan organic fertilization, such as timing, frequency, and dose 

568 in site-specific conditions. In this study, the UK-DNDC model was applied to grazing grasslands 

569 treated with FYM, CS-SB, and CS-TS treatments typical of intensive grassland farming in the UK. 

570 The use of frequent low dose applications compared to one time amendments significantly reduced 

571 N2O peaks, fluxes and overall emissions by 17% for CS-TS during autumn at PW and 15% for 

572 CS-TS during spring at NW, but increased emissions for CS-TS by 9% during spring at PW. It is 

573 therefore concluded that organic amendments scheduling compared to a traditional one-time 

574 application per season can be a useful on-farm mitigation measure for minimizing N2O emissions. 
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575 The application of liquid manure in modern agriculture is one of the most important techniques 

576 for controlling overall N2O emissions and fertilizer use efficiency, and this study demonstrates 

577 how the integration of empirical and modelling data can be used to help design the optimum use 

578 of farm organic manures and slurries. 
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810

811 Table 1. Soil, vegetation, and climatic parameters along with manure application rates for four different treatments 
812 including control, cattle slurry surface broadcast, cattle slurry trailing shoes, and farmyard manure during autumn 
813 and spring seasons at PW and the spring season at NW, UK. 
814
815
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816
817 # both autumn and spring seasons at PW
818 *autumn season at PW (Source: Nicholson et al., 2017)
819 **spring season at PW (Source: Nicholson et al., 2017)
820 $spring season at NW (Source: Cardenas et al., 2010)
821

822 Table 2. Loadings of nitrogen and carbon applied to grassland under two different treatments (cattle slurry and 
823 farmyard manure) during autumn and spring at PW and spring at NW. 

824

825

826

827

                                                                                        Treatment
Variable Site Control CS-SB CS-TS FYM
Latitude PW# 52.35260 N 52.35260 N 52.35260 N 52.35260 N

NW 50.770350 N 50.770350 N 50.770350 N 50.770350 N
Longitude PW# 3.79770 W 3.79770W 3.79770 W 3.79770 W

NW 3.9010720 W 3.9010720 W 3.9010720 W 3.9010720 W
Soil texture Clay loam Clay loam Clay loam Clay loam
Clay (%) PW# 28 28 28 28

NW 29 29 29 29
Density (g/cm3) PW* 0.95 0.95 0.95 0.95

PW** 0.9 0.9 0.9 0.9
NW 0.68 0.68 0.68 0.68

Soil NO3
- (mg/kg) PW# 5.15 5.15 5.15 5.15

NW 0.36 0.36 0.36 0.36
Soil NH4

+ (mg/kg) PW# 2.22 2.22 2.22 2.22
NW 0.65 0.65 0.65 0.65

Organic C (%) PW# 4.7 4.7 4.7 4.7
NW 3.65 3.65 3.65 3.65

Soil pH PW,NW 5.6 5.6 5.6 5.6
Ann. Rainfall (cm) PW* 143 143 143 143

PW** 203 203 203 203
NW 148 148 148 148

Annual Ave.Temp. 
(0C)

PW*

9.88 9.88 9.88 9.88
PW** 9.1 9.1 9.1 9.1
NW$ 10.21 10.21 10.21 10.21

Cropping Grassland Grassland Grassland Grassland
Manure. App. 
Rate(kg-N/ha)

PW*

0 24 24 131
PW** 0 67 67 122
NW 0 77.4 77.4 144

Date fertilized PW* NA Sep 28,2011 Sep 28,2011 Sep 28,2011
PW** NA May 2,2012 May 2,2012 May 2,2012
NW NA Apr. 17,2012 Apr. 17,2012 Apr. 17,2012

N and C loading by 
study site  CS-SB*   FYM*

Autumn PW
Factor** 1 1.5 2 1 1.5 2
N loading (kg-N/ha/y) 24 36 48 131 196.5 262
C loading (kg-N/ha/y) 48 72 96 1703 2554.5 3406

Spring PW
Factor 1 1.5 2 1 1.5 2
N loading (kg-N/ha/y) 67 100.5 134 122 183 244
C loading (kg-N/ha/y) 134 201 268 1586 2379 3172

Spring NW
Factor 1 1.5 2 1 1.5 2
N loading (kg-N/ha/y) 77.4 116.1 154.8 144 216 288
C loading (kg-N/ha/y) 154.8 232.2 309.6 1872 2808 3744
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828

829

830

831

832

833

834

835 *The default values of the C/N ratio for cattle slurry and farmyard manure are 2 and 13, respectively.
836 **The nitrogen loading factor was taken fromhas been used following Kim et al., (2013).  
837 PW-Pwllpeiran
838 NW-North Wyke
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865 Table 3. Application of readily available nitrogen under the cattle slurry (CS) treatment in a single application and 
866 split applications (according to crop physiological stages) during autumn and spring at PW and spring at NW.

      
Total 
RAN* Split1 Split2 Split3 Split4

 kg N/ha kg N/ha kg N/ha kg N/ha kg N/ha
Autumn, PW 9.4 1.63 1.35 1.63 4.80
Application Date April 5,2011 April 15,2011 April 30,2011 May 20,2011
Spring, PW 35 6.06 5.01 6.06 17.88
Application Date April 5,2011 April 15,2011 April 30,2011 May 20,2011
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Spring,NW 43.5 7.53 6.22 7.53 22.22
Application Date  May 12,2012 May 22,2012 07-Jun-12 29-Jun-12

867 * Readily available nitrogen
868

869

870

871 Table 4: Statistical measures including coefficient of determination (R2), root mean square error (RMSE), absolute 
872 error (AE), and relative error (RE), for comparing between observed and simulated annual nitrous oxide emissions 
873 under the different treatments during the calibration (autumn and spring at PW in 2011) and validation (spring at 
874 NW in 2012) periods.

     

 Control CS-SB* CS-TS** FYM***

Autumn PW 
(Calibration)
aObs.N2O 0.78 1.03 0.99 1.28
aSim.N2O 0.99 1.41 1.42 1.00
R2 0.81 0.54 0.89 0.96
RMSE 0.24 0.48 0.62 0.61
AEa 0.22 0.39 0.53 0.54
RE(%) 28.04 37.47 43.27 -21.56
Spring PW 
(Validation)
aObs.N2O 0.57 0.80 1.20 1.28
aSim.N2O 1.09 2.31 2.33 1.10
R2 0.74 0.39 0.01 0.97
RMSE 0.60 1.52 1.18 0.42
AEa 0.52 1.51 1.13 0.29
RE(%) 91.65 188.28 93.81 -14.22

875 * cattle slurry treatment using surface broadcasting method
876 ** cattle slurry treatment using trailing shoe method
877 *** farmyard manure
878 a Annual average nitrous oxide flux (kg-N/ha/y)
879
880

881 Table 5. The regression coefficients in equation (6) during the scenario analysis for nitrogen loadings under the 
882 cattle slurry surface broadcast (CS-SB), cattle slurry trailing shoe (CS-TS), and farmyard manure (FYM) treatments 
883 during the autumn season at PW, spring season at PW, and spring season at NW.

          
CS- CS- FYM CS- CS- FYM CS- CS- FYM
SB TS SB TS SB TS

 
Autumn 
PW   

Spring 
PW   

Spring 
NW   
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a 0.0179 0.0182 8.00E-05 0.02 0.0204 3.E-05 0.0173 0.0174 2.E-05
b 0.9176 0.9208 0.9351 0.9616 0.952 1.0782 0.0899 0.078 0.2841
R2 1 0.9998 0.9999 0.9998 0.9998 0.9966 0.9999 0.9999 0.9999
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904 List of Figures
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906
907 Figure 1. The locations of the two study farms in the UK.
908
909
910
911
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912
913 Figure 2A. Temporal variation of rainfall during autumn at PW (a), spring at PW (b), and spring 
914 at NW (c). Similarly tTemporal variation of simulated (solid line) and observed (dots) WFPS 
915 (water filled pore space) during autumn at PW (d), spring at PW (e), and spring at NW (f).
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928
929 Figure 2B. Temporal variation of air and soil temperature during autumn at PW (a), spring at PW 
930 (b) and spring at NW (c).
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944
945
946

947
948 Figure 3A. Temporal variation of simulated (solid line) and observed (dots) nitrous oxide flux 
949 under the control (a), FYM (b), CS-SB (c), and CS-TS (d) treatments during autumn at PW. Here, 
950 FYM stands for farmyard manure, CS-SB for cattle slurry application using the surface broadcast 
951 method, and CS-TS for cattle slurry application using the trailing shoe method.
952
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958
959
960
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962
963
964
965
966

967
968 Figure 3B. Temporal variation of simulated (solid line) and observed (dots) nitrous oxide flux 
969 under the control (a), FYM (b), CS-SB (c), and CS-TS (d) treatments for spring at PW. Here, FYM 
970 stands for farmyard manure, CS-SB for cattle slurry application using the surface broadcast 
971 method, and CS-TS for cattle slurry application using the trailing shoe method.
972
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979
980
981
982
983
984
985

986
987 Figure 3C. Temporal variation of simulated (solid line) and observed (dots) nitrous oxide flux 
988 under the control (a), FYM (b), CS-SB (c), and CS-TS (d) treatments for spring at NW. Here, FYM 
989 stands for farmyard manure, CS-SB for cattle slurry application using the surface broadcast 
990 method, and CS-TS for cattle slurry application using the trailing shoe method.
991
992
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993
994 Figure 4: Observed and simulated annual nitrous oxide fluxes and emission factors (EFs) for the 
995 cattle slurry surface broadcast treatment (CS-SB) during the autumn (CS-SB1) and spring (CS-
996 SB4) seasons at PW and the spring season (CS-SB7) at NW, . Ffor the cattle slurry trailing shoe 
997 (CS-TS) treatment during the autumn (CS-TS2) and spring (CS-TS5) seasons at PW and the spring 
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998 season (CS-TS8) at NW and. Similarly for the farmyard manure (FYM) treatment during the 
999 autumn (FYM3) and spring (FYM6) seasons at PW and the spring season (FYM9) at NW. The 

1000 error bars indicates the standard deviations among replications of each treatment.
1001

1002
1003 Figure 5: Predicted annual nitrous oxide fluxes with respect to increasing nitrogen loading under 
1004 the cattle slurry surface broadcast (CS-SB), cattle slurry trailing shoe (CS-TS), and farmyard 
1005 manure (FYM) treatments during the autumn at PW (a), spring at PW (b), and spring at NW (c). 
1006 Similarly cCorresponding emission factors (EFs) during the autumn at PW (d), spring at PW (e), 
1007 and spring at NW (f).
1008
1009
1010
1011
1012
1013
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1014
1015
1016

1017
1018 Figure 6: Linear correlation coefficients betweenof the observed N2O emissions andwith TPFA, 
1019 rainfall (R), and average air temperature (T) under the control, cattle slurry and farmyard manure 
1020 (FYM) treatments during the autumn at PW (Au-PW), spring at NW (Sp-NW), and the spring 
1021 season at PW (Sp-PW).. Under cattle slurry treatment, the linear correlation between N2O 
1022 emissions and TPFA, R, and T. Similarly under farmyard manure (FYM) treatment the linear 
1023 correlation between N2O emissions and TPFA, R, and average air temperature. The error bars 
1024 indicates the standard deviation among replications of each treatment.
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1036

1037
1038 Figure 7: Comparison of nitrous oxide fluctuations after one time split (black line) and four times 
1039 split (red line) split organic fertilizer applications under the cattle slurry treatment during the 
1040 autumn at PW (a), spring at PW (b), and spring at NW (c).
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