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14th July, 2023             School of Water Resources 
 IIT Kharagpur 

West Bengal 
India  

 
Editor – Journal of Environmental Management 
AGU  
 
Dear Professor Dr. Jason Michael Evans, 
 
Research paper: The spatio-temporal dynamics of suspended sediment sources based on a 
novel indexing approach combining Bayesian geochemical fingerprinting with physically-
based modelling. 

  

 

 

We had two referee reports and comments from editor suggesting minor revision on this 

manuscript. We have carefully revised the manuscript with acute attention and utmost 

respect.  

 

We have attended all comments from all two reports. Please find the revised manuscript 

with track changed mode and the final version along with author response to each 

referee comments.  

 

 

We do hope that the referees and the Editor would find the revised manuscript more 

interesting and recommend a publication in JEMA very soon. 

 

We look forward to hearing from you.  

 

 

 

 

Yours sincerely 

 
Dr Renji Remesan, IIT Kharagpur   

Cover Letter



Editor’s comments 

General Comment: Following this message are the reviews of the above-referenced 

manuscript. We'll be pleased to accept this paper for publication after it's been revised in 

accordance with the reviewers' comments. Please proofread it carefully for typographical and 

grammatical errors. With the revised manuscript, please provide a detailed response to the 

reviewers' comments, indicating how each comment is addressed in the revised manuscript. If 

you disagree with any of the reviewers' comments, please address them in a rebuttal. 

Reply:  We would like to express our gratitude for the timely and positive review reports and 

for an indication that you are inclined to accept our manuscript after the suggested 

modifications. We have diligently addressed all the review comments provided by both 

reviewers with great care and consideration. The significant changes made to the R1 

manuscript are as follows: 

 We have included a new figure, Figure 6, which presents the spatial distribution of 

selected elemental proportions in the soil samples, as recommended by the reviewer. 

 We have made modifications to Figure 1 in accordance with the suggestions provided 

by both reviewers 1 and 2. 

 We have thoroughly proofread the manuscript using a Grammarly premium account 

to ensure accuracy and clarity. 

 To further improve the R1 manuscript, we have incorporated a selection of the latest 

references relevant to the sediment source fingerprinting topic. 

Reviewer 1 comments 

General Comment 1 : Reviewer #1: The research paper "The spatio-temporal dynamics of 

suspended sediment sources based on a novel indexing approach combining Bayesian 

geochemical fingerprinting with physically based modelling" by Das and co-authors, 

submitted to Journal of Environmental Research (JEMA-D-23-07126), combines interesting 

and pertinent methodological approaches to the complex interactions between of soil erosion 

processes - sediment source identification - sediment delivery and land use at catchment 

scale, an important issue for soil quality and water resource management at regional scale. 

Combination / comparison of physical modelling and statistical approaches of sediment 

fingerprinting for delivery and soil source contribution issues lead to fruitful but rather 

complicated investigation and outputs. Together with land use classification, slope 

Response to Reviewers



information and sub-catchment connectivity determinations, the study uses geochemical and 

textural (sediment grain size distribution) measurements to assess a source sensitivity index 

integrating physical and sediment source apportionment at catchment's scale. The authors 

also put forward some of the limitations and necessary future investigations of their study that 

is really of valuable assistance.  

Reply: We would like to express our sincere gratitude for the reviewer acknowledging the 

relevance of our work. The authors deeply appreciate the positive comments, which endorse 

our novel methodological approach. We firmly believe that our proposed indexing approach, 

which combines the outcomes of sediment fingerprinting and physically based modelling, 

holds significant potential in providing valuable management insights at the catchment level. 

General Comment 2:  Although commendable efforts have been made to provide a well 

written manuscript, this paper is rather difficult to follow for non-specialized. The 

relationships between "real data", i.e., direct comparison between geochemical / textural 

properties of sediments and source soils (1st order approach) are not displayed and the paper 

directly deals with outputs from data treatments (2nd order approach). Furthermore, soil 

source samples are made up composite aliquots at each sampling site, a procedure that likely 

reduces potential geochemical discrimination properties. However, the references cited by the 

authors aim to provide reliable support to this study's main goals and fills up the 

methodological gaps. Accordingly, I recommend publication of this manuscript with limited 

(-minor) additions / changes detailed in the following. 

Reply: We sincerely appreciate the valuable feedback and constructive comments on our 

draft manuscript.  We have addressed these comments in the R1 m/s as follows: 

Point 1. Difficult to follow for non-specialized readers: We have done minor modifications 

of the text and graphical abstract to ensure that key concepts and findings are presented in a 

concise and accessible manner to improve the manuscript's readability for non- specialised – 

please see ln 83-87 and 106-109 in R1 m/s. 

Line no. 83-87 

“While catchment managers are interested in the interplay between areas of high risk 

erosion and sediment delivery, this interplay can be complex, especially in large river 

catchments, and the sediment fingerprinting technique is a powerful tool to enhance the 



understanding of sediment contributions from different types of sources in the watershed 

(such as land use classes, geological units, and tributary sub-catchments).” 

Line no. 106-109 

“In order to better understand catchment-wide erosion and sediment delivery mechanisms, 

this study combines the RUSLE-based INVEST-SDR model with geochemical sediment source 

fingerprinting in the Konar catchment, India.” 

 

Point 2: 2nd order approach: As the reviewer pointed out, the manuscript does indeed focus 

on the outputs derived from data treatments (2nd order approach) as our primary objective 

was framed so. No additional content was incorporated into the R1 manuscript in connection 

with this as no specific alterations were suggested by the reviewer. However, we tried our 

best to justify this approach by citing recent studies adopting a similar methodology – please 

see ln 44-51in the R1 m/s.   

Line no. 44-51 

“Information on the contributions of different land use groups can be particularly 

informative for watershed management, and the sediment fingerprinting method based on 

statistically robust geochemical signatures can, in some instances, be used for obtaining such 

information (Demiguel et al., 2005; Laceby & Olley, 2015; Tiecher et al., 2018). To link the 

signatures of the sampled target sediment to the signatures of the sources, fingerprinting 

investigations typically combines the selected tracers (e.g., geochemical) with statistical 

techniques for source discrimination and numerical unmixing models for source 

apportionment.” 

Point 3: regarding use of composite aliquots: We understand your concern about potential 

reductions in geochemical discrimination while doing composite sampling. However, it is 

important to note that the composite sampling procedure is established internationally as 

part of state-of-the-art source fingerprinting procedures (see, for example, Collins et al. 2017 

– Journal of Environmental Management) Adoption of the approach is necessary to account 

for spatial heterogeneity within the sampling sites and to ensure that sample numbers are 

managed in the context of study resources. We have added a few lines in the R1 manuscript to 

highlight these aspects. Please see ln 146-155 in the R1 manuscript: 



Line no. 147-156 

“The soil sampling plan was designed to cover the spatial heterogeneity of the land use 

classes in the study catchment and Google Earth and topographic data were used to locate 

the sampling points (Boardman, 2016). Adopting a composite sampling design is a practical 

solution to the issue of collecting enough source samples for statistical reliability when 

applying the sediment fingerprinting approach (Collins et al., 2017; Collins & Walling, 

2002; Williamson et al., 2023). To execute the composite sampling approach, 105 sites 

distributed throughout the study catchment and representative of the different land use were 

used. Figure 2 shows photographs taken during the sampling campaign for both the land use 

source classes and for target sediment in the Konar reservoir (details of sampling protocol 

are shown in supplementary Table T1).” 

Specific Comments 

Comment 1:  I suggest that the authors provide some information on the soil source 

composition, i.e., add a map for a selected relevant / discriminant geochemical parameter (as 

in Fig. 1). 

Reply: Agreed and amended. As per the suggestion of the reviewer, we have added Figure 6 

to show the spatial variation of elemental proportion among the soil samples collected from 

the 105 sampling sites. We have mainly depicted the spatial patterns of Fe, K, Ti and Ca.  

 

Figure 6 Spatial variation of elemental proportion (%) of (a) Fe, (b) K, (c) Ti and (d) Ca 

among the soil samples collected from the study catchment.   



 

Comment 2:   I also think that the authors should map the location of their 105 sample 

composites using one of their maps (i.e., Fig.1) so that the reader can visualize the 

distribution and representativeness of sampling. 

Reply: Agreed and amended. As per the suggestions, we have added the sampling locations 

in Figure 1c (i.e., on the DEM map of the study catchment). We have also added the gauging 

station and the inlet of the reservoir (location of target sediment sampling). 

 

Figure 1. Information on the Konar study catchment characteristics: (a) location (b) land 

use (c) DEM (d) slope.  

 

Comment 3:   Are the results of this study (i.e., sediment export and export rates, section 3.4) 

supported by other nearby environments? 

Reply: Yes, the results of this study are in good agreement with the few other studies 

performed in this catchment. Specifically, one of our previous soil erosion and sediment yield 

studies (Das et al., 2022) conducted on this catchment, and the outcomes of the sediment 

fingerprinting results are in good agreement in identifying the crucial land use classes of the 

catchment. The mean annual sediment export identified in this study is computed to be 

11tons/unit area as compared to 10 tons/ha/year for agricultural areas and ~25 tons/ha/year 

reported by Das et al., (2022) and Rajbanshi & Bhattacharya, (2020) respectively. We have 



discussed this aspect in the discussion section in the R1 m/s.  Please refer to ln 345-357 in the 

R1 m/s: 

Line no. 345-357 

“The highest human settlement contribution was estimated using the P0 model. However, the 

P0 model underestimated the contribution of barren lands drastically, and this land use has 

been reported to be a major sediment source by other studies (Das et al., 2022; Rajbanshi & 

Bhattacharya, 2020). The clay prior (P1) based model identified barren lands as the major 

sediment source (~20 to 70%) followed by agricultural lands (~10 to 70%) during both 

timeframes. Similar source estimates were generated using the slope based prior (P4) model. 

This suggests that the steepness of slope in the barren land areas is a major factor 

controlling sediment sources in the study catchment (Mishra et al., 2022). The silt based 

prior model (P2) predicted similar source contributions to the P0 model by identifying 

agricultural lands and human settlement areas as major sediment sources. The effects of silt 

concentration on geochemical properties were found to be negligible by Kraushaar et al., 

(2015) and this explains the lack of any significant difference between the source estimates 

using the silt based prior and no prior (P0) models.”  

The full reference details for the additional reference is now on ln 353 in the R1 m/s. 

Rajbanshi, J., & Bhattacharya, S. (2022). Modelling the impact of climate change on soil 

erosion and sediment yield: A case study in a sub-tropical catchment, India. Modeling Earth 

Systems and Environment, 8(1), 689–711. https://doi.org/10.1007/s40808-021-01117-4 

 

Minor comments 

Most of my other "minor" requests refer to the "2. methodology section". 

Comment 4:  Soil and sediment preparation: I understand that samples were dry sieved at 63 

µm after oven drying. Therefore, sieving involved aggregates of soil particles during drying. 

How the authors assume that there <63 µm size fractions were accurately separated? Sample 

preparation usually requires wet sieving and some preliminary "soft" grinding (to avoid 

overgrinding). Some precision is needed. 

Reply: We appreciate your insightful comment regarding the soil and sediment preparation 

in our study. However, we did take measures to minimize aggregation effects during the dry 

sieving process. To obtain the proportion of <63 µm particles in the soil samples we oven 



dried them for nearly 12 hrs and the soil samples were passed through a 63 µm sieve shaker 

for 24 hours. We also ensured that the sieving equipment used was of high quality with 

precise mesh sizes with prolonged oven drying and extended sieving duration to enhance the 

separation process. While wet sieving and preliminary grinding can be effective in certain 

contexts, we didn’t adopt those in our study. We plan to consider trade-offs between different 

sampling and processing methods in future research.  

Moreover, we conducted particle size analysis on the soil samples to generate prior 

distributions for Bayesian modelling, and the results exhibited a substantial level of 

concordance with the proportion of fine soil particles that were extracted from the soil 

samples. 

 

 

 

 

Comment 5:  "the" instead of "he" in the figure legend 

Reply: Agreed and amended. 

Comment 6:   Fig. 10: please improve horizontal and vertical scales by adding intermediate 

graduations 

Reply: Agreed and amended. 

 

Comment 7: Reference list: 

Reply: Agreed and amended. 

- Burrough Jr… incomplete: Removed 

- Palazon… duplicates: Modified accordingly 

- Upadhhayay… duplicates: Modified accordingly 

- Small et al… incomplete: Modified accordingly 

- Stock et al… incomplete: Modified accordingly 

 

 

 



 

Specific Comments 

General Comment: The manuscript Number: JEMA-D-23-07126 entitled "The spatio-

temporal dynamics of suspended sediment sources based on a novel indexing approach 

combining Bayesian geochemical fingerprinting with physically based modelling" is well 

written. On the other hand, there are some essential comments authors should take into 

consideration. 

Reply: We express our sincere gratitude to the reviewer for their favourable assessment of 

the novel methodology we employed for sediment fingerprinting. The integration of the 

indexing method and physically based modelling has provided valuable insights into the 

potential sediment production within our catchment. We have diligently addressed all the 

reviewer's comments in the subsequent responses, ensuring their inclusion in our R1 

manuscript. 

 

 

 

 

 

 

 

 

 

 

 

 

 



Reviewer 2 Comments 

Comment 1: Graphical abstract does not provide the visual interpretations of the manuscript. 

Reply: Agreed and amended. As per the recommendation, we have modified the graphical 

abstract to make it a more precise and proper representation of the work. Please see the 

following figure: 

Graphical abstract 

 

                                                                   

 

Comment 2: More recent studies can be referred in the literature review. 

Reply: Agreed and amended. As per the comment, we have updated the R1 manuscript by 

citing the following recent references for sediment source fingerprinting work: 

Hirave, P., Nelson, D. B., Glendell, M., & Alewell, C. (2023). Land-use-based freshwater 

sediment source fingerprinting using hydrogen isotope compositions of long-chain fatty 

acids. Science of The Total Environment, 875, 162638. 

https://doi.org/10.1016/j.scitotenv.2023.162638 - - see ln 71 in the R1 m/s 

Lake, N. F., Martínez-Carreras, N., Iffly, J. F., Shaw, P. J., & Collins, A. L. (2023). Use of a 

submersible spectrophotometer probe to fingerprint spatial suspended sediment sources at 

catchment scale. Science of The Total Environment, 873, 162332. 

https://doi.org/10.1016/j.scitotenv.2023.162332 - - see ln 43 in the R1 m/s 

https://doi.org/10.1016/j.scitotenv.2023.162638
https://doi.org/10.1016/j.scitotenv.2023.162332


Liu, Y., Walling, D. E., Yang, M., & Zhang, F. (2023). Sediment source fingerprinting and the 

temporal variability of source contributions. Journal of Environmental Management, 338, 

117835. https://doi.org/10.1016/j.jenvman.2023.117835 - - see ln 214 in the R1 m/s 

Williamson, T. N., Fitzpatrick, F. A., & Kreiling, R. M. (2023). Building a library of source 

samples for sediment fingerprinting – Potential and proof of concept. Journal of 

Environmental Management, 333, 117254. https://doi.org/10.1016/j.jenvman.2023.117254 - - 

see ln 152 in the R1 m/s 

Xu, Z., Belmont, P., Brahney, J., & Gellis, A. C. (2022). Sediment source fingerprinting as an 

aid to large-scale landscape conservation and restoration: A review for the Mississippi River 

Basin. Journal of Environmental Management, 324, 116260. 

https://doi.org/10.1016/j.jenvman.2022.116260 - - see ln 64 in the R1 m/s 

 

Comment 3: Figure 1 needs a minor editing. The miles should be lower case Regarding this I 

would comment that the way of depicting units is incorrect. 

According to the Bureau Internationale des Poids et des Mesures ' guidance, 

(https://www.bipm.org/documents/20126/41483022/SI-Brochure-9.pdf/fcf090b2-04e6-88cc-

1149-c3e029ad8232) from the SI Brochure (PDF; see p. 147 for English) clause 5.2: They are 

printed in lower-case letters unless they are derived from a proper name, in which case the 

first letter is a capital letter. Few maps have the scale in miles while few are written in metres. 

Please check. 

Reply: Agreed and amended. As per the suggestions, we have modified all the maps by 

updating the scale formats. We have adapted ‘Meters’ to ‘meters’ in the scale.  

 

Comment 4: Proofreading at many places should be done. The paper needs to be thoroughly 

revised, and proper English writing skills should be applied. 

Reply: Agreed and amended. As per the suggestion, we have undertaken proofreading using 

a premium Grammarly account to correct any typographical and grammatical errors.  

https://doi.org/10.1016/j.jenvman.2023.117835
https://doi.org/10.1016/j.jenvman.2023.117254
https://doi.org/10.1016/j.jenvman.2022.116260
https://www.bipm.org/documents/20126/41483022/SI-Brochure-9.pdf/fcf090b2-04e6-88cc-1149-c3e029ad8232
https://www.bipm.org/documents/20126/41483022/SI-Brochure-9.pdf/fcf090b2-04e6-88cc-1149-c3e029ad8232


Highlights 

 Sensitivity of Bayesian sediment fingerprinting to particle size and slope explored  

 Proposed a novel method to translate fingerprinting outputs to spatial information 

 Method combines INVEST-SDR catchment modelling and Bayesian fingerprinting 

 Combined approach revealed agricultural and barren regions as crucial sediment 

sources 
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Abstract 1 

Applications of sediment source fingerprinting continue to increase globally as the need for 2 

information to support improved management of the sediment problem persists. In our novel 3 

research, a Bayesian fingerprinting approach using MixSIAR was used with geochemical 4 

signatures, both without and with informative priors based on particle size and slope. The 5 

source estimates were compared with a newly proposed Source Sensitivity Index (SSI) and 6 

outputs from the INVEST-SDR model. MixSIAR results with informative priors indicated that 7 

agricultural and barren lands are the principal sediment sources (contributing ~5 to 85 % and 8 

~5 to 80% respectively during two sampling periods i.e. 2018-2019 and 2021-2022) with 9 

forests being less important. The SSI spatial maps (using % clay and slope as informative 10 

priors) showed > 78% agreement with the spatial map derived using the INVEST-SDR model 11 

in terms of sub-catchment prioritization for spatial sediment source contributions. This study 12 

demonstrates the benefits of combining geochemical sediment source fingerprinting with SSI 13 

indices in larger catchments where the spatial prioritization of soil and water conservation is 14 

both challenging but warranted.  15 

Keywords: Sediment fingerprinting, MixSIAR model, prior information, particle size 16 

distribution, INVEST model 17 
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 27 

1. Introduction 28 

Water erosion is regarded as the most serious concern to global soil security, resulting in poorer 29 

agriculture yields and pollution of freshwater resources and estuaries (Das et al., 2022). A 30 

significant amount of research and policy attention is still directed towards reducing 31 

reservoir siltation and water pollution caused by water erosion; most notably, excess fine-32 

grained (< 63 μm) sediment (Collins et al., 2020). Understanding water-induced soil erosion, 33 

sediment delivery and export, and sediment source patterns is crucial for targeted management 34 

of the impacts of human actions and natural processes on soil health and water resources. 35 

Though erosion models can be used for screening likely erodible areas in a catchment, critical 36 

information on sediment provenance can be obtained using sediment source fingerprinting 37 

(Lizaga et al., 2022). In particular, it is useful to identify the areas with disproportionately high 38 

erosion rates and connectivity with river channels, for developing optimal management 39 

strategies (Abban et al., 2016).  40 

Several investigations have determined the relative contributions of surface and 41 

instream sources to sediment loads (Afshar et al., 2016; Boudreault et al., 2019; Carter et al., 42 

2003; Collins & Walling, 2002, 2007; Lake et al., 2023). Geochemical fingerprinting of 43 

sediments is one of the most widely used approaches (Collins et al., 2020). Information on the 44 

contributions of different land use groups can be particularly informative for watershed 45 

management, and the sediment fingerprinting method based on statistically robust geochemical 46 

signatures can, in some instances, be used for obtaining such information (Demiguel et al., 47 

2005; Laceby & Olley, 2015; Tiecher et al., 2018). To link the signatures of the sampled target 48 

sediment to the signatures of the sources, fingerprinting investigations typically combines the 49 

selected tracers (e.g., geochemical) with statistical techniques for source discrimination and 50 

numerical unmixing models for source apportionment. Various unmixing models have been 51 
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proposed and used, including frequentist and Bayesian approaches (Collins, 2020; Collins et 52 

al., 2017; Davis & Fox, 2009; D’Haen et al., 2013). In order to determine the sources of target 53 

sediment, the Bayesian approach combines the likelihood of current sediment source data 54 

(geochemistry) with prior knowledge of sediment sources to form a posterior probability 55 

distribution of source contributions (Small et al., 2002). The assumption that tracers are 56 

adequately characterized for the potential source areas and the target sediment samples is eased 57 

when previous information is used for model parameterisation (Billheimer, 2001). Here, it is 58 

regarded by some investigators that Bayesian approaches are best for illustrating the 59 

uncertainty associated with estimated sediment source contributions.  60 

Complex landscapes, however, make it difficult to pinpoint the origins of fine-grained 61 

sediment. As a result, new methods are required to provide additional insights into the interplay 62 

between catchment structure, surface cover, and land use practices for determining sediment 63 

source contributions (Tang et al., 2019; Xu et al., 2022). In support of this,  Bayesian unmixing 64 

model frameworks can include prior information for relevant catchment characteristics (Stock 65 

et al., 2018; Upadhayay et al., 2017). In the existing literature, numerous possibilities are 66 

discussed concerning the applicability of prior information in Bayesian frameworks for 67 

understanding sediment dynamics at catchment scale. A study by Upadhayay et al., (2020), for 68 

example, applied a sediment connectivity index as prior information to identify the crucial land 69 

use classes of a study catchment. Similar attempts have also been made by other studies by 70 

using other catchment information such as land cover area (Hirave et al., 2023; Lizaga, 2021; 71 

Upadhayay et al., 2017, 2022). Beyond connectivity or land cover associated risks for erosion 72 

and sediment delivery, the effect of particle size selectivity on sediment source signals is widely 73 

recognised in many previous studies (Haddadchi et al., 2015; Gaspar et al., 2022). When it 74 

comes to rain-induced erosion, raindrops and slope controls the detachment and delivery of 75 

soil particles (Lu et al., 2016). In particular, the particle size distributions of sediment are useful 76 
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background knowledge for elucidating soil erosion processes (Legout et al., 2005; Cheraghi et 77 

al., 2016; Kiani-Harchegani et al., 2019 ), making such understanding an effective form of prior 78 

information.  79 

Despite the aforementioned importance of specific catchment characteristics, source 80 

apportionment studies have not, to date, explored the sensitivity of the results to the 81 

combination of mean slope and particle size.  82 

While catchment managers are interested in the interplay between areas of high risk erosion 83 

and sediment delivery, this interplay can be complex, especially in large river catchments, and 84 

the sediment fingerprinting technique is a powerful tool to enhance the understanding of 85 

sediment contributions from different types of sources in the watershed (such as land use 86 

classes, geological units, and tributary sub-catchments). Here, combining sediment 87 

fingerprinting methods with physical erosion modelling and other indices has been shown to 88 

improve the efficacy of management decisions [e.g. (Palazón et al., 2014, 2016; Wilkinson et 89 

al., 2013)]. By combining the application of physically-based modelling and sediment 90 

fingerprinting methods at the catchment scale, it is possible to create novel indicators of the 91 

spatio-temporal variability of sediment sources [i.e. source sensitivity index (SSI)]. Previous 92 

studies have, for instance, shown the value of combining weathering indices with conventional 93 

geochemical tracers to gain further insight into sub-basin spatial suspended sediment sources 94 

(Nosrati et al., 2019). Integrating indices with sediment fingerprinting results can help to: (i) 95 

elucidate sub-catchment scale erosion processes spatially, (ii) improve the accuracy of 96 

sediment source fingerprinting, and; (iii) support comparisons between sediment fingerprinting 97 

results and physical modelling outputs as a weight-of-evidence approach to understanding 98 

catchment sediment dynamics. Developing SSI can address sampling uncertainties and the 99 

spatial limitations frequently associated with sediment fingerprinting results (Collins, 2020; 100 

Collins et al., 2017; Koiter et al., 2013). Previous research using the SWAT model has shown 101 
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that the integration of physical modelling and tracer-based methods on large river systems 102 

greatly improves our understanding of erosion processes (Palazón et al., 2014, 2016; Wilk, 103 

2022). Similar to the SWAT model, the INVEST-SDR model has been extensively applied to 104 

deal with a wide range of scales and issues related to sediment delivery modelling across 105 

various hydro climatic regions (Hamel et al., 2017; Vigerstol & Aukema, 2011). In order to 106 

better understand catchment-wide erosion and sediment delivery mechanisms, this study 107 

combines the RUSLE-based INVEST-SDR model with geochemical sediment source 108 

fingerprinting in the Konar catchment, India.  109 

The specific objectives were: 110 

a. To apply geochemical fingerprinting to apportion suspended sediment sources in the 111 

form of land use classes. 112 

b. To apply a Bayesian mixing model with particle size distribution and mean slope as 113 

prior information and to examine the sensitivity of source apportionment estimates to 114 

such data. 115 

c. To develop an innovative index (SSI) using the geochemical fingerprinting results to 116 

generate spatio-temporal soil erosion maps. 117 

d. To assess and quantify the spatial distribution of sediment sources in the study 118 

catchment using the INVEST-SDR model and compare the outputs with the sediment 119 

fingerprinting and SSI results to evaluate the accuracy of the Bayesian sediment 120 

fingerprinting method.   121 

2 Methodology 122 

2.1 Study area characteristics 123 

This study was carried out in eastern India's Konar catchment (990 km2) of the Damodar River 124 

basin. The Konar catchment has diverse geo-physical terrains including high plains, 125 

moderate hills, and valleys. Elevations range between 329-882 m, with an eastern slope (Figure 126 
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1c). The climate is subtropical, with annual average rainfall of 1100-1300 mm distributed 127 

mostly (70-80%) between June and September. Summer temperatures can reach 46˚C 128 

compared with lows of 4˚C in the winter. The Hazaribagh district comprises more than 70 129 

percent of the catchment area, and most of this territory is made up of forests and rocky soils. 130 

Overall, our land use categories are found in the study catchment:  i.e., agricultural lands (38%), 131 

forests (36%), barren lands (14%), and human settlements (12%) (Figure 1b). Rice, groundnuts, 132 

and maize are the primary crops cultivated in the agricultural areas during the monsoon season, 133 

while wheat, mustard, and other vegetables are grown using terrace farming on uneven terrain 134 

during the off-monsoon season. Mixed deciduous and tropical dry forests predominate in the 135 

forest zones with several species of medicinal plants and timber trees including sal (Shorea 136 

robust) (Forest, Environment and Climate change Department, Government of Jharkhand; 137 

https://forest.jharkhand.gov.in). The three most common soil types are lithosols (46%), ferric 138 

luvisols (38%), and eutric nitosols (16%) (Supplementary Figure F1). 139 

2.2 Soil and sediment sampling 140 

One of the main challenges of the sediment fingerprinting approach is collecting sufficient 141 

source samples for statistical reliability (Collins & Walling, 2002). To study the temporal 142 

variation in the suspended sediment contributions from different sources, water samples were 143 

collected for six time periods from the inlet of Konar reservoir (shown in Figure 1c) for two 144 

alternate water years; i.e., July 2018-June 2019 and July 2021-June 2022. Three 2L swabs of 145 

suspended sediment were collected at a water depth of 0-10 cm and stored in high-density 146 

polyethylene bottles during these sampling periods (Wang et al., 2019). The soil sampling plan 147 

was designed to cover the spatial heterogeneity of the land use classes in the study catchment 148 

and Google Earth and topographic data were used to locate the sampling points (Boardman, 149 

2016). Adopting a composite sampling design is a practical solution to the issue of collecting 150 

enough source samples for statistical reliability when applying the sediment fingerprinting 151 
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approach (Collins et al., 2017; Collins & Walling, 2002; Williamson et al., 2023). To execute 152 

the composite sampling approach, 105 sites distributed throughout the study catchment and 153 

representative of the different land use were used. Figure 2 shows photographs taken during 154 

the sampling campaign for both the land use source classes and for target sediment in the Konar 155 

reservoir (details of sampling protocol are shown in supplementary Table T1). Composite 156 

sampling involved merging three to four sub-samples collected within a radius of 100 to 500 157 

m, depending on accessibility (Collins et al., 2017). The upper 5 cm of soil was sampled at 158 

each source sampling location using a non-metallic trowel deployed in one extensive campaign. 159 

This one-off source sampling strategy assumed that lithological features remained constant 160 

through time (Tiecher et al., 2017). 161 

2.3 Sample preparation and laboratory analysis 162 

To extract suspended sediments from the bulk water samples, the samples were first 163 

centrifuged, then filtered, and finally oven dried at 70 ˚C for 12 hours. After 12 hours of oven 164 

drying, soil samples were passed through a 63 µm sieve shaker for 24 hours to avoid 165 

aggregation and extract the silt and clay fractions to improve the direct comparability of source 166 

and sediment samples (Collins & Walling, 2016). Prior to the sample processing, scanning of 167 

the soil and sediment samples was performed using a DP-6000 Delta Premium portable X-ray 168 

fluorescence (PXRF) machine equipped with an Rh X-ray tube operating at 15-40 keV. Using 169 

the instrument's Geochem Mode, the concentrations of  V, Cr, Fe, Co, Ni, Cu, Zn, W, Hg, As, 170 

Se, Pb, Bi, Rb, U, Sr, Y, Zr, Th, Mo, Ag, Cd, Sn, Sb, Ti, Mn, Mg, Al, Si, P, S, Cl, K, and Ca 171 

were estimated (Sharma et al., 2014). The particle size characteristics of the source and target 172 

sediment samples were measured using a Malvern Pananalytical Mastersizer 3000.  173 

2.4  Formulation of the Bayesian framework and priors for source 174 

apportionment modelling 175 
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Geochemical tracers were selected using a standard two-step process consisting of a Kruskal-176 

Wallis H-test for inter-group differences, and a stepwise discriminant function analysis (DFA) 177 

for selecting a minimal set of tracers that maximises source discrimination (Collins et al., 178 

1997). MixSIAR, a state-of-the-art Bayesian Isotope Mixing Model (BIMM) available as a free 179 

R package, was used to estimate sediment source apportionment (Guerrero & Rogers, 2020; 180 

Stock et al., 2018). The geochemical tracers were entered into a concentration-dependent 181 

MixSIAR model with and without the use of the informative priors (Upadhayay et al., 2020). 182 

The following settings were applied for the Markov Chain Monte Carlo (MCMC) iterations: 183 

number of chains = 3, chain length = 3,000,000, burn = 1,500,000, thin =500. Gelman-Rubin 184 

and Geweke diagnostic statistics were used to verify model run convergence (Stock et al., 185 

2018). The deviance information criteria (DIC) was used to choose the best fitting model. 186 

Means and 95% Bayesian confidence intervals (CI) were provided from posterior distributions 187 

derived for sediment source contributions to estimate these contributions and their associated 188 

uncertainty (Upadhayay et al., 2020). Upadhayay et al., (2017) provide a comprehensive 189 

description of MixSIAR, and Stock et al., (2018) provides a comprehensive mathematical 190 

explanation of MixSIAR.    191 

2.4.1 Prior selection 192 

Informative priors for sediment source proportions should be selected logically with proper 193 

physical meaning (Upadhayay et al., 2020). Research suggests that rainfall-induced soil erosion 194 

occurs in primarily three phases, each of which is particle size-based (Figure 3) (Sadeghi et al., 195 

2017; Wang & Shi, 2015). The initial stage comprises the detachment of soil particles by 196 

raindrop splash - eroding mostly very fine particles and some fine particles (Figure3a). The 197 

second stage i.e. after a prolonged rainfall event, is characterized by an increased proportion of 198 

coarser particles and fine particles (Figure 3b). Finally, in the third stage, sediment 199 

transportation of very fine particles and lower quantities of fine and coarse particles takes place 200 
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through the stream network (Figure 3c). The slope of the terrain plays a very important role in 201 

the erosion process (Reza Vaezi et al., 2020). In this study we explored the sensitivity of the 202 

source proportion estimates to the choice of particle size priors (clay <2 μm, silt 2-50 μm, and 203 

fine sand >50 μm) by adjusting the prior specification and observing the impacts on the 204 

posterior distributions generated by MixSIAR.  Particle size priors were derived by determining 205 

the mean proportions of clay, silt, and very fine sand in the individual land use classes. Mean 206 

slopes of the land use groups were used to incorporate the slope priors. 207 

2.5 Formulation of the source sensitivity index (SSI) 208 

The sediment fingerprinting outputs provided by MixSIAR are relative and thereby do not 209 

provide information on the sediment yields from individual sources. To address this 210 

shortcoming, we developed an SSI using: (i) sediment yield factor for each land use class; (ii) 211 

proportion of area covered by each land use class in the overall catchment and the sub-212 

catchments therein, and; (iii) information on the temporal variability of the source contribution 213 

obtained from the sediment fingerprinting analysis (Liu et al., 2023). An SSI value may be 214 

derived to show the severity of the sub-catchments by linking the area covered by the sub-215 

catchment, the land use distribution within the sub-catchment, and the temporal variations in 216 

the total catchment's sediment production. Accordingly, the SSI was estimated as:   217 

 218 

𝑺𝒆𝒇 =
𝑿𝒆

𝑨𝒆
                                (𝒆 = 𝟏: 𝒎, 𝒇 = 𝟏: 𝒏)                                                             (1) 219 

𝑺𝑺𝑰𝒙 = (∑ ∑
𝑺𝒆𝒇. 𝑨𝒆𝒙

𝑨𝒙

𝒎

𝒆=𝟏

𝒏

𝒇=𝟏

) . 𝑫𝒙. 𝑷𝒇                                                                                        (2) 220 

Sef = sediment yield factor for land use e in the month f. 221 

Xe = Source contribution (land use) to the catchment sediment yield obtained from the 222 

fingerprinting approach. 223 

Ae = Area covered by respective land use class (e) in the catchment. 224 
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SSIx = Source sensitivity of sub-catchment x. 225 

Aex = Area covered by land use class e in sub-catchment x. 226 

Ax = Area covered by sub-catchment x. 227 

Dx = Distance factor of the sub-catchment outlet (calculated as the ratio of longest flow path 228 

and distance of the sub-catchment outlet from the catchment sink where the target sediment 229 

samples were collected) (Supplementary Figure F2).  230 

Pf = Proportion of annual sediment yield in the respective month. 231 

Figure 4 depicts the analytical framework used to generate spatial maps based on SSI values in 232 

our study area. This figure also shows the whole methodology of this study employing physical 233 

modelling outputs to authenticate sediment fingerprinting outcomes through SSI generated 234 

spatial maps. 235 

2.6 RUSLE-based hydrological model development: INVEST-SDR 236 

Quantification and mapping of soil loss and sediment delivery in a landscape can 237 

be accomplished using the Integrated Valuation of Ecosystem Services and Tradeoffs 238 

(INVEST)- Sediment Delivery Ratio (SDR) model (Aneseyee et al., 2020). Compared to other 239 

models, such as SWAT, INVEST-SDR uses less input data (Table 1) and is more flexible; it can 240 

also be modified to a given scenario and used with locally and globally accessible data and 241 

exemplifies the hydrological connectivity concept proposed by Vigiak et al., (2012).  To 242 

validate the INVEST SDR model, annual simulated sediment inflow data was compared to real 243 

data collected from Damodar Valley Corporation (DVC) using root mean square error (RMSE) 244 

and the coefficient of determination (R2).  245 

 246 

3 Results 247 

3.1 Catchment sediment sources using geochemical source fingerprinting 248 
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Correct and reliable use of sediment fingerprinting requires statistical analysis and 249 

interpretation of isotope tracers from sediment source end members. One of the most important 250 

step is to identify a representative set of final geochemical tracers to use in a "composite 251 

signature" to determine the origin of fine sediments. From the laboratory analysis, 24 elements 252 

were detected in the soil and sediment samples collected from the Konar catchment. To identify 253 

the set of discriminatory geochemical tracers to be used as an input to the MixSIAR, all the 254 

elements were passed through a KW test followed by DFA (Figure 5). Based on this analysis, 255 

21 elements were selected ( Fe, K, Ti, Ca, Zn, Mn, Ba, Zr, Rb, V, Cr, Sn, Ni, Sr, Pb, Cu, Ga, 256 

Sb, Ag, A, and Br). A summary of the statistical analysis for source discrimination is provided 257 

in supplementary Table T2. Furthermore, we have also shown the spatial variability of the 258 

proportional (%) presence of few elements (Fe, K, Ti and Ca) in the soil samples collected from 259 

105 locations of the catchment (Figure 6).  260 

3.2 Bayesian modelling results for source apportionment  261 

 MixSIAR was run with both ‘no priors (P0)’ and priors based on particle size and slope 262 

information for the study catchment (details of P1 to P4 are given in Table 2). During both time 263 

periods, both agricultural and barren lands were the most important sediment sources (Figure 264 

7). The Bayesian model with no priors (P0) and with the silt based prior (P2) identified 265 

agricultural lands as the major sediment source in most of the seasons (varying from ~30-45% 266 

during the water year 2018-19 and ~30 to 60 % during the water year 2021-22) (Figure 7 a1, 267 

a2). In contrast to the other prior-based models, these two models (P0 and P2) predicted a 268 

smaller contribution of suspended sediment from agricultural areas and a larger contribution 269 

from human settlements (Figure 7 b1, b2). The clay based prior (P1) and the slope based prior 270 

(P4) model outputs, both identified barren lands as the primary source of suspended sediment 271 

(varying from ~25-75% during the water year 2018-19 and ~20 to 60 % during water year 272 

2021-22). In contrast, the outputs of the slope based prior model suggested negligible 273 
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contributions from human settlement areas compared with the other land use classes (varying 274 

between 0-5% for both water years 2018-19 and 2021-22).  The very fine sand prior (P3) based 275 

model predicted a much higher contribution from forests (varying from ~20-50% during the 276 

water year 2018-19 and ~25-50% during 2021-22). Overall, all the prior based models 277 

identified agricultural land as the primary source of sediment in July 2021 (Figure 7 a2).  278 

3.3 SSI based Bayesian modelling results for source apportionment  279 

This study investigated the potential utility of a new index [Source Sensitivity Index (SSI)] to 280 

help the policymakers better understand the relative impacts of sediment sources in the Konar 281 

catchment. It integrates sediment fingerprinting information with the physical controls of 282 

sediment deposition in the sub-catchments to generate an index value for ranking the sub-283 

catchments to explain conservation urgency. To establish a link with physical modelling results, 284 

the sub-catchments were classified into five SSI classes [class1 (26-174), class2 (175-378), 285 

class3 (379-822), class4 (823-1267), class5 (1268-5266)] (Figure 8). Figure 9 displays the 286 

distribution of the sub-catchments across the SSI classes for the particle size and slope prior 287 

based model outputs, suggesting little disparity among the sub-catchments using the P0 and P2 288 

priors based models. However, upon closer inspection, it can be seen that the number of sub-289 

catchments with higher SSI classes is marginally greater during 2021–2022, compared with 290 

2018–2019. This SSI based information and associated maps can be used for assessing the 291 

reliability of mixing model source apportionment results based on the comparison with 292 

physically-based model outputs. More sub-catchments under class 5 (C5) were discovered by 293 

P1 based model in both time frames, similar to the P4 based model. However, it is evident from 294 

the Bayesian model findings described in section 3.2 that a comparable number of sub-295 

catchments come under the prior-based models P0 and P2. Importantly, the SSI based analysis 296 

demonstrated how effectively Bayesian sediment fingerprinting results can be converted into 297 

translating tool to spatially explain the sediment dynamics in the Konar catchment. This SSI 298 
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based information and maps can be used as a criterion for assessing the reliability of mixing 299 

model source apportionment results in comparison with physically based sedimentation models 300 

spatial outputs.                                         301 

3.4 INVEST-SDR model based results 302 

The assessment of sediment export using INVEST-SDR model involved computing the annual 303 

soil loss, sediment connectivity, and sediment delivery ratio of the study catchment. According 304 

to the coefficient of determination (R2) and root mean square error (RMSE) values of 0.81 and 305 

6.85 t/ha/year for the Nagwan gauging station, the predicted sediment export from the 306 

catchment was in line with the available observed data over time (Supplementary Figure F3).  307 

Using the sediment connectivity index (SCI) proposed by Borselli et al., (2008) the mean 308 

sediment connectivity is estimated to be -6.326, ranging between -11.038 and 0.179 (Figure 309 

10a). INVEST-SDR's estimate for soil loss ranged from 0 to 23321 t/year, with a mean soil loss 310 

rate of 23.65 tonnes per year (Figure 10b). The sediment delivery ratio was computed based on 311 

the connectivity index and ranged from 0 to 0.322, with a corresponding mean value of 0.082 312 

(Figure 10c). The spatial variation in the Konar catchment’s sediment export, ranging from 0 313 

to 3490 t/year with a mean value of 11.16 t/year, is shown in Figure 10d. The Konar catchment 314 

was sub-divided into 47 sub-catchments to pinpoint the crucial hot spots of soil erosion for 315 

targeting preventative measures. All sub-catchments were ranked and classified based on the 316 

sediment export in t/year (Figure 10e) and t/ha/year (Figure 10f). Here, we used two different 317 

sub-catchment ranking methods. Firstly, the sub-catchments were ranked according to their 318 

annual sediment yield, and secondly, the sub-catchments were ranked according to annual 319 

sediment yield per unit area (i.e., specific sediment yield). The overall variance between the 320 

two ranking techniques is shown in Figure 11a. Sub-catchments ranked 18, 21, 29, 37, 40, and 321 

47 based on annual sediment yield showed substantial disagreement with the ranks assigned 322 

using annual specific sediment yield (Figure 11b).  323 
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3.5 Examining the authenticity of the SSI with physically-based modelling 324 

Sediment fingerprinting and the INVEST-SDR model were used to generate independent 325 

predictions.  Here, the sediment fingerprinting based SSI technique generated estimates of 326 

relative source contributions for surface sediments collected in the reservoir, while the 327 

INVEST-SDR model generated sediment yield estimates for the four land use groups. Using 328 

results from INVEST-SDR as an independent evaluation, we computed the overall accuracy of 329 

the SSI ranking method by employing a confusion matrix for the sediment yield (Figure 12). 330 

Agreement between the annual specific sediment yield and the SSI approach was better than 331 

that with the annual sediment yield of the sub-catchments with all the prior based models. The 332 

P0 and P2 based models (i.e., no prior and silt-based priors) exhibited the lowest level of 333 

accuracy over both time frames, whereas models based on P1 and P4 (i.e., clay and slope priors, 334 

respectively) displayed the highest levels of accuracy (80% and 68% with t/ha/year and t/year, 335 

respectively) (Figure 12). The P3 (very fine sand-based prior) model predictions of the sub-336 

catchment sediment output was ~65% accurate. Over the two time frames, the clay and slope-337 

based priors performed the best.  338 

4. Discussion 339 

4.1 Multiple prior based geochemical sediment source fingerprinting 340 

 The DFA findings on the geochemical tracers showed some overlap between the source 341 

groups. Several other investigations have reported similar issues using geochemical data. 342 

 The PSD of target sediment can be affected by several factors, including the PSD of the 343 

sources, erosion patterns and intensity, and catchment slopes. It is therefore important to 344 

consider particle size carefully when using the sediment fingerprinting approach (Laceby et al., 345 

2017; Koiter et al., 2018). Accordingly, particle size based priors were used with slope when 346 

applying the MixSIAR model. The Bayesian model with no priors (P0) identified agricultural 347 

lands as the most important sediment source (i.e. contributing ~40-55%), with human 348 
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settlement contributing 8-15%, whereas the barren lands contributed 20 to 25%, and forest ~18 349 

to 25%. The highest human settlement contribution was estimated using the P0 model. 350 

However, the P0 model underestimated the contribution of barren lands drastically, and this 351 

land use has been reported to be a major sediment source by other studies conducted in this 352 

region (Das et al., 2022; Rajbanshi & Bhattacharya, 2020, 2022). The clay prior (P1) based 353 

model identified barren lands as the major sediment source (~20 to 70%) followed by 354 

agricultural lands (~10 to 70%) during both timeframes. Similar source estimates were 355 

generated using the slope based prior (P4) model. This suggests that the steepness of slope in 356 

the barren land areas is a major factor controlling sediment sources in the study catchment 357 

(Mishra et al., 2022). The silt based prior model (P2) predicted similar source contributions to 358 

the P0 model by identifying agricultural lands and human settlement areas as major sediment 359 

sources. The effects of silt concentration on geochemical properties were found to be negligible 360 

by Kraushaar et al., (2015) and this explains the lack of any significant difference between the 361 

source estimates using the silt based prior and no prior (P0) models.  The proportion of very 362 

fine sand is highest in the bare lands; however, the prior based model for this particle size 363 

fraction (P3), identified forests as the major sediment source (~20 to 50 %). A substantial 364 

contribution of forests to sediment yield has been reported by a few previous studies 365 

(Upadhayay et al., 2020).  366 

4.2  Validation of sediment source fingerprinting with  INVEST-SDR  367 

The INVEST-SDR outputs were used as an independent evaluation of the sediment 368 

fingerprinting estimates. Previous studies have evaluated source fingerprinting using 369 

physically-based modelling. A study by Palazón et al., (2016), for example, reported good 370 

consistency between sediment fingerprinting results and SWAT modelling. The accuracy of the 371 

five prior based Bayesian model in prioritizing the sub-catchments indicates that the annual 372 

sediment yields for the sub-catchments agree less with the SSI results compared to annual 373 
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specific sediment yield. Similar, apportionment patterns were established in a study conducted 374 

by Hamel et al., (2015) which prioritized the sub-catchments based on soil erosion alone, rather 375 

than erosion and sediment delivery. The clay and slope priors based models performed better 376 

than the other models with an overall accuracy of >78% (Figure 12). Previous studies on soil 377 

erosion have illustrated how catchment slope affects erosion patterns and the PSD of mobilised 378 

sediment particles (Lu et al., 2016; Vigiak et al., 2012; Wang & Shi, 2015). Further, some 379 

studies have reported how variable rainfall intensity and slope conditions have resulted in 380 

greater detachment of clay particles at the experimental scale (Kiani-Harchegani et al., 2018, 381 

2019; Sadeghi et al., 2017; Zhang et al., 2018).    382 

4.3 Limitations and future outlook 383 

There are a few limitations that must be borne in mind while interpreting the results of this 384 

study. Our ability to sample the reservoir for target sediment beyond two water years was 385 

limited by time, money, and accessibility issues, and continuous monitoring was restricted in 386 

2020-2021 due to COVID19 lockdowns. Even though, the results of the prior based sediment 387 

fingerprinting study performed well when compared to physical modelling, additional source 388 

sampling campaigns (annual or seasonal) may have shown greater temporal variation in 389 

catchment sediment source contributions.  Since a single target sediment sampling location was 390 

deployed, the source fingerprinting estimates must be viewed as scale-dependent and 391 

longitudinal sampling along the stream network could be used to provide further insight into 392 

the sediment dynamics of the study catchment (Koiter et al., 2013).  The target sediment 393 

samples were not age dated (Fatahi et al., 2022) and may therefore reflect sediment sources 394 

over recent times rather than the present day alone. Despite the aforementioned limitations, 395 

however, this novel research suggested that the prior based sediment fingerprinting procedure 396 

provides valuable information for understanding the spatial and temporal dynamics of fine 397 

sediment sources and delivery in the study catchment. Our study illustrates the benefits of 398 
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combining sediment source fingerprinting with independent approaches such as physically-399 

based modelling. 400 

5 Conclusion 401 

. The major findings of this study are as follows: 402 

a) The geochemical fingerprints of the sources successfully discriminated between the 403 

surface soil samples collected from the land use classes of the Konar study catchment. 404 

The sensitivity of the Bayesian model predictions to priors based on particle size and 405 

slope was evaluated. The model comparisons suggested that agricultural and barren 406 

lands are the most important sediment sources. 407 

b) The performance of INVEST-SDR was satisfactory using the observed datasets from 408 

the Nagwan gauging station (R2=0.81 and RMSE = 6.85 tons/ha/Year). The two sub-409 

catchment ranking scenarios using the outputs from INVEST-SDR showed 410 

disagreements in terms of the higher ranking sub-catchments. However, there were 411 

some similarities between the prioritization based on both ranking schemes.    412 

c) Comparison between the two INVEST-SDR ranking schemes and the results of the SSI 413 

technique based on five prior based Bayesian models for prioritising the sub-414 

catchments was informative. The overall accuracy of the SSI method considering all 415 

the models with the first ranking scheme (i.e., annual sediment yield) varied from 25-416 

62%, whereas, based on the second scheme (i.e., annual specific sediment yield) it 417 

ranged between 68-82%. The performance of slope and clay prior based models 418 

performed best with > 78% accuracy. 419 
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Abstract 1 

Applications of sediment source fingerprinting continue to increase globally as the need for 2 

information to support improved management of the sediment problem persists. In our novel 3 

research, a Bayesian fingerprinting approach using MixSIAR was used with geochemical 4 

signatures, both without and with informative priors based on particle size and slope. The 5 

source estimates were compared with a newly proposed Source Sensitivity Index (SSI) and 6 

outputs from the INVEST-SDR model. MixSIAR results with informative priors indicated that 7 

agricultural and barren lands are the principal sediment sources (contributing ~5 to 85 % and 8 

~5 to 80% respectively during two sampling periods i.e. 2018-2019 and 2021-2022) with 9 

forests being less important. The SSI spatial maps (using % clay and slope as informative 10 

priors) showed > 78% agreement with the spatial map derived using the INVEST-SDR model 11 

in terms of sub-catchment prioritization for spatial sediment source contributions. This study 12 

demonstrates the benefits of combining geochemical sediment source fingerprinting with SSI 13 

indices in larger catchments where the spatial prioritization of soil and water conservation is 14 

both challenging but warranted.  15 

Keywords: Sediment fingerprinting, MixSIAR model, prior information, particle size 16 

distribution, INVEST model 17 
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 27 

1. Introduction 28 

Water erosion is regarded as the most serious concern to global soil security, resulting in poorer 29 

agriculture yields and pollution of freshwater resources and estuaries (Das et al., 2022). A 30 

significant amount of research and policy attention is still directed towards reducing 31 

reservoir siltation and water pollution caused by water erosion; most notably, excess fine-32 

grained (< 63 μm) sediment (Collins et al., 2020). Understanding water-induced soil erosion, 33 

sediment delivery and export, and sediment source patterns is crucial for targeted management 34 

of the impacts of human actions and natural processes on soil health and water resources. 35 

Though erosion models can be used for screening likely erodible areas in a catchment, critical 36 

information on sediment provenance can be obtained using sediment source fingerprinting 37 

(Lizaga et al., 2022). In particular, it is useful to identify the areas with disproportionately high 38 

erosion rates and connectivity with river channels, for developing optimal management 39 

strategies (Abban et al., 2016).  40 

Several investigations have determined the relative contributions of surface and 41 

instream sources to sediment loads (Afshar et al., 2016; Boudreault et al., 2019; Carter et al., 42 

2003; Collins & Walling, 2002, 2007; Lake et al., 2023). Geochemical fingerprinting of 43 

sediments is one of the most widely used approaches (Collins et al., 2020)[Collins et al., 44 

(2020)]. Information on the contributions of different land use groups can be particularly 45 

informative for watershed management, and the sedimentgeochemical fingerprinting method 46 

based on statistically robust geochemical signatures can, in some instances, be used for 47 

obtaining such information (Demiguel et al., 2005; Laceby & Olley, 2015; Tiecher et al., 2018). 48 

To link the signatures of the sampled target sediment to the signatures of the sources, 49 

fingerprinting investigations typically combines the selected tracers (e.g., geochemical) with 50 

statistical techniques for source discrimination and numerical unmixing models for source 51 
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apportionment. Various unmixing models have been proposed and used, including frequentist 52 

and Bayesian approaches (Collins, 2020; Collins et al., 2017; Davis & Fox, 2009; D’Haen et 53 

al., 2013). In order to determine the sources of target sediment, the Bayesian approach 54 

combines the likelihood of current sediment source data (geochemistry) with prior knowledge 55 

of sediment sources in the study catchment to form a posterior probability distribution of source 56 

contributions (Small et al., 2002). The assumption that tracers are adequately characterized for 57 

the potential source areas and the target sediment samples is eased when previous information 58 

is used for model parameterisation (Billheimer, 2001). Here, it is regarded by some 59 

investigators that Bayesian approaches are best for illustrating the uncertainty associated with 60 

estimated sediment source contributions.  61 

Complex landscapes, however, make it difficult to pinpoint the origins of fine-grained 62 

sediment. As a result, new methods are required to provide additional insights into the interplay 63 

between catchment structure, surface cover, and land use practices for determining sediment 64 

source contributions (Tang et al., 2019; Xu et al., 2022). In support of this,  Bayesian unmixing 65 

model frameworks can include prior information including that for relevant catchment 66 

characteristics (Stock et al., 2018; Upadhayay et al., 2017). In the existing literature, numerous 67 

possibilities are discussed concerning the applicability of prior information in Bayesian 68 

frameworks for understanding sediment dynamics at catchment scale. A study by Upadhayay 69 

et al., (2020), for example, applied a sediment connectivity index as prior information to 70 

identify the crucial land use classes of a study catchment. Similar attempts have also been made 71 

by other studies by using other catchment information such as land cover area (Hirave et al., 72 

2023; Lizaga, 2021; Upadhayay et al., 2017, 2022). Beyond connectivity or land cover 73 

associated risks for erosion and sediment delivery, the effect of particle size selectivity on 74 

sediment source signals is widely recognised in many previous studies (Haddadchi et al., 2015; 75 

Gaspar et al., 2022). When it comes to rain-induced erosion, raindrops, and slope controls the 76 
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detachment and delivery of soil particles (Lu et al., 2016). In particular, the particle size 77 

distributions of sediment are useful background knowledge for elucidating soil erosion 78 

processes (Legout et al., 2005; Cheraghi et al., 2016; Kiani-Harchegani et al., 2019 ), making 79 

such understanding an effective form of prior information.  80 

Despite the aforementioned importance of specific catchment characteristics, source 81 

apportionment studies have not, to date, explored the sensitivity of the results to the 82 

combination of mean slope and particle size.  83 

 While catchment managers are interested in the interplay between areas of high risk erosion 84 

and sediment delivery, this interplay can be complex, especially in large river catchments, and 85 

the sediment fingerprinting technique is a powerful tool to enhance the understanding of 86 

sediment contributions from different types of sources in the watershed (such as land use 87 

classes, geological units, and tributary sub-catchments). Though the sediment fingerprinting 88 

technique is a powerful tool to enhance the understanding of sediment contributions from 89 

various types of sources in the watershed (e.g., land use classes, geological units, and tributary 90 

sub-catchments), catchment managers are also interested in the interplay between areas of high 91 

risk erosion and sediment delivery and such interplay can be complex, especially in large river 92 

catchments. Here, combining sediment fingerprinting methods with physical erosion modelling 93 

and other indices has been shown to improve the efficacy of management decisions [(e.g. 94 

(Palazón et al., 2014, 2016; Wilkinson et al., 2013)]. By combining the application of 95 

physically-based modelling and sediment fingerprinting methods at the catchment scale, it is 96 

possible to create novel indicators of the spatio-temporal variability of sediment sources [i.e. 97 

source sensitivity index (SSI)]. Previous studies have, for instance, shown the value of 98 

combining weathering indices with conventional geochemical tracers to gain further insight 99 

into sub-basin spatial suspended sediment sources (Nosrati et al., 2019)]. Integrating indices 100 

with sediment fingerprinting results can help to: (i) elucidate sub-catchment scale erosion 101 
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processes spatially, (ii) improve the accuracy of sediment source fingerprinting, and; (iii) 102 

support comparisons between sediment fingerprinting results and physical modelling outputs 103 

as a weight-of-evidence approach to understanding catchment sediment dynamics. Developing 104 

SSI can address sampling uncertainties and the spatial limitations frequently associated with 105 

sediment fingerprinting results (Collins, 2020; Collins et al., 2017; Koiter et al., 2013). 106 

Previous research using the SWAT model has shown that the integration of physical modelling 107 

and tracer-based methods on large river systems greatly improves our understanding of erosion 108 

processes (Palazón et al., 2014, 2016; Wilk, 2022). Similar to the SWAT model, the INVEST-109 

SDR model has been extensively applied to deal with a wide range of scales and issues related 110 

to sediment delivery modelling across various hydro climatic regions (Hamel et al., 2017; 111 

Vigerstol & Aukema, 2011). In order to better understand catchment-wide erosion and sediment 112 

delivery mechanisms, this study combines the RUSLE-based INVEST-SDR model with 113 

geochemical sediment source fingerprinting in the Konar catchment, India.  114 

Accordingly, this study combined application of the RUSLE-based INVEST-SDR model and 115 

geochemical sediment source fingerprinting in the Konar catchment, India, to explore the scope 116 

for improving understanding of catchment-wide erosion and sediment delivery processes. The 117 

specific objectives were: 118 

a. To apply geochemical fingerprinting to apportion suspended sediment sources in the 119 

form of land use classes. 120 

b. To apply a Bayesian mixing model with particle size distribution and mean slope as 121 

prior information and to examine the sensitivity of source apportionment estimates to 122 

such data. 123 

c. To develop an innovative index (SSI) using the geochemical fingerprinting results to 124 

generate spatio-temporal soil erosion maps. 125 
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d. To assess and quantify the spatial distribution of sediment sources in the study 126 

catchment using the INVEST-SDR model and compare the outputs with the sediment 127 

fingerprinting and SSI results to evaluate the accuracy of the Bayesian sediment 128 

fingerprinting method.   129 

2 Methodology 130 

2.1 Study area characteristics 131 

This study was carried out in eastern India's Konar catchment (990 km2) of the Damodar River 132 

basin. The Konar catchment has diverse geo-physical terrains including high plains, 133 

moderate hills, and valleys. Elevations range between 329-882 m, with an eastern slope (Figure 134 

1c). The climate is subtropical, with annual average rainfall of 1100-1300 mm distributed 135 

mostly (70-80%) between June and September. Summer temperatures can reach 46 ˚C 136 

compared with lows of 4 ˚C in the winter. The Hazaribagh district comprises more than 70 137 

percent of the catchment area, and most of this territory is made up of forests and rocky soils. 138 

Overall, our land use categories are found in the study catchment:  i.e., agricultural lands (38%), 139 

forests (36%), barren lands (14%), and human settlements (12%) (Figure 1b). Rice, groundnuts, 140 

and maize are the primary crops cultivated in the agricultural areas during the monsoon season, 141 

while wheat, mustard, and other vegetables are grown using terrace farming on uneven terrain 142 

during the off-monsoon season. Mixed deciduous and tropical dry forests predominate in the 143 

forest zones with several species of medicinal plants and timber trees including sal (Shorea 144 

robust) (Forest, Environment and Climate change Department, Government of Jharkhand; 145 

https://forest.jharkhand.gov.in). The three most common soil types are lithosols (46%), ferric 146 

luvisols (38%), and eutric nitosols (16%) (Supplementary Figure F1). 147 

2.2 Soil and sediment sampling 148 

One of the main challenges of the sediment fingerprinting approach is collecting sufficient 149 

source samples for statistical reliability (Collins & Walling, 2002). To study the temporal 150 
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variation in the suspended sediment contributions from different sources, water samples were 151 

collected for six time periods from the inlet of Konar reservoir (shown in Figure 1c) for two 152 

alternate water years; i.e., July 2018-June 2019 and July 2021-June 2022. Three 2L swabs of 153 

suspended sediment were collected at a water depth of 0-10 cm and stored in high-density 154 

polyethylene bottles during these sampling periods (Wang et al., 2019). The soil sampling plan 155 

was designed to cover the spatial heterogeneity of the land use classes in the study catchment 156 

and Google Earth and topographic data were used to locate the sampling points (Boardman, 157 

2016). Adopting a composite sampling design is a practical solution to the issue of collecting 158 

enough source samples for statistical reliability when applying the sediment fingerprinting 159 

approach (Collins et al., 2017; Collins & Walling, 2002; Williamson et al., 2023). To execute 160 

the composite sampling approach, 105 sites distributed throughout the study catchment and 161 

representative of the different land use were used. Figure 2 shows photographs taken during 162 

the sampling campaign for both the land use source classes and for target sediment in the Konar 163 

reservoir (details of sampling protocoldetails are shown in supplementary Table T1). 164 

Composite sampling involved merging three to four sub-samples collected within a radius of 165 

100 to 500 m, depending on accessibility (Collins et al., 2017). The upper 5five cm of soil 166 

waswere sampled at each source sampling location using a non-metallic trowel deployed in 167 

one extensive campaign. This one-off source sampling strategy assumed that lithological 168 

features remained constant through time (Tiecher et al., 2017). 169 

2.3 Sample preparation and laboratory analysis 170 

To extract suspended sediments from the bulk water samples, the samples were first 171 

centrifuged, then filtered, and finally oven dried at 70 ˚C for 12 hours. After 12 hours of oven 172 

drying, soil samples were passed through a 63 µm sieve shaker for 24 hours to avoid 173 

aggregation andto extract the silt and clay fractions to improve the direct comparability of 174 

source and sediment samples (Collins & Walling, 2016). Prior to the sample processing, 175 
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scanning of the soil and sediment samples was performed using a DP-6000 Delta Premium 176 

portable X-ray fluorescence (PXRF) machine equipped with an Rh X-ray tube operating at 15-177 

40 keV. Using the instrument's Geochem Mode, the concentrations of  V, Cr, Fe, Co, Ni, Cu, 178 

Zn, W, Hg, As, Se, Pb, Bi, Rb, U, Sr, Y, Zr, Th, Mo, Ag, Cd, Sn, Sb, Ti, Mn, Mg, Al, Si, P, S, 179 

Cl, K, and Ca were estimated (Sharma et al., 2014). The particle size characteristics of the 180 

source and target sediment samples were measured using a Malvern Pananalytical Mastersizer 181 

3000.  182 

2.4  Formulation of the Bayesian framework and priors for source 183 

apportionment modelling 184 

Geochemical tracers were selected using a standard two-step process consisting of a Kruskal-185 

Wallis H-test for inter-group differences, and a stepwise discriminant function analysis (DFA) 186 

for selecting a minimal set of tracers that maximises source discrimination (Collins et al., 187 

1997). MixSIAR, a state-of-the-art Bayesian Isotope Mixing Model (BIMM) available as a free 188 

R package, was used to estimate sediment source apportionment (Guerrero & Rogers, 2020; 189 

Stock et al., 2018). The geochemical tracers were entered into a concentration-dependent 190 

MixSIAR model with and without the use of the informative priors (Upadhayay et al., 2020). 191 

The following settings were applied for the Markov Chain Monte Carlo (MCMC) iterations: 192 

number of chains = 3, chain length = 3,000,000, burn = 1,500,000, thin =500. Gelman-Rubin 193 

and Geweke diagnostic statistics were used to verify model run convergence (Stock et al., 194 

2018). The deviance information criteria (DIC) was used to choose the best fitting model. 195 

Means and 95% Bayesian confidence intervals (CI) were provided from posterior distributions 196 

derived for sediment source contributions to estimate these contributions and their associated 197 

uncertainty (Upadhayay et al., 2020). (Upadhayay et al., (2017) provide a comprehensive 198 

description of MixSIAR, and Stock et al., (2018) provides a comprehensive mathematical 199 

explanation of MixSIAR.    200 
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2.4.1 Prior selection 201 

Informative priors for sediment source proportions should be selected logically with proper 202 

physical meaning (Upadhayay et al., 2020). Research suggests that rainfall-induced soil erosion 203 

occurs in primarily three phases, each of which is particle size-based (Figure 3) (Sadeghi et al., 204 

2017; Wang & Shi, 2015). The initial stage comprises the detachment of soil particles by 205 

raindrop splash - eroding mostly very fine particles and some fine particles (Figure3a). The 206 

second stage i.e. after a prolonged rainfall event, is characterized by an increased proportion of 207 

coarser particles and fine particles (Figure 3b). Finally, in the third stage, sediment 208 

transportation of very fine particles and lower quantities of fine and coarse particles takes place 209 

through the stream network (Figure 3c). The slope of the terrain plays a very important role in 210 

the erosion process (Reza Vaezi et al., 2020). In this study we explored the sensitivity of the 211 

source proportion estimates to the choice of particle size priors (clay <2 μm, silt 2-50 μm, and 212 

fine sand >50 μm) by adjusting the prior specification and observing the impacts on the 213 

posterior distributions generated by MixSIAR.  Particle size priors were derived by determining 214 

the mean proportions of clay, silt, and very fine sand in the individual land use classes. Mean 215 

slopes of the land use groups were used to incorporate the slope priors. 216 

2.5 Formulation of the source sensitivity index (SSI) 217 

The sediment fingerprinting outputs provided by MixSIAR are relative and thereby do not 218 

provide information on the sediment yields from individual sources. To address this 219 

shortcoming, we developed an SSI using: (i) sediment yield factor for each land use class; (ii) 220 

proportion of area covered by each land use class in the overall catchment and the sub-221 

catchments therein, and; (iii) information on the temporal variability of the source contribution 222 

obtained from the sediment fingerprinting analysis (Liu et al., 2023). An SSI value may be 223 

derived to show the severity of the sub-catchments by linking the area covered by the sub-224 
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catchment, the land use distribution within the sub-catchment, and the temporal variations in 225 

the total catchment's sediment production. Accordingly, the SSI was estimated as:   226 

 227 

𝑺𝒆𝒇 =
𝑿𝒆

𝑨𝒆
                                (𝒆 = 𝟏: 𝒎, 𝒇 = 𝟏: 𝒏)                                                             (1) 228 

𝑺𝑺𝑰𝒙 = (∑ ∑
𝑺𝒆𝒇. 𝑨𝒆𝒙

𝑨𝒙

𝒎

𝒆=𝟏

𝒏

𝒇=𝟏

) . 𝑫𝒙. 𝑷𝒇                                                                                        (2) 229 

Sef = sediment yield factor for land use e in the month f. 230 

Xe = Source contribution (land use) to the catchment sediment yield obtained from the 231 

fingerprinting approach. 232 

Ae = Area covered by respective land use class (e) in the catchment. 233 

SSIx = Source sensitivity of sub-catchment x. 234 

Aex = Area covered by land use class e in sub-catchment x. 235 

Ax = Area covered by sub-catchment x. 236 

Dx = Distance factor of the sub-catchment outlet (calculated as the ratio of longest flow path 237 

and distance of the sub-catchment outlet from the catchment sink where the target sediment 238 

samples were collected) (Supplementary Figure F2).  239 

Pf = Proportion of annual sediment yield in the respective month. 240 

Figure 4 depicts the analytical framework used to generate spatial maps based on SSI values in 241 

our study area. This figure also shows the whole methodology of this study paper which 242 

employings physical modelling outputs to authenticate sediment fingerprinting outcomes 243 

through SSI generated spatial maps. 244 

2.6 RUSLE-based hydrological model development: INVEST-SDR 245 

Quantification and mapping of soil loss and sediment delivery in a landscape can 246 

be accomplished using the Integrated Valuation of Ecosystem Services and Tradeoffs 247 

(INVEST)- Sediment Delivery Ratio (SDR) model (Aneseyee et al., 2020). Compared to other 248 
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models, such as SWAT, INVEST-SDR uses less input data (Table 1) and is more flexible; it can 249 

also be modified to a given scenario and used with locally and globally accessible data and 250 

exemplifies the hydrological connectivity concept proposed by Vigiak et al., (2012).  To 251 

validate the INVEST SDR model, annual simulated sediment inflow data was compared to real 252 

data collected from Damodar Valley Corporation (DVC) using root mean square error (RMSE) 253 

and the coefficient of determination (R2).  254 

 255 

3 Results 256 

3.1 Catchment sediment sources using geochemical source fingerprinting 257 

Correct and reliable use of sediment fingerprinting requires statistical analysis and 258 

interpretation of isotope tracers from sediment source end members. One of the most important 259 

step is to identify a representative set of final geochemical tracers to use in a "composite 260 

signature" to determine the origin of fine sediments. From the laboratory analysis, 24 elements 261 

were detected in the soil and sediment samples collected from the Konar catchment. To identify 262 

the set of discriminatory geochemical tracers to be used as an input to the MixSIAR, all the 263 

elements were passed through a KW test followed by DFA (Figure 5). Based on this analysis, 264 

21 elements were selected ( Fe, K, Ti, Ca, Zn, Mn, Ba, Zr, Rb, V, Cr, Sn, Ni, Sr, Pb, Cu, Ga, 265 

Sb, Ag, A, and Br). A summary of the statistical analysis for source discrimination is provided 266 

in supplementary Table T2. Furthermore, we have also shown the spatial variability of the 267 

proportional (%) presence of few elements (Fe, K, Ti and Ca) in the soil samples collected from 268 

105 locations of the catchment (Figure 6).  269 

3.2 Bayesian modelling results for source apportionment  270 

 MixSIAR was run with both ‘no priors (P0)’ and priors based on particle size and slope 271 

information for the study catchment (details of P1 to P4 are given in Table 2). During both time 272 

periods, both agricultural and barren lands were the most important sediment sources (Figure 273 
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76). The Bayesian model with no priors (P0) and with the silt based prior (P2) identified 274 

agricultural lands as the major sediment source in most of the seasons (varying from ~30-45% 275 

during the water year 2018-19 and ~30 to 60 % during the water year 2021-22) (Figure 76 a1, 276 

a2). In contrast to the other prior-based models, these two models (P0 and P2) predicted a 277 

smaller contribution of suspended sediment from agricultural areas and a larger contribution 278 

from human settlements (Figure 76 b1, b2). The clay based prior (P1) and the slope based prior 279 

(P4) model outputs, both identified barren lands as the primary source of suspended sediment 280 

(varying from ~25-75% during the water year 2018-19 and ~20 to 60 % during water year 281 

2021-22). In contrast, the outputs of the slope based prior model suggested negligible 282 

contributions from human settlement areas compared with the other land use classes (varying 283 

between 0-5% for both water years 2018-19 and 2021-22).  The very fine sand prior (P3) based 284 

model predicted a much higher contribution from forests (varying from ~20-50% during the 285 

water year 2018-19 and ~25-50% during 2021-22). Overall, all the prior based models 286 

identified agricultural land as the primary source of sediment in July 2021 (Figure 76 a2).  287 

3.3 SSI based Bayesian modelling results for source apportionment  288 

This study investigated the potential utility of a new index [Source Sensitivity Index (SSI)] to 289 

help the policymakers to better understand the relative impacts of sediment sources in the 290 

Konar catchment. It integrates sediment fingerprinting information with the physical controls 291 

of sediment deposition in the sub-catchments to generate an index value for ranking the sub-292 

catchments to explain conservation urgency. To establish a link with physical modelling results, 293 

the sub-catchments were classified into five SSI classes [class1 (26-174), class2 (175-378), 294 

class3 (379-822), class4 (823-1267), class5 (1268-5266)] (Figure 87). Figure 98 displays the 295 

distribution of the sub-catchments across the SSI classes for the particle size and slope prior 296 

based model outputs, suggesting little disparity among the sub-catchments using the P0 and P2 297 

priors based models. However, upon closer inspection, it can be seen that the number of sub-298 
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catchments with higher SSI classes is marginally greater during 2021–2022, compared with 299 

2018–2019. This SSI based information and associated maps can be used for assessing the 300 

reliability of mixing model source apportionment results based on the comparison with 301 

physically-based model outputs. More sub-catchments under class 5 (C5) were discovered by 302 

P1 based model in both time frames, similar to the P4 based model. However,While it is evident 303 

from the Bayesian model findings described in section 3.2 that a comparable number of sub-304 

catchments come under the prior-based models P0 and P2. Importantly, the SSI based analysis 305 

demonstrated how effectively Bayesian sediment fingerprinting results can be converted into 306 

translating tool to spatially explain the sediment dynamics in the Konar catchment. This SSI 307 

based information and maps can be used as a criterion for assessing the reliability of mixing 308 

model source apportionment results in comparison with physically based sedimentation models 309 

spatial outputs.                                         310 

3.4 INVEST-SDR model based results 311 

The assessment of sediment export using INVEST-SDR model involved computing the annual 312 

soil loss, sediment connectivity, and sediment delivery ratio of the study catchment. According 313 

to the coefficient of determination (R2) and root mean square error (RMSE) values of 0.81 and 314 

6.85 t/ha/year for the Nagwan gauging station, the predicted sediment export from the 315 

catchment was in line with the available observed data over time (Supplementary Figure F3).  316 

Using the sediment connectivity index (SCI) proposed by Borselli et al., (2008) the mean 317 

sediment connectivity is estimated to be -6.326, ranging between -11.038 and 0.179 (Figure 318 

109a). INVEST-SDR's estimate for soil loss ranged from 0 to 23321 t/year, with a mean soil 319 

loss rate of 23.65 tonnes per year (Figure 109b). The sediment delivery ratio was computed 320 

based on the connectivity index and ranged from 0 to 0.322, with a corresponding mean value 321 

of 0.082 (Figure 109c). The spatial variation in the Konar catchment’s sediment export, ranging 322 

from 0 to 3490 t/year with a mean value of 11.16 t/year, is shown in Figure 109d. The Konar 323 
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catchment was sub-divided into 47 sub-catchments to pinpoint the crucial hot spots of soil 324 

erosion for targeting preventative measures. All sub-catchments were ranked and classified 325 

based on the sediment export in t/year (Figure 109e) and t/ha/year (Figure 109f). Here, we used 326 

two different sub-catchment ranking methods. Firstly, the sub-catchments were ranked 327 

according to their annual sediment yield, and secondly, the sub-catchments were ranked 328 

according to annual sediment yield per unit area (i.e., specific sediment yield). The overall 329 

variance between the two ranking techniques is shown in Figure 1110a. Sub-catchments 330 

ranked 18, 21, 29, 37, 40, and 47 based on annual sediment yield showed substantial 331 

disagreement with the ranks assigned using annual specific sediment yield (Figure 1110b).  332 

3.5 Examining the authenticity of the SSI with physically-based modelling 333 

Sediment fingerprinting and the INVEST-SDR model were used to generate independent 334 

predictions.  Here, the sediment fingerprinting based SSI technique generated estimates of 335 

relative source contributions for surface sediments collected in the reservoir, while the 336 

INVEST-SDR model generated sediment yield estimates for the four land use groups. Using 337 

results from INVEST-SDR as an independent evaluation, we computed the overall accuracy of 338 

the SSI ranking method by employing a confusion matrix for the sediment yield (Figure 1211). 339 

Agreement between the annual specific sediment yield and the SSI approach was better than 340 

that with the annual sediment yield of the sub-catchments with all the prior based models. The 341 

P0 and P2 based models (i.e., no prior and silt-based priors) exhibited the lowest level of 342 

accuracy over both time frames, whereas models based on P1 and P4 (i.e., clay and slope priors, 343 

respectively) displayed the highest levels of accuracy (80% and 68% with t/ha/year and t/year, 344 

respectively) (Figure 1211). The P3 (very fine sand-based prior) model predictions of the sub-345 

catchment sediment output was ~65% accurate. Over the two time frames, the clay and slope-346 

based priors performed the best.  347 

 348 
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4. Discussion 349 

4.1 Multiple prior based geochemical sediment source fingerprinting 350 

 The DFA findings on the geochemical tracers showed some overlap between the source 351 

groups. Several other investigations have reported similar issues using geochemical data. 352 

 The PSD of target sediment can be affected by several factors, including the PSD of the 353 

sources, erosion patterns and intensity, and catchment slopes. It is therefore important to 354 

consider particle size carefully when using the sediment fingerprinting approach (Laceby et al., 355 

2017; Koiter et al., 2018). Accordingly, particle size based priors were used with slope when 356 

applying the MixSIAR model. The Bayesian model with no priors (P0) identified agricultural 357 

lands as the most important sediment source (i.e. contributing ~40-55%), with human 358 

settlement contributing 8-15%, whereas the barren lands contributed 20 to 25%, and forest ~18 359 

to 25%. The highest human settlement contribution was estimated using the P0 model. 360 

However, the P0 model underestimated the contribution of barren lands drastically, and this 361 

land use has been reported to be a major sediment source by other studies conducted in this 362 

region (Das et al., 2022; Rajbanshi & Bhattacharya, 2020, 2022). The clay prior (P1) based 363 

model identified barren lands as the major sediment source (~20 to 70%) followed by 364 

agricultural lands (~10 to 70%) during both timeframes. Similar source estimates were 365 

generated using the slope based prior (P4) model. This suggests that the steepness of slope in 366 

the barren land areas is a major factor controlling sediment sources in the study catchment 367 

(Mishra et al., 2022). The silt based prior model (P2) predicted similar source contributions to 368 

the P0 model by identifying agricultural lands and human settlement areas as major sediment 369 

sources. The effects of silt concentration on geochemical properties were found to be negligible 370 

by Kraushaar et al., (2015) and this explains the lack of any significant difference between the 371 

source estimates using the silt based prior and no prior (P0) models.  The proportion of very 372 

fine sand is highest in the bare lands; however, the prior based model for this particle size 373 
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fraction (P3), identified forests as the major sediment source (~20 to 50 %). A substantial 374 

contribution of forests to sediment yield has been reported by a few previous studies 375 

(Upadhayay et al., 2020).  376 

4.2  Validation of sediment source fingerprinting with  INVEST-SDR  377 

The INVEST-SDR outputs were used as an independent evaluation of the sediment 378 

fingerprinting estimates. Previous studies have evaluated source fingerprinting using 379 

physically-based modelling. A study by Palazón et al., (2016), for example, reported good 380 

consistency between sediment fingerprinting results and SWAT modelling. The accuracy of the 381 

five prior based Bayesian model in prioritizing the sub-catchments indicates that the annual 382 

sediment yields for the sub-catchments agree less with the SSI results compared to annual 383 

specific sediment yield. Similar, apportionment patterns were established in a study conducted 384 

by Hamel et al., (2015) which prioritized the sub-catchments based on soil erosion alone, rather 385 

than erosion and sediment delivery. The clay and slope priors based models performed better 386 

than the other models with an overall accuracy of >78% (Figure 1211). Previous studies on soil 387 

erosion have illustrated how catchment slope affects erosion patterns and the PSD of mobilised 388 

sediment particles (Lu et al., 2016; Vigiak et al., 2012; Wang & Shi, 2015). Further, some 389 

studies have reported how variable rainfall intensity and slope conditions have resulted in 390 

greater detachment of clay particles at the experimental scale (Kiani-Harchegani et al., 2018, 391 

2019; Sadeghi et al., 2017; Zhang et al., 2018).    392 

4.3 Limitations and future outlook 393 

There are a few limitations that must be borne in mind whilewhen interpreting the results of 394 

this study. Our ability to sample the reservoir for target sediment beyond two water years was 395 

limited by time, money, and accessibility issues, and continuous monitoring was restricted in 396 

2020-2021 due to COVID19 lockdowns. Even though, the results of the prior based sediment 397 

fingerprinting study performed well when compared to physical modelling, additional source 398 
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sampling campaigns (annual or seasonal) may have shown greater temporal variation in 399 

catchment sediment source contributions.  Since a single target sediment sampling location was 400 

deployed, the source fingerprinting estimates must be viewed as scale-dependent and 401 

longitudinal sampling along the stream network could be used to provide further insight into 402 

the sediment dynamics of the study catchment (Koiter et al., 2013).  The target sediment 403 

samples were not age dated (Fatahi et al., 2022) and may therefore reflect sediment sources 404 

over recent times rather than the present day alone. Despite the above aforementioned 405 

limitations, however, this novel research suggested that the prior based sediment fingerprinting 406 

procedure provides valuable information for understanding the spatial and temporal dynamics 407 

of fine sediment sources and delivery in the study catchment. Our study illustrates the benefits 408 

of combining sediment source fingerprinting with independent approaches such as physically-409 

based modelling. 410 

5 Conclusion 411 

. The major findings of this study are as follows: 412 

a) The geochemical fingerprints of the sources successfully discriminated between the 413 

surface soil samples collected from the land use classes of the Konar study catchment. 414 

The sensitivity of the Bayesian model predictions to priors based on particle size and 415 

slope was evaluated. The model comparisons suggested that agricultural and barren 416 

lands are the most important sediment sources. 417 

b) The performance of INVEST-SDR was satisfactory using the observed datasets from 418 

the Nagwan gauging station (R2=0.81 and RMSE = 6.85 tons/haHa/Year). The two sub-419 

catchment ranking scenarios using the outputs from INVEST-SDR showed 420 

disagreements in terms of the higher ranking sub-catchments. However, there were 421 

some similarities between the prioritization based on both ranking schemes.    422 
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c) Comparison between the two INVEST-SDR ranking schemes and the results of the SSI 423 

technique based on five prior based Bayesian models for prioritising the sub-424 

catchments was informative. The overall accuracy of the SSI method considering all 425 

the models with the first ranking scheme (i.e., annual sediment yield) varied from 25-426 

62%, whereas, based on the second scheme (i.e., annual specific sediment yield) it 427 

ranged between 68-82%. The performance of slope and clay prior based models 428 

performed best with > 78% accuracy. 429 
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Figures 

 

 

Figure 1. Information on the Konar study catchment characteristics: (a) location (b) land use (c) DEM (d) slope.  
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Figure 2 Land use classes of the catchment: (a) bare lands (b) Konar reservoir (c) forest (d) Human settlement (e) Agricultural fields undergoing 

terrace farming. 

 

 



 

 

Figure 3 Conceptualisation of soil erosion scenario for prior development: (a) erosion scenario at the beginning of rainfall. (b) erosion scenario 

after prolonged rainfall. (c) Sediment transportation scenario. 
 

 



 

 

Figure 4 Methodological framework for developing the SSI. 



 

 

 

 

Figure 5 Results of Discriminant Function Analysis on the geochemical tracers of the source samples collected from the land use classes in the 

Konar study catchment. 

 

 

 

 

 



 

 

 

 

Figure 6 Spatial variation of elemental proportion (%) of (a) Fe, (b) K, (c) Ti and (d) Ca among the soil samples collected from the study 

catchment   



 
Figure 7 Temporal variation in suspended sediment source contributions (with 95% confidence 

intervals) using multiple priors (P0, P1, P2, P3, and P4) in MixSIAR. a1, b1, c1 and d1 

represent the proportional contributions from agricultural lands, barren lands, forests and 

human settlements, respectively, in 2018-2019 (July, August, October, December, March and 

April).  a2, b2, c2 and d2 represent the proportional contribution from the land use classes in 

2021-2022. 

 

 

 



 

Figure 8 Spatial variation of the SSI calculated for the 47 sub-catchments in the Konar river 

basin. The SSI calculated using sediment fingerprinting results using multiple priors (i.e. P0, 

P1, P2, P3 and P4) for the period of 2018-2019 is shown in a1, b1, c1, d1, e1 and for 2021-2022 

in a2, b2, c2, d2, e2.  

** P0 represents the no prior condition of the Bayesian modeling study.   

 



 

Figure 9 Distribution of numbers of sub-catchments based on respective SSI classes for each 

prior based Bayesian source apportionment model outputs in the two sampling time frames: 

(a) 2018-2019, and (b) 2021-2022.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

Figure 10 INVEST-SDR model outputs for the Konar study catchment, depicting the spatial 

variability in: (a) the connectivity index; (b) the annual soil loss (tons/year); (c) the sediment 

delivery ratio; (d) the annual sediment export (tons/year); (e) ranking and prioritization of the 

sub-catchments based on annual sediment export, and; (f) ranking and prioritization of the sub-

catchments based on specific annual sediment yield. Note: the numbers on the sub-catchments 

(Figures e and f) represents their ranking based on the criteria.  

 

 

 



 

 

Figure 11 (a) Comparison between sub-catchment rankings based on annual sediment yield 

and annual specific sediment yield generated using the INVEST-SDR model. (b) Residuals of 

the ranking formats.  

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

Figure 12 Overall accuracy (%) of the multiple prior based sediment fingerprinting SSI 

results compared with the INVEST-SDR predictions using confusion matrices.   
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Supplementary Material



Period of sampling: 27th June – 1st August (2018)  

 Tools used: Trowel, Polythene ziplock bags 

Steps Explanation Sites Information Supportive 

references 

Site 

selection 

The sampling sites (n = 105) were 

selected on the basis of land use 

classes.  The sampling sites were 

selected randomly so that they 

should be able to represent the 

heterogeneity of land use across the 

watershed.  

Location 

Code 

Locations Land 

use 

classes 

present 

Geographical  

Coordinates 

Weather 

conditions 

during 

sampling  

(Bahadori et al., 

2019; Gaspar et 

al., 2019) 

1.1 Sultana Hs, A, 

Ba 

23 59 28/85 15 16 Cloudy 

1.2 Banadag FA 23 58 0/85 18 17 Cloudy 

1.3 Hazaribagh 

town 

FHs 23 58 33/85 15 48 Clear 

1.4 Panchsheel 

colony 

A 23 57 35/85 21 8 Clear 

Soil 

sample 

collection 

All the soil samples were collected in 

zipped bags using a metallic trowel 

which was washed after every use to 

avoid contamination. The samples 

were collected from a depth of 0-5 

cm. 

1.5 Chehla, 

churchu road 

F, Ba 23 55 49/85 25 25 Clear (Nosrati and 

Collins, 2019) 

1.6 Rehda/ dumar has 23 58 57/85 28 32 Clear 

1.7 Chalchalia F 23 55 18/85 31 29 Clear 

1.8 Mangarpatta FA, Ba 23 58 48/85 35 37 Clear 

2.1 Sulmi FHsA 24 4 56/85 19 12 Clear 

Composite 

Sampling 

To make the analyses more 

affordable, composite samples were 

collected. Each composite sample 

consisted of a mixture of four to five 

sub- samples collected in a radius 

of 50 to 100 meters. 

2.2 Jalima/bartua FHsA 24 2 14/85 18 25 Clear (Collins et al., 

2010b) 2.3 Moktama FA, Ba 24 4 33/85 29 19 Clear 

2.4 Vinod bhave 

university 

FHs 24 1 16/ 85 22 0  

2.5 Tepsa/saram FHsA 24 3 49/85 24 24 Clear 

2.6 Hazaribagh 

national park 

FF, Ba 24 0 58/85 24 10 Clear 

2.7 Barwa HsA 24 4 5/85 26 52 Clear 

Table T1 Sampling details for source and reservoir target suspended sediment samples Jharkhand 



Location Sediment sampling Information Supportive reference 

  

Dates of sampling Seasons 

Processing All source samples were oven dried 

for around 12 hours to remove the 

moisture content. Finally, after oven 

drying, the samples were passed 

through a 63μm sieve. The sieving 

undertaken to minimize contrasting 

grain sizes between the soil and 

target sediment samples. 

2.8 Pundri/bandua FF, Ba 24 1 51/85 29 16 Cloudy (Tiecher et al., 

2019) 3.1 Bakra 

khurd/jagra 

HsA 24 6 20/85 28 10 Cloudy 

3.2 Darha FHsA, 

Ba 

24 6 36/85 30 51 Clear 

3.3 Madhu kunj FA 24 3 49/85 30 42 Clear 

4.1 Khaira FHsA, 

Ba 

 24 5 6/85 33 42 Clear 

4.2 Basobar FA 24 1 44/85 32 54 Clear 

4.3 Hatwe FA, Ba 24 0 47/85 36 23 Clear 

5.1 Khamwa FHsA, 

Ba 

24 3 32/85 37 41 Clear 

5.2 Siju HsA 24 3 31/85 40 20 Clear 

5.3 Holang HsA, 

Ba 

24 1 26/85 38 29 Drizzle  

6.1 Kutse FA, Ba 23 54 48/85 34 40 Clear 

6.2 Hatwal F, Ba 23 56 32/85 35 55 Clear 

6.3 Alkhari khurd FHsA 23 58 34/85 43 11 Clear 

7.1 Belwara F 24 0 52/85 40 48 Rainy 

7.2 Hanuman 

temple near 

Belwara 

FA 23 59 13/85 40 44 Rainy 

7.3 Ambadih FA, Ba 23 57 36/85 38 47 Clear 

7.4 Gobindpur 

kalan 

HsA, 

Ba 

23 57 10/85 41 58 Rainy 

7.5 Karidih FHs, Ba 23 55 51/85 38 33 Clear 

7.6 Banda/bhitia F 23 54 13/85 36 49 Clear 



Inflow 

point of 

the 

reservoir.  

(Magha [23 

55 08/  

85 43 17]) 

July (2018) Monsoon All the target sediment samples were 

collected from a depth of 0-10 cm from the 

surface using High Density Polyethylene 

bottles. All bottle was washed prior to being 

used.   

EPA (operating procedure) for surface 

water sampling  

& 

(Wang et al., 2019) 

 

August (2018) Monsoon 

October (2018) Post 

monsoon 

December(2018) Post-

monsoon 

March (2019) Pre-

monsoon 

June (2019) Pre-

Monsoon 

July (2021) Monsoon 

August (2021) Monsoon 

October (2021) Post 

monsoon 

December(2021) Post-

monsoon 

March (2022) Pre-

monsoon 

June (2022) Pre-

Monsoon 

 

 

 

 

 

 

 

 

 

 

 

 



 

Soil samples collected from the land use classes 

Soil 

prope

rties 

(%)/ 
Land 

use 

details 

Agricultural lands Forests Barren lands Human settlements Sediment samples 

Mean 
Medi

an 
Min Max Mean 

Medi

an 
Min Max Mean 

Medi

an 
Min Max Mean 

Medi

an 
Min Max Mean 

Medi

an 
Min Max 

Fe 
52.44
52443 

53.87
07585 

36.77
66686 

61.80
31957 

53.79
37426 

55.25
59103 

35.83
10485 

64.09
76394 

48.41
43684 

49.73
03193 

34.50
08208 

65.19
53114 

65.57
76417 

51.57
65574 

35.78
16638 

67.61
56874 

59.59
36819 

46.87
01965 

32.51
6587 

61.44
57559 

K 
26.62

67432 

24.12

4644 

18.44

77141 

43.78

65306 

27.31

13833 

24.74

49489 

17.97

33773 

45.41

21056 

24.58

0245 

22.27

0454 

17.30

61156 

46.18

97879 

33.29

41347 

30.16

55046 

23.14

1998 

56.31

55106 

30.25

60449 

27.41

29023 

21.03

02907 

51.17

67202 

Ti 
8.226
15988 

8.072
92072 

5.550
15957 

14.20
70847 

8.437
67502 

8.280
4957 

5.407
45109 

14.73
45227 

7.593
90752 

7.452
44613 

5.206
69947 

14.98
68514 

10.28
60073 

10.09
43967 

6.962
4768 

18.27
22682 

9.347
40913 

9.173
28303 

6.327
15079 

16.60
49237 

Ca 
6.789

11047 

6.049

1585 

3.507

63235 

13.47

32246 

6.963

67547 

6.204

69749 

3.417

44235 

13.97

34181 

6.267

30792 

5.584

22774 

3.290

5698 

14.21

27129 

8.489

11774 

7.563

88028 

4.400

19941 

17.32

8423 

7.714

48575 

6.873

6762 

3.998

68121 

15.74

72044 

Zn 
1.394

53264 

1.022

23172 

1.002

3 

4.705

56781 

1.430

38956 

1.048

51585 

0.987

1 

4.880

26201 

1.287

35061 

0.943

66427 

0.749

15 

4.963

8365 

1.743

72649 

1.278

20065 

0.896

523 

6.052

00846 

1.584

61145 

1.161

56484 

1.002

58 

5.499

76269 

Mn 
1.218

50666 

1.111

0612 

0.638

72095 

2.113

10978 

1.249

83752 

1.139

62936 

0.622

29784 

2.191

55898 

1.124

85377 

1.025

66642 

0.599

19503 

2.229

08942 

1.523

62325 

1.389

27321 

0.801

2526 

2.717

75028 

1.384

59263 

1.262

50203 

0.728

1383 

2.469

75557 

Ba 
1.185

39249 

1.117

83569 

0.693

74696 

1.666

90676 

1.215

87189 

1.146

57804 

0.675

90899 

1.728

79067 

1.094

2847 

1.031

92024 

0.650

81587 

1.758

39621 

1.482

21721 

1.397

74406 

0.870

28076 

2.143

87173 

1.346

96489 

1.270

19991 

0.790

86764 

1.948

24343 

Zr 
0.995

39159 

0.967

56093 

0.411

07096 

2.145

17571 

1.020

9856 

0.992

43935 

0.400

5013 

2.224

81535 

0.918

88704 

0.893

19541 

0.385

63269 

2.262

91532 

1.244

6397 

1.209

84019 

0.515

67383 

2.758

99149 

1.131

06633 

1.099

44227 

0.468

61859 

2.507

23351 

Rb 
0.258

82955 

0.211

89495 

0.145

79645 

0.662

51757 

0.265

48471 

0.217

3433 

0.142

04766 

0.687

11353 

0.238

93624 

0.195

60897 

0.136

77414 

0.698

88035 

0.323

64101 

0.264

95388 

0.182

89644 

0.852

08886 

0.294

10876 

0.240

77684 

0.166

20714 

0.774

33575 

V 
0.179

36387 

0.159

22419 

0.020

08556 

0.719

01064 

0.183

97576 

0.163

31824 

0.019

56911 

0.745

70391 

0.165

57819 

0.146

98642 

0.018

84261 

0.758

47409 

0.224

27695 

0.199

09426 

0.025

19662 

0.924

74674 

0.203

81168 

0.180

92691 

0.022

89743 

0.840

3636 

Cr 
0.148

68678 

0.155

07829 

0.051

45774 

0.228

5192 

0.152

50989 

0.159

06574 

0.050

13464 

0.237

00297 

0.137

2589 

0.143

15917 

0.048

27339 

0.241

06165 

0.185

91826 

0.193

91022 

0.064

5519 

0.293

90717 

0.168

95322 

0.176

21591 

0.058

66154 

0.267

08814 

Sn 
0.150

69462 

0.153

35216 

0.104

83635 

0.185

3196 

0.154

56936 

0.157

29523 

0.102

14074 

0.192

19959 

0.139

11242 

0.141

5657 

0.098

34877 

0.195

49101 

0.188

42886 

0.191

75186 

0.131

51345 

0.238

34653 

0.171

23473 

0.174

2545 

0.119

51285 

0.216

59741 

Ni 
0.103

5817 

0.105

88205 

0.059

58265 

0.129

6483 

0.106

24504 

0.108

60454 

0.058

05063 

0.134

4615 

0.095

62054 

0.097

74409 

0.055

8955 

0.136

76415 

0.129

51877 

0.132

39513 

0.074

74431 

0.166

74558 

0.117

70018 

0.120

31408 

0.067

92389 

0.151

53004 

Sr 
0.094

78018 

0.093

75682 

0.008

49491 

0.142

0046 

0.097

21722 

0.096

16754 

0.008

27649 

0.147

27652 

0.087

4955 

0.086

55079 

0.007

96922 

0.149

79863 

0.118

51334 

0.117

23372 

0.010

65657 

0.182

63748 

0.107

69899 

0.106

53614 

0.009

68415 

0.165

97181 

Pb 
0.047

10794 

0.042

77717 

0.023

8035 

0.097

06644 

0.048

3192 

0.043

87708 

0.023

19145 

0.100

67003 

0.043

48728 

0.039

48937 

0.022

33047 

0.102

394 

0.058

90386 

0.053

48866 

0.029

86064 

0.124

84081 

0.053

52888 

0.048

60782 

0.027

13586 

0.113

44909 

Cu 
0.045
05262 

0.043
19631 

0.031
83113 

0.084
47427 

0.046
21103 

0.044
30699 

0.031
01267 

0.087
61037 

0.041
58993 

0.039
87629 

0.029
86132 

0.089
1107 

0.056
33389 

0.054
01275 

0.039
93101 

0.108
64555 

0.051
19342 

0.049
08409 

0.036
28731 

0.098
73164 

Ga 
0.021

46313 

0.020

66514 

0.013

68761 

0.043

44121 

0.022

015 

0.021

1965 

0.013

33567 

0.045

05397 

0.019

8135 

0.019

07685 

0.012

84058 

0.045

82552 

0.026

83755 

0.025

83974 

0.017

17062 

0.055

87138 

0.024

38862 

0.023

48186 

0.015

6038 

0.050

77312 

Sb 
0.041
3516 

0.042
38063 

0.002
57 

0.076
17307 

0.042
41485 

0.043
47034 

0.021
47 

0.079
00099 

0.038
17337 

0.039
12331 

0.025
871 

0.080
35388 

0.051
70612 

0.052
99283 

0.027
15 

0.097
96906 

0.046
98794 

0.048
15723 

0.015
736 

0.089
02938 

Table T2 Summary information on the geochemical properties of the source and target sediment samples  



Ag 
0.018

08107 

0.016

44419 

0.010

71677 

0.034

27788 

0.018

54598 

0.016

86701 

0.010

44122 

0.035

55045 

0.016

69139 

0.015

18031 

0.010

05359 

0.036

15925 

0.022

60861 

0.020

56184 

0.013

44381 

0.044

08608 

0.020

54558 

0.018

68557 

0.012

21706 

0.040

06322 

As 
0.007
01544 

0.007
70575 

0.004
32 

0.013
33029 

0.007
19583 

0.007
90389 

0.002
79 

0.013
82517 

0.006
47624 

0.007
1135 

0.001
596 

0.014
06193 

0.008
77212 

0.009
63529 

0.004
597 

0.017
14458 

0.007
97167 

0.008
75607 

0.004
15 

0.015
58014 

Br 
0.002

91026 

0.003

34191 

0.001

27 

0.011

40418 

0.002

98509 

0.003

42784 

0.001

87 

0.011

82756 

0.002

68658 

0.003

08506 

0.000

982 

0.012

03011 

0.003

639 

0.004

17873 

0.001

93 

0.014

66735 

0.003

30694 

0.003

79742 

0.001

058 

0.013

32895 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
Figure F1 FAO based soil map of the Konar River basin  

 

 

 

 

 

 

 

 

 

 



 
Figure F2 Distance factor for each sub-catchment used for developing the SSI 

 

 

 

 

 

 

 

 

 



 
Figure F3 INVEST-SDR model performance for sediment yield in the Konar river catchment 
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