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Abstract: The use of key performance indicators (KPIs) to assist on-farm decision 9 

making has long been seen as a promising strategy to improve operational efficiency 10 

of agriculture. The potential benefit of KPIs, however, is heavily dependent on the 11 

economic relevance of the metrics used, and an overabundance of ambiguously 12 

defined KPIs in the livestock industry has disincentivised many farmers to collect 13 

information beyond a minimum requirement. Using high-resolution sheep production 14 

data from the North Wyke Farm Platform, a system-scale grazing trial in southwest 15 

United Kingdom, this paper proposes a novel framework to quantify the information 16 

values of industry recommended KPIs, with the ultimate aim of compiling a list of 17 

variables to measure and not to measure. The results demonstrated a substantial 18 

financial benefit associated with a careful selection of metrics, with top-ranked 19 

variables exhibiting up to 3.5 times the information value of those randomly chosen. 20 

When individual metrics were used in isolation, ewe weight at lambing had the greatest 21 

ability to predict the subsequent lamb value at slaughter, surpassing all mid-season 22 

measures representing the lamb’s own performance. When information from multiple 23 

metrics was combined to inform on-farm decisions, the peak benefit was observed 24 

under four metrics, with inclusion of variables beyond this point shown to be 25 

detrimental to farm profitability regardless of the combination selected. The framework 26 

developed herein is readily extendable to other livestock species, and with minimal 27 

modifications to arable and mixed agriculture as well.  28 
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Introduction 29 

Against the backdrop of rapid population growth and economic development, 30 

worldwide demand for animal source foods (ASF) continues to increase1,2. ASF play 31 

an important role in human nutrition as a source of high-quality protein and essential 32 

micronutrients, both of which are biologically difficult and economically costly to obtain 33 

from plant source foods alone3–5. However, agricultural systems to produce ASF are 34 

generally associated with lower land use efficiency compared to alternative land use6, 35 

making their areal expansion neither economically feasible nor socially desirable7–9. 36 

Increased demand for ASF therefore can only acceptably be met through 37 

improvements in land use efficiency of existing livestock systems10–12, or by filling the 38 

‘yield gap’ between current production and the best potential production13. The 39 

presence of a substantial variability in production efficiency is widely recognised 40 

across the livestock industry14, even within systems operating under comparable 41 

climatic, biophysical and socioeconomic conditions15. Importantly, this is the case at 42 

both the farm scale16 and the animal scale17, with economic and environmental 43 

performances often positively correlated with one another regardless of the spatial 44 

resolution18,19. Thus, an effort to reduce the yield gap suffered by less efficient farm 45 

systems and less efficient animals are equally likely to enhance the industry’s 46 

capability for ASF provision. 47 

As a means of decision support to facilitate this transformation, two interrelated 48 

frameworks have primarily been adopted in the farm management literature: 49 

benchmarking and identification of key performance indicators (KPIs). Of the two, the 50 

concept of benchmarking centres on a comparison of an individual farm’s performance 51 

against an externally defined standard, normally derived from a survey of comparable 52 

enterprises20,21. As such, this approach provides farms with a way to assess how 53 
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efficiently their business is operating on a relative scale22. However, most 54 

benchmarking exercises take the form of whole business analysis based on aggregate 55 

measures rather than information arising from individual production processes, often 56 

resulting in output metrics that are not necessarily informative for day-to-day operation 57 

when used in isolation23. A 5-year study of pork enterprises in Iowa, US found that 58 

only 6% of sample farms were consistently ranked within the top-third in terms of 59 

profitability, while 67% were ranked in the bottom-third at least once24. This example 60 

demonstrates that an attempt to emulate exemplary on-farm practices from 61 

aggregated measures can be problematic, especially given that the method’s 62 

capability to identify the presence of an issue is not always accompanied by a 63 

solution25. 64 

KPIs, on the other hand, are generally defined as variables closely related to 65 

production inputs, production outputs or production efficiency, selected with a higher-66 

level goal of understanding the drivers behind an individual farm’s performance26. A 67 

study evaluating the Norwegian dairy sector employed a principal components 68 

analysis (PCA) to simultaneously identify financial and production factors contributing 69 

to gross margin, and then used this information to determine on-farm practices that 70 

should be promoted27. Another study in New Zealand quantified the level of resilience 71 

embedded into dairy farms through variables strongly associated with inter-farm 72 

variability, and from this information produced a list of target KPIs for low-performing 73 

farms to measure and thus improve28. In a study designed to determine KPIs for the 74 

income of Australian wool producers, the technical efficiency of farms was first 75 

estimated and then the data analysed through a PCA to identify production factors 76 

associated with maximum technical efficiency29. These farm-scale studies were 77 

explicitly designed to explore precision agriculture solutions for efficiency-related 78 
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issues currently present within each flock/herd, thereby ultimately increasing the 79 

overall competitiveness of the local livestock industry. 80 

The potential benefit of KPIs, however, is heavily dependent on the relevance of the 81 

variables to be used20,27,30. The number of livestock industry recommended KPIs has 82 

steadily increased since the agricultural intensification of the 1960s31, leading to a high 83 

level of duplication across a long list of variables32. This, in turn, has invited uncertainty 84 

around the exact purpose of KPI measurements, both in general and in particular to 85 

individual metrics, frequently resulting in a practically unconstructive message of 86 

‘measure as much as you can’ without due comprehension of scientific rationales. 87 

Critically, on-farm performance monitoring requires considerable cost, time and 88 

resources33 yet offers no guarantee of benefit22; thus, such ambiguity around the 89 

meaning of KPIs can easily disincentivise farmers to collect any production data at all. 90 

Using high-resolution sheep monitoring data from the North Wyke Farm Platform 91 

(NWFP), a system-scale grazing trial in Devon, UK34, this paper aims to develop a 92 

novel quantitative framework to evaluate the information value of various performance 93 

indicators on a livestock farm’s short-term economic performance. The UK sheep 94 

sector presents a unique and suitable case exemplar for the present study; despite its 95 

economic scale (£2.5 billion p.a.) and an extensive list of recommended KPIs made 96 

available to farmers32, it is known for an exceptionally low level of production 97 

performance monitoring35. In the past, this phenomenon has primarily been attributed 98 

to a heavy reliance on agricultural subsidy payments36, which reduces the need for in-99 

depth analysis of on-farm income and expenditures37. However, the sector is predicted 100 

to be one of the most severely affected by the UK’s withdrawal from the European 101 

Union, and therefore improvement in productivity is urgently needed38. 102 
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Our case study will adopt end-of-season variables of slaughter age (days required to 103 

reach the target weight) and realised carcass value as short-term animal-level 104 

measures of economic performance. These variables represent the cost and revenue 105 

of the enterprise, respectively, and are known to be driving factors of UK sheep farms’ 106 

profitability39–41. The information value of a mid-season variable, or a performance 107 

indicator, will then be quantified in relation to the strength of its association with end-108 

of-season measures and, based on this value, the relative usefulness of multiple 109 

indicators will be evaluated. The general framework has been designed to 110 

accommodate a wider range of performance indicators, for example at different spatial 111 

resolutions and from other livestock sectors, providing an evidence base to support 112 

farmers’ decisions on what to measure and what not to measure. 113 

Methods 114 

Use of experimental animals 115 

All animal data used in this study were collected as part of standard farming practices. 116 

As such, no part of this research was subject to the Animals (Scientific Procedures) 117 

Act 1986 or approval of an ethics committee. 118 

Definitions of terminology 119 

The aforementioned ambiguity about KPIs is likely to have stemmed, at least partially, 120 

from the fact that existing lists of variables indistinguishably include those that describe 121 

a farm’s enterprise structure, management strategies and performance, with no 122 

explicit recognition given to their interrelationships. To overcome this issue, variables 123 

commonly referred to as KPIs were first categorised into the following three groups 124 
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prior to the quantitative analysis. As will be discussed, each group has a specific role 125 

in the subsequent computational process to calculate the redefined KPI values. 126 

Predictors are defined as variables that do not directly represent the ultimate 127 

performance of the enterprise but are useful for its estimation. Akin to leading 128 

indicators in economics42, an example of a predictor is the eight week weight of lambs; 129 

it does not equate to any financial value at the time of measurement but is strongly 130 

(although imperfectly) associated with finishing age which, in turn, affects production 131 

cost. Predictors are generally most useful for informing short-term decisions for 132 

adaptive farm management, for instance whether to provide supplementary feed, as 133 

this information can be collected before production of the final output. 134 

Outcomes, on the other hand, are more directly linked to the ultimate performance of 135 

the enterprise, akin to lagging indicators in economics43. To continue the previous 136 

example, the finishing age of lambs can be seen as an outcome variable, as the causal 137 

relationship between this metric and profitability is almost certain. Unlike predictors, 138 

these variables are unhelpful for informing decisions about short-term changes, as the 139 

relevant information is collected after production is realised. They are, however, useful 140 

at long-term decision making across multiple seasons, as historic information in this 141 

form can be used to determine the optimal enterprise structure given the farm’s 142 

biophysical, financial and labour constraints. 143 

The final category, system descriptors, is composed of variables that are frequently 144 

referred to as KPIs but more closely represent long-term strategic decisions taken by 145 

farm managers themselves. Ewe to ram ratio, for example, is often considered a KPI 146 

but is almost always a direct result of a human choice. Akin to diagnostic measures in 147 

economics44, system descriptors affect operation of the farm through multiple 148 
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pathways and therefore likely have indirect impacts on its overall performance as well. 149 

However, they are of less importance as an indicator to assist adaptive decisions and 150 

should instead be seen as a set of constraints, or a rule of engagement, under which 151 

all other decisions are optimised in the short-term. 152 

Based on the above definitions, KPIs currently in common usage by the livestock 153 

industry have been reclassified in Table 1. As discussed, the analytical framework 154 

proposed in this study was designed to select variables of which measurements 155 

should be prioritised to support a farm’s short-term decisions. In line with this goal, 156 

only predictors will be considered as performance indicators henceforth, with the view 157 

to identify those with high information values as redefined ‘key’ performance indicators 158 

vis-à-vis conventional ‘KPIs’. The information values of predictors will be quantified in 159 

relation to their capability to predict outcomes under a given set of system descriptors. 160 

Case study of the UK sheep sector 161 

The case study was conducted at the NWFP in southwest UK (50º46’10”N, 3º54’05”W) 162 

over five grazing seasons between 2015 and 2019. The site has consistently high 163 

rainfall, characteristic of grassland regions of the UK, with a mean annual precipitation 164 

of 1030mm over a 35-year period from 1984 to 2019. The interquartile ranges for daily 165 

minimum and maximum temperatures over the same period were 3.6 to 10.4°C and 166 

9.8 to 17.4°C, respectively. The mean annual precipitation during the study period was 167 

952mm, whereas the interquartile ranges for daily minimum and maximum 168 

temperatures were 3.8 to 10.8°C and 10.2 to 17.9°C, respectively. 169 

The NWFP consists of three self-contained enterprises locally known as ‘farmlets’, 170 

each adopting a different pasture-based grazing system typical of those found in 171 

temperate lowland grasslands (permanent pasture, reseeded grass monoculture and 172 
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reseeded legume/grass mix)45. Sheep data collected for the present study 173 

encompassed all three farmlets, with the final dataset including 1364 lambs and their 174 

mother ewes (389 in total)46. The flock comprised Charollais rams and Suffolk x Mule 175 

ewes, producing an average of 2.01 lambs per year. Lambs were born indoors in 176 

March/April and turned out to pasture at 72 hours postpartum. Ewes were housed pre-177 

lambing and fed silage supplemented with concentrate feed; however once at pasture 178 

neither ewes nor lambs received any supplementary feed47. Ewes and lambs were 179 

initially placed on the same pasture and subsequently split into separate enclosures 180 

at weaning, which occurred at 90 days from the average lambing date. Lambs were 181 

screened for carcass quality (musculature and fat cover) upon reaching a target 182 

liveweight of ~40kg via manual handling at the loin, dock, rib and breast, with those 183 

deemed expertly to meet the standard industry criteria separated for slaughter. Across 184 

five seasons, lambs were finished at an average of 177 days. Post-slaughter, 185 

information on cold carcass weight, carcass quality and current carcass price were 186 

obtained from the abattoir. These data were combined to compute the realised carcass 187 

value for each lamb and, as discussed above, employed as an outcome variable 188 

alongside the slaughter age. 189 

In addition, 10 animal-level variables identified in Table 1 were collected as potential 190 

predictors. For lambs, liveweights were recorded at birth, four weeks, eight weeks and 191 

90 days (weaning). When the 4-week and 8-week measurements were not taken on 192 

the exact day, a linear adjustment was made to estimate the corresponding weight to 193 

ensure inter-animal comparability. For ewes, both bodyweight and body condition 194 

score (BCS) were measured at three key points during the production season, namely 195 

at lambing, weaning and tupping, with BCS graded manually48 by trained personnel. 196 



9 

Using this dataset, the gross information value of each predictor was defined by the 197 

potential benefit of employing adaptive management based on the said predictor 198 

value, as evaluated through the impact on the two outcome variables that are strongly 199 

associated with realised lamb sales and profit (defined above). Specifically, this 200 

information value was calculated in four stages (Figure 1). Firstly, all lambs in the 201 

dataset were ordered according to the predictor value, for example according to their 202 

birth weight. Secondly, these lambs were divided into three equal-sized groups 203 

according to their rankings, for example top third (high), middle third (med) and bottom 204 

third (low) groups according to their birth weight. Thirdly, the mean value for each 205 

outcome variable was obtained for each group, for example the average slaughter age 206 

of high, med and low groups. Finally, the difference in this mean value between the 207 

high and low groups was calculated and statistically compared via t-test. The gross 208 

information value thus derived represents the expected economic benefit of an animal 209 

‘upgrading’ from the low group to the high group according to each predictor, under 210 

the assumption that on-farm strategies exist to enable such manipulation. 211 

It is worthwhile noting that the gross information value is exclusive of costs associated 212 

with data collection. The decision to use a gross value for the baseline analysis was 213 

taken to make the results applicable to a wider spectrum of sheep farms, as substantial 214 

variation in geographical conditions, and therefore labour and equipment costs, exists 215 

within the UK sheep sector. In other words, the gross value is more independent from 216 

the effect of the study site, and thus more directly representative of physiological 217 

mechanisms governing sheep performance. Notwithstanding, the implications of 218 

considering the cost of data collection will also be briefly investigated in the Discussion 219 

section. 220 
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The analysis outlined above is designed to evaluate the gross information value for 221 

each of 10 predictors individually. However, as many predictors are correlated with 222 

each other (Supplementary Tables S1 & S2), the benefit of using multiple predictors 223 

is not directly cumulative. Furthermore, as these correlations cause multicollinearity, 224 

the relative contribution of each predictor variable to the outcome variable cannot be 225 

quantified through standard regression models. To overcome these challenges, a 226 

nonparametric procedure was devised to estimate the combined gross information 227 

value of multiple predictors on carcass value. 228 

Here, for each predefined number of predictors (1-10), the average ranks of individual 229 

lambs across multiple predictors were first calculated for all possible combinations of 230 

predictors. The number of mathematically possible combinations ranged from 1 (for 231 

10 predictors, 
10!

1!(10−1)!
) to 252 (for 5 predictors, 

10!

5!(10−5)!
). Using this average ranking, 232 

the information value of the relevant combination was then estimated in a similar 233 

manner as the single predictor case described above. This resulted in a paired list 234 

matching predictors used for ranking and their collective information value. Intuitively, 235 

the marginal value of a predictor when added to a set of other variables depends on 236 

the covariance structure across the two groups, with a stronger association generally 237 

leading to a lower benefit due to information redundancy. Thus, the current approach 238 

is conceptually analogous to model selection processes commonly employed to 239 

identify the best regression model, albeit tailored to the situation where most variables 240 

are correlated with one another. 241 

Finally, in order to appraise the sensitivity of the main findings to the definition of the 242 

high and low groups (top third and bottom third as evaluated by predictors), the entire 243 

procedure was repeated twice using alternative classification rules. In the first test the 244 
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high and low groups were defined as equal halves (top half and bottom half); in the 245 

second test, they were defined as equal quarters (top quarter and bottom quarter). 246 

All data analyses were conducted using R version 4.0.249. 247 

Results 248 

When slaughter age was used as the outcome variable, predictors directly linked to 249 

lamb weight had the highest information value. Weaning weight, 8-week weight and 250 

4-week weight showed an average value of 84.9, 75.2 and 64.4 days (to slaughter), 251 

respectively (Table 2). Using carcass value as the outcome, predictors linked to ewe 252 

weight and BCS were more valuable than those linked to lamb weight, with ewe weight 253 

and BCS at lambing valued at £3.34 and £2.69, respectively. The discrepancy 254 

between the most informative (ewe weight at lambing) and the least informative (ewe 255 

weight at weaning) predictors was £2.35, demonstrating a substantial financial benefit 256 

to the appropriate selection of metrics.  257 

Figure 2 shows the combined benefits of multiple predictors under the best, average 258 

and worst combinations when different numbers of metrics are used. The gap in 259 

information value between the best and worst combinations was found to be 260 

pronounced, up to £2.84 under two predictors. This difference gradually reduced as 261 

more predictors were added until all 10 predictors were included (thus there is only 262 

one ‘combination’). Large differences were also observed between the best and 263 

average combinations of predictors, suggesting that predictors which are chosen 264 

randomly have substantially less information value than those selected on evidence. 265 

Across all ‘best’ combinations (using 1-10 predictors), peak benefit of £3.61 was 266 

recorded under four predictors: ewe weight at lambing, ewe BCS at lambing, ewe BCS 267 
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at tupping and lamb weight at birth. The inclusion of additional metrics beyond this 268 

point reduced the gross economic benefit regardless of the combination selected. The 269 

predictors contributing to high value combinations are identified in Table 3a, with ewe 270 

weight and BCS at lambing both consistently featured in this list. Ewe weight and BCS 271 

at weaning, on the other hand, are consistently observed in the lowest ranked 272 

combinations, whether used individually or in combination with other predictors (Table 273 

3b). 274 

The results of sensitivity analysis suggested that the classification rule to define the 275 

high and low groups has a minimal impact on predictor rankings (Supplementary 276 

Tables S3 & S4). For the vast majority of cases, optimal combinations identified under 277 

the baseline method remained high-ranked under alternative rules (Supplementary 278 

Table S5), indicating that the findings reported above are not conditional on the inter-279 

animal distribution intrinsic to the current dataset. 280 

Discussion 281 

Importance of ewe measurements 282 

The above results indicated that the bodyweight and BCS of ewes have considerable 283 

economic importance as predictors of a farm’s performance. When ranked individually, 284 

the three most valuable predictors were associated with ewes rather than lambs 285 

(Table 2). The same tendency was also observed under composite rankings, where 286 

multiple predictors were combined to increase the overall information values (Table 287 

3). These findings suggest that the impact of ewe health extends beyond pre-weaning 288 

lamb growth and affects farm profitability through multiple pathways. Thus, if one is 289 

forced to make a choice due to practical constraints, recording of ewe data should be 290 

prioritised over lamb data on commercial farms. 291 
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Compared to the high information values of ewe weight/BCS at lambing, the predictive 292 

power of ewe weight/BCS at weaning, while still present, was found to be somewhat 293 

muted. It is well established that ewe condition at lambing is associated with 294 

subsequent lamb growth rates, as it represents the energy reserves available for 295 

meeting the metabolic needs of lactation50–52. Contrarily, the exact purpose of ewe 296 

condition measurements at weaning — whether this is recommended to gain insight 297 

on the lambs’ growth prospect or to identify the ewe’s nutritional demand prior to the 298 

next tupping — has been rather ambiguous in the KPI literature. The present results 299 

suggest that this metric does not predict the current season’s lamb performance as 300 

accurately as ewe BCS at lambing. This is potentially due to the large variation across 301 

ewes, even amongst a single breed, in the amount of body reserves mobilised to meet 302 

the energy demand for lactation53. 303 

Although ewe BCS at lambing appears to be most strongly linked to lamb growth and 304 

carcass value across all tested predictors, as stated this information is only meaningful 305 

if the cost of manipulating ewe BCS is outweighed by the subsequent economic 306 

benefit. Supplementing ewes with concentrate feeds during pregnancy is known to 307 

increase BCS at lambing54 and, in turn, improve lamb growth55; however, the benefit 308 

of using a high volume of concentrate feed for this purpose is unlikely to be large 309 

enough to justify the cost56 and can also invite a range of sustainability issues9. As an 310 

alternative strategy, a combined use of high-quality grass silage and concentrate feed, 311 

or deferred grazing post-lambing, is likely to be substantially more viable57,58. 312 

Beyond a single season, lambs from ewes in better conditions finish faster and leave 313 

the farm earlier in the season, allowing a lower stocking rate for autumn grazing. This 314 

pasture surplus can then be used to improve ewe fertility through improved nutrition 315 

pre-mating59 or as supplemental feed during pregnancy58, creating a positive feedback 316 
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loop across multiple seasons. A reduction in grazing pressure could also provide an 317 

environmental and ecological benefit, as grazing sheep at lower densities can increase 318 

the provision of ecosystem services, such as enhanced runoff water quality, plant 319 

productivity and carbon storage60. Alternatively, if less land area is required to produce 320 

a similar level of output through a shortened slaughter age, surplus land could be set 321 

aside for other purposes without compromising food security. Although much of the 322 

land used for sheep grazing in the world is marginal and often unsuitable for cultivation 323 

of human-edible crops6,61, afforestation of this surplus land would sequester carbon62 324 

and rewilding of this land would facilitate the restoration of both biodiversity and 325 

ecosystem processes63,64. Both of these approaches can mitigate the environmental 326 

impact of agriculture and at the same time increase farm resilience against future 327 

external shocks, especially in relation to the future potential of carbon credits to 328 

support agroecological farming65. 329 

Cost of recording information 330 

While our analyses demonstrated a positive gross economic benefit of recording 331 

information on the farm, gathering this information is seldom free of cost. On large 332 

commercial farms, labour cost is generally monetised. Even on traditional family farms 333 

where labour time is often not considered a tangible financial cost, labour saving can 334 

allow time to be devoted to other tasks and thus indirectly contributes to operational 335 

profitability66. As already discussed, sheep farms can take a wide variety of enterprise 336 

structures and, as such, care should be exercised to apply a particular cost 337 

assumption to draw general conclusions about the overall financial implications of on-338 

farm measurements. Nevertheless, to assess the value of information in a holistic 339 

manner, the costs of both labour time and any necessary equipment must be 340 

considered. 341 
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To investigate the potential impact of these burdens on the results reported above, an 342 

auxiliary analysis was conducted to estimate the net information value of each 343 

individual predictor with respect to the resultant carcass value. Three cost scenarios 344 

were considered based on financial information from the NWFP: (1) equipment is 345 

purchased solely for predictor measurements; (2) equipment is newly purchased but 346 

its cost is shared between seasonal operational measurements and predictor 347 

measurements; and (3) equipment already exists and therefore recording only incurs 348 

labour cost (Table 4). As expected, the absolute value of net benefit was highly 349 

sensitive to the cost assumption. However, the relative benefit between predictors 350 

remained unchanged, indicating that the priority ranking complied from the gross 351 

information value is robust to the cost assumption adopted (Table 5). 352 

When the third assumption was extended to composite rankings from multiple 353 

predictors, using six predictors or more resulted in a negative net information value 354 

(Figure 3). This finding is driven by the combination of cumulative labour cost required 355 

to carry out additional measurements and the relatively small incremental gross benefit 356 

of using this information, the latter of which stems from a flat shape of the original 357 

response curve (Figure 2). Between options with positive net information values, a 358 

single (non-composite) predictor (ewe weight at lambing) demonstrated the highest 359 

net value (£2.86), although the difference between this option and the best 360 

combination of two predictors (ewe weight and BCS at lambing, £2.45) was only 361 

marginal. 362 

Further research is required, however, to investigate the production environment 363 

under which the above result of ‘you only need a single metric’ is applicable. As a 364 

research farm, the NWFP benefits from a higher allowance for labour input than most 365 

commercial farms, making good agricultural practices more easily implementable. In 366 
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conjunction with a flock structure and management strategy which do not fluctuate 367 

between years, this contributes to a lower level of volatility in livestock productivity, 368 

and as a result less variation in ewe and lamb performance over time. The predictors 369 

used in this study therefore are likely to have a higher degree of correlation between 370 

them, which reduces the benefit of measuring additional predictors. Thus, on 371 

commercial farms that are less regimented and governed by managerial decisions 372 

more adaptive than prescriptive, the incremental benefit of using multiple predictors, 373 

thereby reducing statistical noise, may be more profound. 374 

Applicability in commercial settings 375 

The analytical framework developed in this study provides an objective means to 376 

estimate the financial benefit of animal-level performance predictors. Practically 377 

speaking, however, the proposed method requires a certain degree of variability in 378 

both predictor and outcome variables; homogeneous animals reared under a single 379 

system cannot be differentiated. As the dataset used here originates from a research 380 

farm composed of three distinct grassland systems (permanent pasture, reseeded 381 

grass monoculture and reseeded legume/grass mix: see the Methods section), the 382 

validity of the framework within a single enterprise — the environment more 383 

resembling ordinary commercial farms — is worth evaluating. As such, the quantitative 384 

analysis described above was repeated separately for the three farmlets. 385 

The results of this analysis were promising. For example, the most informative 386 

predictor for isolated use (ewe weight at lambing) was found to be worth £3.22, £3.26 387 

and £3.99 across three systems, largely comparable to the value estimated for the full 388 

dataset (£3.34, Table 2). The best predictor combination for composite use (ewe 389 

weight at lambing, ewe BCS at lambing, ewe BCS at tupping and lamb weight at birth) 390 
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were worth £3.52, £2.48 and £4.41, respectively, slightly fluctuated from the full 391 

dataset value (£3.49) but still all successfully (p < 0.05) differentiating the performance 392 

between the high and low groups as defined by predictor values. Given that the 393 

predictor variability within a single farming system is likely to be smaller on research 394 

farms than on commercial farms, the proposed method thus appears to be also 395 

suitable for data obtained outside an experimental environment. 396 

Within individual farming systems, one possible use of the proposed framework is to 397 

pool data from multiple enterprises and develop a revised list of industry-398 

recommended KPIs. As each KPI can now be accompanied by the potential economic 399 

value of the measurement, such a list may encourage more farmers to make an effort 400 

to obtain mid-season metrics to improve their production efficiency. Yet longer-term, 401 

the output from the current exercise should ideally become directly transformable to 402 

actionable benchmarks (trigger points) tailored for an individual farm. As a case in 403 

point, while our results clearly demonstrate the importance of maintaining ewe health 404 

during late pregnancy, this message on its own does not provide sufficient information 405 

to determine the exact timing at which interventions such as emergency 406 

supplementary feeding should be initiated. 407 

As a step towards converting KPIs into actionable benchmarks, the relationship 408 

between the two highest-value predictors (ewe weight and BCS at lambing) and the 409 

carcass value of lambs was further investigated (Supplementary Tables S6 & S7). 410 

Rather than defining the high and low groups at a pre-determined proportion (e.g. top 411 

third and bottom third), the entire flock was split into two groups at multiple threshold 412 

values — in an increment of 1 kg for weight and 0.25 points for BCS. The information 413 

value calculated under each threshold value represents the maximum cost of 414 
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intervention a farm would be willing to pay if animals in the low group are to be 415 

‘transferred’ to the high group. 416 

With ewe weight at lambing used as the predictor, the largest information value (£3.62) 417 

was observed when the threshold was set at 84 kg. However, the animals in the high 418 

group only accounted for 15% of the flock under this scenario, meaning that any 419 

‘intervention’ would have to be applied almost blanketly across the whole farm. In 420 

addition to the practical challenges associated with a managerial change at this scale, 421 

this strategy is unlikely to prove financially viable, as the cost of intervention would be 422 

prohibitively high and the likelihood of successful intervention disproportionally low 423 

when performance targets are as ambitious. Ewe BCS at lambing, on the other hand, 424 

showed a more balanced split and an achievable target under the maximum 425 

information value (£2.40, 51% in the high group when the threshold is set at the BCS 426 

score of 3.25), and thus may provide an attractive alternative to bodyweight in this 427 

context67. Needless to say, full optimisation of intervention strategies would require 428 

detailed information on how animals respond to different forms of intervention, which 429 

is beyond the scope of the present study. Nevertheless, the proposed framework has 430 

two interrelated but separate pathways to facilitate evidence-based livestock farming, 431 

one through generic lists of recommended KPIs and another through more tailored 432 

decision support for individual farm management. 433 

Implications for the UK sheep sector 434 

The results here demonstrated a high degree of variation in information value between 435 

different predictors, indicating that predictors selected through quantitative 436 

assessment are substantially more likely to have a positive impact on a farm’s 437 

profitability than those randomly or instinctively chosen. This information is particularly 438 
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pertinent to the UK sheep sector today, as the country’s withdrawal from the European 439 

Union is predicted to have a detrimental impact on farm income when European-style 440 

direct payments are phased out from 202168,69. Of all agricultural enterprises, sheep 441 

farms are predicted to be the worst affected, with some studies estimating that 70% of 442 

farms will be unprofitable once changes are in place38. Farms which are unable or 443 

unwilling to adapt to the new economic environment are likely to face bankruptcy, and 444 

many older farmers are expected to retire70. 445 

The direct payments are to be succeeded by environmental land management 446 

schemes, which aim to improve the provision of ‘public money for public goods’ 447 

through environmental enhancement71. As this financial ‘support’ will only be provided 448 

in exchange for tangible provision of ecosystem services, it may lead to further 449 

fragmentation of the already stratified sheep sector72. In particular, sheep farms based 450 

in hill and upland areas, who have historically been the most reliant on agricultural 451 

subsidies36, will likely be pushed towards environmental land stewardship and away 452 

from sheep production73,74, rendering the findings of this study potentially less 453 

relevant75,76. Lowland sheep farms have generally been more productive and relatively 454 

less reliant on support payments, although in order to remain so in the absence of hill 455 

and upland farms, which often provide them with breeding units72, these farms will also 456 

need to make substantial improvements in profitability. These changes are likely to 457 

resemble those undergone by sheep farms in New Zealand following their agricultural 458 

transition in the late 1980s, which resulted in an increase in average farm size, 459 

reduction in labour input, identification of enterprise components contributing least to 460 

farm income and, ultimately, improvement in productivity77–79. Judging by this 461 

example, enhanced profitability is unlikely to be made without a detailed and accurate 462 

understanding of production processes and their contributions to the overall 463 
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performance of the enterprise. The uptake of a more informed KPI decision support 464 

system, therefore, seems critical for UK sheep farms’ survival into the future. 465 

General discussion 466 

The above analysis of UK sheep farms has provided a case exemplar of how the value 467 

of information can be defined and subsequently used to select the most useful 468 

predictors, or ‘key’ performance indicators, of which measurements should be 469 

prioritised. As stated above, the proposed framework is directly extendable to other 470 

livestock species and possibly beyond. Nonetheless, to effectively tailor the developed 471 

methodology to different farming enterprises, appropriate predictors, outcomes and 472 

cost assumptions must all be carefully considered. 473 

For example, sheep in the UK are predominantly pasture-fed and undergo a yearly 474 

production cycle with a single crop of lambs that are valued according to their carcass 475 

weight and carcass quality80. Under this enterprise structure, the carcass value is 476 

arguably the most suitable outcome against which to assess the information value of 477 

predictors, as farm revenue is almost exclusively derived from this metric. However, 478 

for sectors operating under a less seasonal environment, for example indoor dairy and 479 

laying hen systems, outcome measures corresponding to the animal’s lifetime 480 

contribution to the enterprise may not be the most appropriate predictors, as they offer 481 

less opportunities for adaptive management81,82. In addition, the impact of 482 

measurement costs on the overall information value is likely to be smaller under these 483 

systems, especially if additional precision agriculture techniques are already in place 484 

to reduce labour requirements for information gathering83,84. Thus, the exact 485 

implementation process of the KPI selection framework will vary depending on the 486 

production system. Regardless, a holistic approach involving a wide range of factors 487 
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contributing to farm profitability will remain essential to ensure the optimal system-wide 488 

information value. 489 

Finally, while the role of animal-level KPIs in the improvement of overall farm efficiency 490 

has been clearly demonstrated in the present study, we acknowledge the complexity 491 

of livestock farming businesses beyond animal husbandry. Even the simplest form of 492 

farm enterprises face numerous non-livestock decisions on a daily basis85, to ensure, 493 

amongst others, soil health86, pasture growth87,88, and appropriate procurement and 494 

sales channels89. Each of these decisions can potentially be improved through 495 

additional information, of which collection and collation require labour time that 496 

competes against what is dedicated on animal husbandry. To this end, an extended 497 

framework to optimise the enterprise-wide information value of both livestock and non-498 

livestock measurements is currently being developed. 499 
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Table 1. Key performance indicators currently in common usage 

 

  

Indicator Predictor Outcome Descriptor Level applied Current justification

Birth weight X Lamb (Juengel et al., 2018)

Four-week weight X Lamb (Wright, 2015)

Eight-week weight X Lamb (Wright, 2015)

Weaning weight X Lamb (EBLEX, 2014a)

Average daily liveweight gain X Lamb (Gascoigne and Lovatt, 2015)

Slaughter age X Lamb (Kerr, 2000)

Carcase conformation X Lamb (Fisher and Heal, 2001)

Fat class X Lamb (Fisher and Heal, 2001)

Kill-out percentage X Lamb (Matthews and Ford, 2012)

Cold carcase weight X Lamb (Stanford et al., 1998)

Body condition score X Ewe (Kenyon et al., 2014)

Change in BCS X Ewe (Kenyon et al., 2014)

Weight X Ewe (Brown et al., 2015)

Weight change X Ewe (Brown et al., 2015)

% lambs failing to reach 85% target weight X Farm (Wright, 2018)

Ewe to Ram ratio X Farm (EBLEX, 2008)

Scanning percentage X Farm (Earle et al., 2016)

% empty ewes at scanning X Farm (EBLEX, 2008)

Lambing percentage X Farm (Morris, 2009)

Lambs alive after 48hrs X Farm (AHDB, 2015)

Lambs weaned X Farm (Bohan et al., 2018)

Lambs reared X Farm (AHDB, 2018)

Lamb losses from scanning to birth X Farm (EBLEX, 2014a)

90 day lamb weight per ewe to ram X Farm (AHDB, 2018)

Weight of lamb reared per ewe to ram X Farm (EBLEX, 2014b)

Percentage of empty ewes X Farm (EBLEX, 2008)

Ewe mortality X Farm (EBLEX, 2014b)

Percentage of ewes culled X Farm (EBLEX, 2008)

Flock replacement rate X Farm (EBLEX, 2014b)
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Table 2. Gross information values of individual predictors 

Darker shades indicate higher information values. 
Confidence intervals shown in parentheses. 
Significance codes: *** p < 0.001; ** p < 0.01; *p < 0.05 

 

  

Predictors

Birth weight -39.89 (-45.77, -34.02) *** £1.80 (0.83, 2.77) ***

Four-week weight -64.41 (-69.55, -59.26) *** £1.50 (0.52, 2.48) **

Eight-week weight -75.15 (-79.86, -70.45) *** £1.52 (0.53, 2.51) **

Weaning weight -84.87 (-89.27, -80.46) *** £2.20 (1.19, 3.22) ***

Ewe BCS at lamb -16.37 (-22.52, -10.23) *** £2.69 (1.74, 3.63) ***

Ewe BCS at wean -18.40 (-24.63, -12.17) *** £0.99 (0.03, 1.96) *

Ewe BCS at tupping 3.97 (-2.19, 10.14) £1.32 (0.37, 2.27) **

Ewe weight at lamb -17.44 (-23.83, -11.04) *** £3.34 (2.36, 4.31) ***

Ewe weight at wean -23.16 (-29.17, -17.14) *** £0.99 (0.05, 1.92) *

Ewe weight at tupping -9.72 (-15.98, -3.46) ** £2.28 (1.29, 3.26) ***

Gross benefit

Slaughter age (days) Carcass value
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Table 3. Predictors with highest and lowest values when used in combination with other predictors 
(a) metric combinations with highest benefit

1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd

Birth weight      ✓    ✓    ✓ ✓ ✓  ✓ ✓ ✓ ✓ ✓ ✓  ✓ ✓  

Four-week weight        ✓     ✓    ✓ ✓     ✓ ✓ ✓ ✓ ✓

Eight-week weight       ✓         ✓   ✓  ✓ ✓  ✓ ✓  ✓

Weaning weight     ✓       ✓ ✓ ✓ ✓  ✓  ✓ ✓ ✓ ✓ ✓ ✓  ✓ ✓

Ewe BCS at lambing  ✓  ✓     ✓ ✓ ✓ ✓ ✓  ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Ewe BCS at weaning                   ✓ ✓    ✓ ✓ ✓ ✓

Ewe BCS at tupping       ✓ ✓  ✓ ✓ ✓ ✓ ✓  ✓ ✓ ✓  ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Ewe weight at lambing ✓   ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Ewe weight at weaning                      ✓ ✓  ✓ ✓ ✓

Ewe weight at tupping   ✓      ✓  ✓   ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

(b) metric combinations with lowest benefit

1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd

Birth weight            ✓  ✓  ✓  ✓ ✓ ✓  ✓ ✓ ✓ ✓ ✓ ✓

Four-week weight         ✓ ✓   ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Eight-week weight     ✓  ✓   ✓ ✓ ✓ ✓ ✓  ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Weaning weight            ✓   ✓ ✓ ✓  ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Ewe BCS at lambing                   ✓   ✓   ✓  ✓

Ewe BCS at weaning  ✓  ✓  ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Ewe BCS at tupping   ✓   ✓  ✓   ✓  ✓  ✓  ✓ ✓  ✓ ✓ ✓ ✓  ✓ ✓ ✓

Ewe weight at lambing                       ✓ ✓  ✓ ✓

Ewe weight at weaning ✓   ✓ ✓  ✓ ✓ ✓ ✓ ✓  ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Ewe weight at tupping                     ✓   ✓ ✓ ✓  

Number of metrics used

Ranking of combination

Five Six Seven Eight NineOne Two Three Four

Ranking of combination

Number of metrics used

One Two Three Four Five Six Seven Eight Nine
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Table 4. Cost scenarios used to estimate net information values 

* Corrected for the average litter size (1.88). 
† Based on the following assumptions about capital costs and life cycles — SRS2 stick reader: £620.17 over 5 years. 
EziWeigh7i weighing head: £815.08 over 10 years. Border Software weigh crate: £2,724 over 10 years. Handling system: 
£5395 over 30 years. 
‡ Based on the following assumptions about labour requirements and wage rate — Weighing: 0.9 minutes per animal. BCS: 
1.05 minutes per animal. Wage rate: £20 per hour or 0.33p per minute (encompassing two workers). 

 

  

Scenario 1. Equipment is purchased solely for predictor measurements

Measurement Equipment cost per lamb Labour cost per lamb‡ Total  cost per lamb

Ewe weight* £1.37 £0.30 £0.89

Ewe BCS* £1.37 £0.35 £0.91

Lamb weight £0.82 £0.30 £1.12

Scenario 2. Equipment is newly purchased but its cost is shared with operational measurements (once a year)

Measurement Equipment cost per lamb


Labour cost per lamb
‡ Total  cost per lamb

Ewe weight* £0.51 £0.30 £0.43

Ewe BCS* £0.51 £0.35 £0.46

Lamb weight £0.41 £0.30 £0.71

Scenario 3. Equipment already exists and therefore recording only incurs labour cost

Measurement Equipment cost per lamb Labour cost per lamb‡ Total  cost per lamb

Ewe weight* - £0.30 £0.16

Ewe BCS* - £0.35 £0.19

Lamb weight - £0.30 £0.30
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Table 5. Net information values of individual predictors based on realised carcass value 

Darker shades indicate higher information values. 

 

  

Predictors Gross benefit

Scenario 1 Scenario 2 Scenario 3

Birth weight £1.80 -£1.57 -£0.33 £0.90

Four-week weight £1.50 -£1.86 -£0.63 £0.61

Eight-week weight £1.52 -£1.85 -£0.62 £0.62

Weaning weight £2.20 -£1.16 £0.07 £1.30

Ewe BCS at lamb £2.69 -£0.06 £1.31 £2.13

Ewe BCS at wean £0.99 -£1.75 -£0.39 £0.43

Ewe BCS at tupping £1.32 -£1.42 -£0.05 £0.77

Ewe weight at lamb £3.34 £0.67 £2.04 £2.86

Ewe weight at wean £0.99 -£1.68 -£0.31 £0.51

Ewe weight at tupping £2.28 -£0.39 £0.98 £1.80

Net benefit
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Figure 1. Proposed method to estimate the gross information value of a predictor. It is computed as 

the difference in end-of-season performance outcome (slaughter age in this example) between top 

(high) and bottom (low) groups, as defined mid-season according to the relevant predictor value 

(birth weight in this example). Top third and bottom third animals were allocated to ‘high’ and ‘low’ 

groups, respectively, for the baseline analysis. However, main results were insensitive to changes 

in how these two groups were defined. Produced by the authors using Microsoft PowerPoint. 
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Figure 2. Combined gross information value of multiple predictors. A considerable variability in information 

value is observed even when the same number of predictors is used, demonstrating the importance of 

selecting key performance indicators based on quantitative evidence. 
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Figure 3. Gross and net information values of multiple predictors. Due to the flat shape of the gross curve, 

the net value linearly decreases as additional measurement costs are incurred. 
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Table S1. Correlation matrix between performance predictors 

 

BW=lamb birth weight; A4W=adjusted lamb weight at four weeks; A8W=adjusted lamb weight at eight weeks; WW=lamb weight at weaning; BAL=ewe’s body 

condition score at lambing; BAW=ewe’s body condition score at weaning; BAT=ewe’s body condition score at tupping; WAL=ewe’s weight at lambing; 

WAW=ewe’s weight at weaning; WAT=ewe’s weight at tupping. 

 

  

BW A4W A8W WW BAL BAW BAT WAL WAW WAT

BW 1

A4W 0.696 1

A8W 0.599 0.880 1

WW 0.476 0.760 0.853 1

BAL 0.106 0.271 0.225 0.192 1

BAW 0.057 0.148 0.170 0.194 0.428 1

BAT -0.083 -0.123 -0.136 -0.080 0.189 0.252 1

WAL 0.196 0.306 0.251 0.242 0.589 0.247 0.017 1

WAW 0.151 0.193 0.176 0.249 0.317 0.594 0.137 0.639 1

WAT 0.125 0.143 0.112 0.125 0.247 0.180 0.219 0.689 0.641 1
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Table S2. P-values for correlations between performance predictors 

 

BW=lamb birth weight; A4W=adjusted lamb weight at four weeks; A8W=adjusted lamb weight at eight weeks; WW=lamb weight at weaning; BAL=ewe’s body 
condition score at lambing; BAW=ewe’s body condition score at weaning; BAT=ewe’s body condition score at tupping; WAL=ewe’s weight at lambing; 
WAW=ewe’s weight at weaning; WAT=ewe’s weight at tupping. 

All values have been adjusted for multiple tests using the Holm method. 

 

  

BW A4W A8W WW BAL BAW BAT WAL WAW WAT

BW 0

A4W <0.001 0

A8W <0.001 <0.001 0

WW <0.001 <0.001 <0.001 0

BAL <0.001 <0.001 <0.001 <0.001 0

BAW 0.073 <0.001 <0.001 <0.001 <0.001 0

BAT 0.009 <0.001 <0.001 0.010 <0.001 <0.001 0

WAL <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.528 0

WAW <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0

WAT <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0
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Table S3. Predictors with high and low information values when used in combination with other predictors 
— under the quartile rule (25%/50%/ 25%) to define top and bottom groups 
(a) metric combinations with highest benefit

1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd

Birth weight         ✓     ✓  ✓ ✓ ✓   ✓ ✓ ✓ ✓ ✓ ✓  

Four-week weight        ✓    ✓ ✓    ✓  ✓ ✓ ✓ ✓ ✓ ✓ ✓  ✓

Eight-week weight          ✓     ✓ ✓   ✓  ✓ ✓ ✓   ✓ ✓

Weaning weight     ✓ ✓ ✓  ✓  ✓  ✓  ✓ ✓   ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Ewe BCS at lambing   ✓ ✓  ✓ ✓ ✓  ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Ewe BCS at weaning                 ✓   ✓    ✓ ✓ ✓ ✓

Ewe BCS at tupping              ✓    ✓ ✓ ✓   ✓ ✓ ✓ ✓ ✓

Ewe weight at lambing ✓   ✓ ✓  ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Ewe weight at weaning                  ✓    ✓   ✓ ✓ ✓

Ewe weight at tupping  ✓        ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

(b) metric combinations with lowest benefit

1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd

Birth weight           ✓     ✓  ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Four-week weight      ✓  ✓ ✓ ✓   ✓ ✓ ✓ ✓ ✓  ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Eight-week weight      ✓    ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Weaning weight             ✓    ✓ ✓    ✓ ✓  ✓ ✓ ✓

Ewe BCS at lambing                    ✓ ✓ ✓ ✓ ✓ ✓ ✓  

Ewe BCS at weaning  ✓  ✓ ✓  ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Ewe BCS at tupping   ✓  ✓  ✓  ✓   ✓  ✓   ✓ ✓ ✓  ✓ ✓  ✓ ✓ ✓ ✓

Ewe weight at lambing                ✓        ✓ ✓  ✓

Ewe weight at weaning ✓   ✓   ✓ ✓  ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Ewe weight at tupping               ✓    ✓ ✓   ✓   ✓ ✓

Ranking of combination

Number of metrics used

One Two Three Four Five Six Seven Eight Nine

Ranking of combination

Number of metrics used

One Two Three NineFour Five Six Seven Eight



S5 

Table S4. Predictors with high and low information values when used in combination with other predictors 
— under the equal half rule (50%/ 50%) to define top and bottom groups 
(a) metric combinations with highest benefit

1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd

Birth weight     ✓   ✓    ✓ ✓ ✓  ✓  ✓ ✓  ✓ ✓ ✓ ✓ ✓ ✓ ✓

Four-week weight      ✓           ✓  ✓ ✓  ✓ ✓  ✓ ✓ ✓

Eight-week weight       ✓    ✓    ✓   ✓  ✓ ✓  ✓ ✓ ✓ ✓ ✓

Weaning weight   ✓       ✓   ✓ ✓  ✓ ✓  ✓ ✓ ✓ ✓  ✓ ✓ ✓ ✓

Ewe BCS at lambing ✓       ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Ewe BCS at weaning               ✓  ✓  ✓   ✓ ✓ ✓ ✓  ✓

Ewe BCS at tupping       ✓  ✓ ✓ ✓  ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Ewe weight at lambing  ✓  ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓  ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Ewe weight at weaning                          ✓ ✓

Ewe weight at tupping    ✓        ✓  ✓  ✓  ✓  ✓ ✓ ✓ ✓ ✓ ✓ ✓  

(b) metric combinations with lowest benefit

1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd

Birth weight              ✓ ✓ ✓  ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Four-week weight         ✓  ✓ ✓ ✓  ✓ ✓ ✓ ✓  ✓ ✓ ✓ ✓  ✓ ✓ ✓

Eight-week weight  ✓  ✓  ✓  ✓ ✓ ✓  ✓ ✓ ✓  ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Weaning weight       ✓   ✓ ✓  ✓  ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Ewe BCS at lambing                 ✓  ✓   ✓   ✓  ✓

Ewe BCS at weaning ✓   ✓ ✓  ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓  ✓ ✓  ✓ ✓ ✓ ✓ ✓ ✓

Ewe BCS at tupping                  ✓   ✓  ✓ ✓  ✓ ✓

Ewe weight at lambing                        ✓ ✓ ✓  

Ewe weight at weaning   ✓  ✓ ✓ ✓ ✓  ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Ewe weight at tupping              ✓     ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Ranking of combination

Number of metrics used

One Two Three Four Five Six Seven Eight Nine

Ranking of combination

Number of metrics used

One Two Three NineFour Five Six Seven Eight
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Table S5. Rankings of high-value and low-value predictor combinations under alternative definitions of top and bottom groups 

* Unique patterns available under each number of metrics 

 

  

(a) metric combinations with highest benefit under baseline analysis

Baseline (thirds) 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

Quarters 1 3 2 1 2 5 11 4 10 23 24 13 25 38 5 12 19 15 17 37 22 19 10 25 7 1 3

Halves 2 1 4 6 7 2 1 6 5 13 57 1 21 13 5 3 4 5 70 8 3 14 16 4 7 6 5

Combinations*

(b) metric combinations with lowest benefit under baseline analysis

Baseline (thirds) 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

Quarters 1 2 3 1 15 2 6 1 2 1 3 50 2 8 5 14 2 6 7 4 13 1 7 16 2 3 1

Halves 3 1 4 2 3 7 2 18 8 3 20 25 45 6 35 1 17 33 7 8 41 13 28 5 3 2 8

Combinations*

Six Seven Eight NineOne Two Three Four Five

Eight Nine

210 120 45 10

Three Four Five Six Seven

210 120 45 10

10 45 120

10 45 120 210 252

210 252

One Two
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Table S6. Actionable benchmarks determined by ewe’s weight at lambing 

  

Top group, >= 'X' kg Carcass value of top group Carcass value of bottom group Difference Proportion requiring intervention

86 £77.22 £73.98 £3.23 90%

85 £77.17 £73.90 £3.27 87%

84 £77.39 £73.77 £3.62 85%

83 £77.06 £73.76 £3.30 83%

82 £76.99 £73.69 £3.30 81%

81 £76.94 £73.58 £3.36 78%

80 £76.81 £73.52 £3.29 76%

79 £76.93 £73.35 £3.59 73%

78 £76.75 £73.31 £3.44 71%

77 £76.58 £73.25 £3.33 68%

76 £76.02 £73.35 £2.67 64%

75 £75.84 £73.32 £2.52 60%

74 £75.68 £73.31 £2.37 58%

73 £75.56 £73.18 £2.39 52%

72 £75.33 £73.19 £2.14 48%

71 £75.22 £73.17 £2.05 44%

70 £75.06 £73.22 £1.85 40%

69 £74.96 £73.05 £1.92 34%

68 £75.00 £72.72 £2.27 30%

67 £74.87 £72.74 £2.13 26%

66 £74.81 £72.55 £2.26 22%

65 £74.71 £72.59 £2.12 19%

64 £74.59 £72.84 £1.75 16%

63 £74.54 £72.82 £1.73 13%

62 £74.54 £72.54 £2.00 11%

61 £74.50 £72.44 £2.06 9%
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Table S7. Actionable benchmarks determined by ewe’s BCS at lambing 

 

Top group, >= 'X' BCS Carcass value of top group Carcass value of bottom group Difference Proportion requiring intervention

4 £76.11 £74.23 £1.88 95%

3.75 £76.42 £74.04 £2.37 88%

3.5 £75.77 £73.59 £2.18 67%

3.25 £75.53 £73.13 £2.40 51%

3 £74.69 £73.25 £1.44 26%

2.75 £74.59 £73.28 £1.31 21%

2.5 £74.35 £73.99 £0.36 10%

2.25 £74.29 £74.69 -£0.40 6%

2 £74.33 £72.07 £2.27 1%


