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ABSTRACT: Gradients in the contents and compositions of gluten proteins and free amino acids and the expression levels of
gluten protein genes in developing wheat caryopses were determined by dividing the caryopsis into three longitudinal sections,
namely, proximal (En1), middle (En2), and distal (En3) to embryo. The total gluten protein content was lower in En1 than in
En2 and En3, with decreasing proportions of HMW-GS, LMW GS, and α/β- and γ-gliadins and increasing proportions of ω-
gliadins. These differences were associated with the abundances of gluten protein transcripts. Gradients in the proportions of
the gluten protein polymers which affect dough processing quality also occurred, but not in total free amino acids. Microscopy
showed that the lower gluten protein content in En1 may have resulted, at least in part, from the presence of modified cells in
the dorsal part of En1, but the reasons for the differences in composition are not known.

KEYWORDS: wheat grain, gluten proteins, free amino acids, longitudinal gradients

■ INTRODUCTION

Wheat (Triticum aestivum L.) is the most important cereal crop
in temperate countries, providing a source of energy, protein,
and other components for human nutrition and health. Most
wheat is consumed after milling to produce white flour which
is then processed into bread, other baked products, pasta, and
noodles. The ability to process wheat into these foods is
determined by the gluten proteins, which confer unique
viscoelastic properties to dough.1,2

The wheat caryopsis is a single seeded fruit, in which the
filial embryo and endosperm tissues are surrounded by
maternal tissues (pericarp and testa). The embryo is located
on the dorsal side of the proximal end of the wheat caryopsis
and comprises a single storage cotyledon (the scutellum) and
the embryonic axis (plumule, radicle and hypocotyl). The
endosperm comprises two tissues, with starchy endosperm
cells being surrounded by a single layer of aleurone cells. In the
mature wheat the embryo accounts for about 3% of the grain
dry weight, the aleurone about 6.5%, the outer layers (pericarp
and testa) about 7−8%, and the starchy endosperm about 83−
84%.3 The starchy endosperm is the major storage tissue,
comprising mainly starch and about 10% of protein, while the
aleurone and embryo are richer in protein (about 23% and
34%, respectively).3

The starchy endosperm is often treated as a simple
homogeneous tissue, with commercial flour millers aiming to
recover all of the cells in the form of white flour. However,
more detailed studies show differentiation into three types of
cells.4 The cells immediately below the aleurone, called
peripheral or subaleurone cells, are about 60 μm in diameter,

while beneath those are prismatic cells, which radiate in
columns and are about 128−200 μm long and 40−60 μm
wide.5 Finally, the cells within the center of the cheeks of the
grain are rounded with dimensions ranging from 72 to 144 to
69−120 μm.5 The cells also differ in their compositions, with
radial gradients between the outer and inner parts of transverse
sections of the starchy endosperm having been reported for a
range of components, including proteins, cell wall poly-
saccharides, starch, and lipids.6−12 In particular, the content
of gluten proteins decreases but the proportion of glutenin
polymers increases from the outer to the inner layers of starchy
endosperm.8−10 By contrast, the starch content increases with
changes in the distribution of starch granule types.9,11 These
gradients may also be reflected in differences in the
compositions of flour streams produced by commercial roller
milling and, hence, have implications for grain utilisation.9

The mechanisms which control the accumulation of proteins
in the different cells and tissues of the grain are not known but
appear to be both genetically programmed13 and influenced by
environmental factors.10,14−16 The requirement for nutrients
(mainly amino acids) varies during the development of the
wheat caryopsis.17−19 In the early stages, for about the first 10
days after fertilization, nutrients are required to support cell
division and expansion, particularly of the starchy endosperm
cells, to establish the basic structure of the grain.20,21 After this
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stage the main nutrient requirement of the starchy endosperm
is to support the synthesis and deposition of storage
compounds, mainly starch11 and protein.6 By contrast, the
growth of the embryo continues throughout grain develop-
ment. Consequently, the embryo is a powerful sink for
nutrients and may compete for these with the starchy
endosperm cells.22

Pulse-chase analysis of 15N glutamine fed to developing
caryopses showed that amino acids enter the developing
starchy endosperm through the transfer cells in the groove and
are then transported radially to the subaleurone cells,23

suggesting that protein accumulation is determined by sink
activity and/or the activity of specific transporters. However,
protein accumulation is also affected by nitrogen availability,
and higher concentrations of proteins and larger-sized protein
bodies being deposited in the outer layers of endosperm cells
under high nitrogen levels.15,24

Although there is information on the differences in cell type
and composition in radial sections of the grain, little is known
about whether gradients also occur along the longitudinal axis
of the starchy endosperm tissue. This study therefore compares
three longitudinal sections (proximal, middle, and distal to
embryo) of the developing starchy endosperm, determining
the amount and composition of gluten proteins, gluten protein
gene expression patterns, and the contents of free amino acids.

■ MATERIALS AND METHODS
Plant Material and Harvest. Five winter bread wheat cultivars

(Crusoe, Gallant, Hereward, Skyfall, and Solstice) were grown at
Rothamsted Research (Harpenden, U.K.) with three biological
replicates at two nitrogen levels (100 and 350 kg/ha) in 2017, as
part of the Wheat Genetic Improvement Network (WGIN) field trial.
Ears were tagged at anthesis, and a total of 80−90 whole caryopses
were harvested from five ears at 14, 21, and 28 days post-anthesis
(DPA) and transversely cut (after removing the embryos) into three
parts of equal length. These were defined as proximal (En1), middle
(En2), and distal (En3) to the embryo (shown in Figure 1). The
dissected tissues were freeze-dried and ground into fine powder using
a 2010 Geno/Grinder (Metuchen, NJ, USA).
Total Nitrogen Determination. Total nitrogen concentration

was determined based on the Dumas combustion method,25 using a
Leco combustion analyzer (Leco Corp., St. Paul, MN, USA).
Quantification of Gluten Protein Composition by SDS-

PAGE. Gluten proteins were separated and quantified by SDS-PAGE
as described before by Wan et al.24 Ten milligram samples were
extracted twice with 200 μL of extraction buffer [50% (v/v) aqueous

propan-1-ol containing 2.5% (w/v) DTT] at 50 °C for 30 min. The
combined supernatants were freeze-dried and then dissolved in 100
μL of gel loading buffer [100 mM Tris-HCl, pH 6.8, 2% (w/v)
sodium dodecyl sulfate (SDS), 10% (v/v) glycerol, 2% (w/v)
dithiothreitol (DTT), and 0.1% (w/v) bromophenol blue]. The
extracts were denatured at 90 °C for 5 min and centrifuged for 15 min
at 14100 rpm. Next, 8 μL of the supernatant was separated on precast
4−12% Bis-Tris Nu-PAGE gels (Invitrogen, Paisley, U.K.). The gels
were stained overnight in staining solution [0.1% (w/v) Coomassie
Brilliant Blue R250, 10% (v/v) trichloroacetic acid (TCA), 40% (v/v)
methanol], distained for 12 h in 10% (w/v) TCA, and scanned with a
HPG4010 scanner. The images from gray tiff files were processed with
Phoretix 1D advanced software (Nonlinear Dynamics, Durham, NC,
USA).

Determination of Gluten Protein Polymers by SE-HPLC. The
polymer size distribution of gluten proteins were determined by size-
exclusion high-performance liquid chromatography (SE-HPLC). First,
16.5 mg samples were mixed with 1.5 mL of 0.5% (w/v) SDS in 0.05
M phosphate buffer (pH 6.9), sonicated for 45 s at amplitude 6 in a
Soniprep instrument fitted with a 3 mm exponential microtip, and
then centrifuged for 30 min at 10000 rpm. The supernatants were
filtered through a 0.45 μm Durapore membrane filter and sealed in
HPLC vials before analysis. SE-HPLC analysis was carried out using a
Waters system operating with a Phenomenex column (300 mm × 7.8
mm, 5 μm) and a guard column (75 mm × 7.8 mm, 5 μm) at 35 °C.
Protein polymers were separated with 50% (v/v) aqueous acetonitrile
containing 0.1% (v/v) trifluoroacetic acid at a flow rate of 0.7 mL/
min for 25 min and detected at 214 nm. Chromatograms were
analyzed as described by Chope et al.26

Analysis of Free Amino Acids. Free amino acids were extracted
according to methods from Curtis et al.27 First, 10 mg samples were
suspended and extracted in 400 μL of 0.01 N HCl for 30 min at room
temperature. After centrifugation at 10000 rpm for 15 min, the
supernatants were filtered through a 0.22 μm poly(ether sulfone) filter
before analysis. Amino acids were separated using a Waters Alliance
2795 HPLC system (Waters Corp., Milford, USA) coupled with a
Waters 474 scanning fluorescence detector. First, 15 μL of sample was
derivatized with the same volume of OPA (o-phthalaldehyde)
solution [5.4 mg/mL OPA, 2% (v/v) 2-mercaptoethanol, 556 mM
sodium borate (pH 9.2)], and the precolumn derivatization process
was automatically completed with the autosample injector before
separation. OPA solution was prepared 24 h before use. Amino acids
were separated at 45 °C on a Phenomenex Kinetex column (50 mm ×
4.6 mm, 2.6 μm) and a Security Guard column (2 mm × 4.6 mm, 2.6
μm) using a multistep gradient. Fluorescence was monitored at
excitation and emission wavelengths of 340 and 450 nm, respectively.
Chromatograms were analyzed with Millennium 32 software (Waters
Corp., Milford, USA).

Eighteen free amino acids (comprising all protein amino acids
except cysteine and proline) were quantified using standards, and the
amounts were combined to give total free amino acids as mmol/kg
dry weight. The proportions of the individual amino acids were
expressed as a percentage of total free amino acids. The mean
proportions of the individual amino acids from three biological
replicates were log transformed, and the TBtools software (http://
github.com/CJ-Chen/TBtools) was used to generate a heatmap,28

with red representing the high proportion and blue the low
proportion.

RNA Extraction and RT-qPCR. The En1, En2, and En3 parts of
caryopses (after removal of embryos) were prepared from field-grown
plants, immediately frozen in liquid nitrogen, and ground using a
SPEX Sample Prep 6870 Freezer/Mill (Metuchen, NJ, USA). Total
RNA extraction was performed based on the CTAB (cetyltrimethy-
lammonium bromide) method as described previously.24

Total RNA was purified with a mini RNeasy RNA isolation kit
(Qiagen) and treated RNase-free TURBO DNase (Ambion). A 2 μg
aliquot of total RNA was used for reverse transcription with
SuperScriptIII reverse transcriptase (Invitrogen) using anchored
oligo(dT)23 primers (Sigma-Aldrich). cDNA diluted to a 1:6 ratio
was used for RT-qPCR in a 20 μL reaction with 1 × SYBR Green

Figure 1. (A) Dissection of a developing caryopsis of cv. Hereward at
21 DPA, after removal of the embryo (Emb), into three longitudinal
sections: En1 (proximal), En2 (middle), and En3 (distal). Scale bar: 2
mm. (B) Dry weight (mg) of the three longitudinal sections (En1,
En2, and En3) during development at 14, 21, and 28 DPA.
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PCR master mix (Invitrogen). RT-qPCR was carried out on an ABI
7500 (Applied Biosystems) thermocycler.
The transcript Ta.2526.1S1_at was used as an internal control gene

as it showed the most stable expression in caryopses of Hereward
during development between 6 and 42 DPA.24,29,30 The primers
designed for RT-qPCR are shown in Supplementary Table S1. PCR
efficiency was calculated using the LinRegPCR software. Relative gene
expression was calculated by 7500 sequence detection software
version 1.4 (Applied Biosystems) in the formula ratio = E.T.−Ct.T/
E.I−Ct.I, where E.T and Ct.T are the primer efficiency and Ct of the
target gene, and E.I. and Ct.I are the primer efficiency and Ct of the
internal control gene, respectively.
Microscopy. Endosperm sections from fresh grains (cv. Here-

ward) were cut into 2 mm transverse sections and immediately fixed
in 4% (w/v) paraformaldehyde in 0.1 M Sorenson’s phosphate buffer
(NaH2PO4·2H2O and Na2HPO4·12H2O, pH 7.0) with 2.5% (w/v)
glutaraldehyde for light microscopy. After dehydration in increasing
concentrations of ethanol, tissues were infiltrated with LR White
Resin for several days at room temperature and polymerized at 55 °C.
The resin-embedded grains were sectioned at 1 μm thickness using a
Reichert−Jung Ultracut ultramicrotome. Protein bodies were stained
with 1% (w/v) naphthol blue black in 7% (w/v) acetic acid, and the
cell structure was stained by toluidine blue. Sections were mounted in
DPX mountant and observed with a Zeiss Axiophot microscope.
Images were acquired with a RetigaExi CCD digital camera
(Qimaging, Surrey, BC, Canada) under bright-field optics and
MetaMorph software version 7.5.5.9 (Molecular Devices, Sunnyvale,
CA, USA)
Statistical Analysis. Data were analyzed using multistrata

ANOVA accounting for the split-plot field design and nested
sampling structure over time and sections. Where necessary, data
were log transformed to satisfy homogeneity of variance. Unless
otherwise stated, the least significant difference (LSD) values
presented are the LSD associated with comparisons between sections
within a fixed N level, development stage, and wheat varieties and are
obtained from the lowest stratum of pairwise comparisons. Analyses
were done using the GenStat (19th edition, VSN International Ltd.,
Hemel Hempstead, U.K.).

■ RESULTS

Gradients along the longitudinal axis of the grain were
determined by removing the embryos from developing
caryopses and then dividing the caryopsis into three equal
sections, i.e., proximal (adjacent to the embryo) (En1), middle
(En2), and distal (En3) to the embryo (Figure 1A). The
analyses were also carried out on developing caryopses grown
at two levels of nitrogen fertilization, i.e., 100 kg/ha which is
typical of low input production systems used in many countries
and 350 kg/ha which is higher than the levels used for
commercial production. Results are reported here for the
cultivar Hereward, a U.K. winter wheat which was
commercially grown from 1989 to about 2010. Supporting
data for four other U.K. commercial cultivars (Crusoe, Gallant,
Skyfall, and Solstice) are presented in supplementary figures
and are discussed where appropriate.
The dry weights of each section increased rapidly during

development, with En2 accounting for 51−53% of whole
caryopses (no embryo) dry weight and En1 and En3 each
accounting for about 21−27% of the dry weight at 21−28
DPA. However, the relative dry weight of En1 was lower at 14
DPA (18%) (Figure 1B).
Total Nitrogen and Gluten Proteins. Total nitrogen

(expressed as percent per dry wt) decreased slightly between
En1 and En3 at 14 DPA, but a clear increase from En1 to En3
occurred at 21 and 28 DPA (panels a−c of Figure 2B) (p <
0.05; F test). The grain nitrogen contents were higher at 350

kg N/ha, by about 1.5-fold at 21 and 28 DPA, but decreased
during development (p < 0.05; F test), probably due to
dilution with starch which accumulates during grain filling to
account for about 70% of the total grain dry weight.
Total gluten protein fractions of cultivar Hereward (Figure

2A) and the other four cultivars (Supplementary Figure S1)
were extracted and separated by SDS-PAGE. Quantitative
scanning of the stained gels allowed the contents of gluten
proteins to be determined as an arbitrary unit per microgram
of dry weight (panels d−f of Figure 2B). Increases in the
contents occurred in all sections between 14 and 28 DPA,
particularly in En1 between 14 and 21 DPA (p < 0.05; F test).
The contents were also higher at 350 kg N/ha (p < 0.05; F

Figure 2. Analysis of proteins and amino acids in the three
longitudinal sections (En1, En2, and En3) of cv. Hereward at 14,
21, and 28 DPA grown under low (N 100 kg/ha) and high (N 350
kg/ha) nitrogen. (A) Stained SDS-PAGE separations of gluten
proteins. (B) Quantitative differences in fractions: (a−c) total
nitrogen (% dry weight); (d−f) total gluten protein contents
measured by quantitative scanning of SDS-PAGE separations; and
(g−i) total free amino acid concentrations determined by HPLC.
Data represent means of three replicate biological samples. LSD bar is
shown for comparisons between En1, En2, and En3 sections.
Significant differences were observed between N levels, between
stages, and between fractions (p < 0.001, F test).
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test). Similar patterns were observed for the four other
cultivars (Supplementary Figure S1A) with Hereward having
the highest protein content.
Free Amino Acids. To determine whether the observed

longitudinal gradients in protein content were related to
substrate availability, the contents of free amino acids (except
cysteine and proline) were determined in the three sections of
Hereward (panels g−i of Figure 2B). No consistent differences
between the contents of free amino acids in the three sections
were observed (LSD, F test), although the amount was higher
in En2 at 28 DPA at 100 kg/ha. However, the contents in all
sections were higher at 14 DPA than at 21 and 28 DPA, and in
the N 350 kg/ha treatments in sections and all stages. Similar
results were also observed for the cultivars Skyfall and Solstice
(Supplementary Figure S1B).
The proportions of the individual free amino acids

(expressed as the percent of total amino acids) are shown as
a heatmap in Supplementary Figure S2A. Some differences in
the proportions of some individual amino acids were observed
between the three grain sections; notably there was a lower
proportion of glutamine in the middle part (En2) compared
with the proximal and the distal parts (En1 and En3) from 14
to 28 DPA (panels a−c of Supplementary Figure S2B) (p <
0.05; F test), and a lower proportion of asparagine in the
proximal portion (En1) compared with the other sections
(En2 and En3) at 14 DPA (Supplementary Figure S2C) (p <
0.05; F test).
Gluten Protein Composition. SDS-PAGE separates

gluten proteins into four groups of bands, corresponding to
high molecular weight subunits of glutenin (HMW-GS), ω-
gliadins, mainly low molecular weight subunits of glutenin
(LMW-GS), and mainly α/β and γ-gliadins (Figure 2A) (as
discussed by Godfrey et al.31). Clear differences were observed
between the sections and stages of development (p < 0.05; F
test), particularly in the proportions of ω-gliadins. Quantitative
gel scanning was therefore carried out to quantify the
proportions of the four groups of bands (Figure 3 and
Supplementary Figure S4). This showed that the proportion of
ω-gliadins at 14 DPA increased from En1 to En3, with
corresponding decreases in the proportions of the other
groups. Similar increases in the proportions of ω-gliadins from
En1 to En3 also occurred at 21 and 28 DPA, with decreases
particularly in the proportion of LMW subunits.
The ω-gliadins of wheat are classified into ω(1 + 2) and ω5

based on previously reported studies with specific antibodies,24

with 2 and 3 bands, respectively, present in Hereward (Figure
2A). Wheat cultivars differ in their number and proportions of
these two types of ω-gliadin, with Skyfall and Solstice having
similar compositions to Hereward (two ω(1 + 2) bands and
three ω5 bands) and to Crusoe and Gallant having two ω(1 +
2) bands but only one ω5 band (Supplementary Figure S3).
Nevertheless, all five cultivars showed similar increases in the
proportions of ω-gliadins between En1 and En2 (Supple-
mentary Figure S4C) with the increased proportion of ω-
gliadins from En1 to En3 being statistically significant (p <
0.05; F test). Similarly, although the five cultivars differed in
the proportions of other groups of gluten proteins, they
showed broadly similar changes to Hereward from En1 to En3
and during development (Supplementary Figure S4).
Comparison of the two nitrogen treatments showed that the

proportions of HMW-GS and ω-gliadins were higher at 350 kg
N/ha and that the proportions of LMW-GS and other gliadins
lower (Figure 3 and Supplementary Figure S4). The changes in

patterns were consistent between the five genotypes, at the two
N levels and at the three developmental stages, in agreement
with previous studies.26,31 High nitrogen application reduced
the gradients in ω-gliadins from En1 to En2 between 14 to 21
DPA, by increasing the content of ω-gliadins in En1. However,
low nitrogen application increased the gradient from En1 to
En2 for LMW-GS between 14 to 21 DPA.

Gluten Protein Polymers. The HMW-GS are important
components of the high molecular mass glutenin polymers
which strongly affect the functional properties of the grain.32,33

The gradients in gluten protein composition would therefore
be expected to result in similar gradients in the proportion of
these polymers.
Total protein fractions were therefore extracted from the

En1, En2, and En3 sections of developing caryopses and
separated by SE-HPLC to determine the molecular size
distribution of gluten proteins. This separates the proteins into
five fractions corresponding to large glutenin polymers
(enriched in HMW-GS) (F1), small glutenin polymers
(enriched in LMW-GS) (F2), gliadin monomers (mainly ω-
gliadins) (F3), gliadin monomers (mainly α/β, γ-gliadins)
(F4), and nongluten protein (albumins and globulins) (F5).31

High dough strength, and hence good breadmaking quality, of

Figure 3. Proportions of gluten protein types (determined by
quantitative scanning of SDS-PAGE separations as shown in Figure
2A) in the three longitudinal sections (En1, En2, and En3) of cv.
Hereward at 14, 21, and 28 DPA grown under low (N 100 kg/ha) and
high (N 350 kg/ha) nitrogen: (a−c) HMW-GS; (d−f) LMW-GS;
(g−i) ω-gliadins; and (j−l) α/β and γ-gliadins. Data represent means
of three replicate biological replicate samples. LSD bar is shown for
comparisons between En1, En2, and En3 fractions. Significant
differences were observed between N levels, between stages, and
between fractions (p < 0.001, F test).
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wheat flour is associated with a high proportion of the peak F1
and high ratios of F1/F2 (HMW/LMW polymers) and (F1 +
F2)/(F3 + F4) (glutenin/gliadin).10,26,31

The %F1 and %F2 decreased from En1 to En3 and the %F4
increased in Hereward, while the %F3 decreased from En1 to
En2 and then increased again in En3 (Figure 4A). Nitrogen
fertilization resulted in decreased proportions of F1 and F2 and
increased proportions of F3 and F4 during grain development
(p < 0.05; F test). The glutenin/gliadin ratio (F1 + F2)/(F3 +
F4) decreased from En1 to En3 and from 14 to 28 DPA and
was higher at 100 kg N/ha than at 350 kgN/ha. However, the

ratio of HMW/LMW polymers (F1/F2) was higher in En3
than in En1 and En2 and much lower at 28 DPA (p < 0.05; F
test) (Figure 4B). These changes indicate that the proportion
of glutenin polymers decreased during development and from
En1 to En3, but the proportion of large polymers within the
glutenin fraction increased.
Comparison with Skyfall and Solstice showed that Hereward

had the lowest and Skyfall had the highest proportions of
glutenin polymers (%F1 and %F2) (p < 0.05; F test) (Figure
4A and Supplementary Figure S5A). Nevertheless, all showed
similar trends with %F1 and %F2 decreasing and %F3 and %F4
increasing between En1 and En3 and %F1 and %F3 decreasing
and %F4 increasing between 14 and 28 DPA (p < 0.05; F test)
(Figure 4A and Supplementary Figure S5A).

Gene Expression. RT-qPCR was used to determine the
expression levels of genes encoding the major types of gluten
protein in the En1, En2, and En3 sections of developing
caryopses of Hereward (Figure 5). There was a significant (p <
0.01; F test) interaction between the caryopsis section, N
application, and stage.
The levels of transcripts for all groups of gluten proteins

increased from En1 to En2 and En3 at 14 DPA, with little
difference between the two levels of nitrogen fertilization. In
general, the expression levels of transcripts were highest at 28
DPA and with 350 kg N/ha. However, clear differences were
observed at 21 DPA, with transcripts for ω(1 + 2)-gliadins,
ω5-gliadins, and γ-gliadins increasing between En1 and En2 at
100 kg N/ha but not at 350 kg N/ha.

Microscopy. In order to relate the gradients to differences
in grain structure, transverse sections of En1 and En2 from
cultivar Hereward grown at 100 kg N/ha were prepared at 14
DPA (Figure 6 and Supplementary Figure S6) and 21 DPA
(Supplementary Figure S7) and stained with either naphthol
blue black (which is specific for protein) (Figure 6) or
toluidine blue (which stains nuclei and other cell structures in
addition to protein) (Supplementary Figures S6 and S7).
Figure 6 shows clear differences between the abundance of
protein deposits in the dorsal regions of the En1 and En2
sections. In En1, this region is adjacent to the embryo (which
was removed before biochemical analysis) and comprises
mainly prismatic cells with few or no protein bodies (Figure
6A). By contrast, the cells in the same region of En2 have
numerous protein bodies including aggregates (Figure 6D).
However, there are no obvious differences between the protein
deposits in the lobes of the grain, with deposits in both the
subaleurone and central cells (Figure 6C and 6F). Similar
differences were observed at 21 DPA and when stained with
toluidine blue, with the cells in the dorsal region of En1 being
distorted by the expanding embryo (Supplementary Figure
S7).

■ DISCUSSION
The presence of radial protein gradients in the starchy
endosperm of wheat is well-established, based on immunolab-
eling,7,8,23 analysis of pearling fractions,8−10 and micro-
dissection.6 These studies have shown that the outermost
subaleurone cells of the lobes of the grain are rich in gluten
proteins, in particular ω-gliadins, α-gliadins, and LMW
subunits of glutenin, while the inner central cells have low
protein contents but are enriched in γ-gliadins and HMW
subunits of glutenin. These gradients develop during the
middle and late stages of grain filling and are increased by
nitrogen application, elevated temperature post-anthesis,15 and

Figure 4. Proportions and ratios of gluten protein fractions separated
by SE-HPLC in the three longitudinal sections (En1, En2, and En3)
of cv. Hereward at 14, 21, and 28 DPA grown under low (N 100 kg/
ha) and high (N 350 kg/ha) nitrogen. (A) Proportions of fractions
expressed as a percent of total gluten proteins (F1 + F2 + F3 + F4):
F1, large glutenin polymers (enriched in HMW-GS); F2, small
glutenin polymers (enriched in LMW-GS); F3, gliadin monomers
(mainly ω-gliadins); and F4, gliadin monomers (mainly α/β, γ-
gliadins). (a−c) %F1; (d−f) %F2; (g−i) %F3; (j−l) % F4. (B) Ratio
of peak areas: (a−c) ratio of HMW polymers to LMW polymers (F1/
F2); (d−f) ratio of polymers to monomers (F1 + F2)/(F3 + F4).
Data represent means of three biological three replicate samples. LSD
bar is shown for comparisons between En1, En2, and En3 fractions.
Significant differences were observed between N levels, between
stages, and between fractions (p < 0.001, F test).
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drought.14 The mechanisms that result in the radial gradient
are not clear yet, but it is known that the protein-rich
subaleurone cells have a different origin to the central cells of
the lobes, being derived from tangential divisions in the outer
layer of cells which differentiate to form the mature
aleurone.34,35 Hence, this origin may be reflected in a different
pattern of gluten protein gene expression, as proposed by Tosi
et al.8 A recent study23 in which 15N glutamine was fed to
developing ears and followed in the developing endosperm
using NanoSIMS showed that amino acid precursors are
transported radially across the developing endosperm from the
transfer cells in the groove to the outer layers of cells. Hence, it
is likely that expression of gluten protein genes in the
subaleurone cells provides a strong sink which drives this
transport. In addition to proteins, gradients in other
components also occur across the mature wheat grain,
including arabinoxylan and β-glucan, lipids, and starch
(reviewed by Tosi et al.).9

Due to the asymmetric nature of the mature wheat grain,
with a pronounced ventral groove, it is not possible to study
longitudinal gradients using single sections. One approach is to
integrate data from serial sections, as described for cell wall
polymers in developing wheat grain using MALDI-MS
imaging35 and hordein accumulation in developing barley
grain.36 However, this approach is expensive and time-
consuming and does not provide sufficient material for
biochemical analyses. We have therefore taken a simpler
approach, by dividing the developing caryopsis into just three
equal parts corresponding to region adjacent to the embryo
(En1), the central part (En2), and the distal part (En3).
This has shown clear gradients in total nitrogen content and

the content and composition of gluten proteins. The content
of total gluten proteins was lower in En1 than in En2 and En3,
with distinct gradients in composition of gluten proteins.
These were steep decreases in the proportions of HMW-GS,
LMW-GS, and α/β, γ-gliadins and increases in the proportion
of ω-gliadins. These gradients were more pronounced at 14
DPA and were less pronounced at high nitrogen, which
contrasts with the radial gradients.10,15,24 The lower total
contents of gluten proteins in En1 may relate to the presence
of the embryo, which is associated with the differentiation of
the cells surrounding this region to provide nutrients rather
than store protein (Figure 6).22,37−39 However, this does not
account for low proportion of ω-gliadins in this region, as they
have no known function except storage, which is shared with
the other gluten proteins.
The expression levels of gluten protein genes are strongly

upregulated by higher nitrogen application,30,40−42 and we
have shown that effects of nitrogen on the content and
distribution of ω-gliadins are associated with differences in
transcript profiles.24 Our results are consistent with these
studies, showing that the spatial and temporal changes in the
proportions of gluten proteins during development are
associated with differences in transcript abundances.
The proportions of HMW-GS and high molecular weight

polymers (%F1), the ratios of high molecular weight to low
molecular weight polymers (F1/F2), and the ratios of glutenin
to gliadin (F1 + F2)/(F3 + F4) are strongly correlated with
gluten strength and good bread making performance (reviewed
by Shewry et al.).33 All of these indicators of quality increase
from the outer to inner endosperm, indicating the white flour
from the central endosperm should have a lower total protein
content but higher quality than the protein-rich flour from the
outer starchy endosperm.10 By contrast, in the current study
the %HMW-GS, %F1, and (F1 + F2)/(F3 + F4) decreased
from En1 to En3 with no consistent effects on F1/F2 (Figures
3 and 4).
Free amino acids are the major substrates delivered into the

endosperm for storage protein synthesis.43 The concentration
of free amino acid was higher at 14 DPA than at later stages
and was increased by nitrogen at all stages. This is consistent
with previous studies44, with the higher amino acid
concentration at 14 DPA being due to less dilution with
starch and gluten proteins. However, there were no differences
in the concentrations of free amino acids in the three sections
of longitudinal grain, suggesting that substrate availability did
not determine the differences in protein accumulation.
Our study therefore demonstrated the existence of

longitudinal gradients in gluten protein content and
composition along the longitudinal axis of the wheat grain,
which are associated with differences in transcript abundances.

Figure 5. Relative expression levels of gluten protein genes in the
three longitudinal sections (En1, En2, and En3) of cv. Hereward at
14, 21, and 28 DPA grown under low (N 100 kg/ha) and high (N 350
kg/ha) nitrogen: (a−c) HMW-GS subunit, (d−f) ω2-gliadins, (g−i)
ω5-gliadine, (j−l) α/β-gliadins, and (m−o) γ-gliadins. Data represent
means of three biological replicate samples. LSD bar is shown for
comparisons between En1, En2, and En3 sections. Significant
differences were observed between N levels, between stages, and
between fractions (p < 0.001, F test).
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The differences between the proximal (En1) part and the
middle and central parts (En2 and En3) may be determined, at
least in part, by the role of the prismatic cells in the dorsal part
of En1 being modified to provide nutrients to the embryo
instead of store protein. However, this does not provide an
explanation for the differences in gluten protein composition
and, in particular, the low proportion of ω-gliadins in this
region.
The longitudinal gradients will almost certainly be reflected

in differences in quality of flours produced from different parts
of the grain, as discussed previously for radial gradients.10

However, the exploitation of these differences by innovative
processing is clearly a challenge.
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