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The detection of wheat heads in plant images is an important task for estimating pertinent wheat traits including head population
density and head characteristics such as health, size, maturity stage, and the presence of awns. Several studies have developed
methods for wheat head detection from high-resolution RGB imagery based on machine learning algorithms. However, these
methods have generally been calibrated and validated on limited datasets. High variability in observational conditions, genotypic
differences, development stages, and head orientation makes wheat head detection a challenge for computer vision. Further,
possible blurring due to motion or wind and overlap between heads for dense populations make this task even more complex.
Through a joint international collaborative effort, we have built a large, diverse, and well-labelled dataset of wheat images, called
the Global Wheat Head Detection (GWHD) dataset. It contains 4700 high-resolution RGB images and 190000 labelled wheat
heads collected from several countries around the world at different growth stages with a wide range of genotypes. Guidelines
for image acquisition, associating minimum metadata to respect FAIR principles, and consistent head labelling methods are
proposed when developing new head detection datasets. The GWHD dataset is publicly available at http://www.global-wheat
.com/and aimed at developing and benchmarking methods for wheat head detection.
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1. Introduction

Wheat is the most cultivated cereal crop in the world, along
with rice and maize. Wheat breeding progress in the 1950s
was vital for food security of emerging countries when Nor-
man Borlaug developed semidwarf kinds of wheat and a com-
plementary agronomy system (the Doubly Green Revolution),
saving 300 million people from starvation [1]. However, after
increasing rapidly for decades, the rate of increase in wheat
yields has slowed down since the early 1990s [2, 3]. Tradi-
tional breeding still relies to a large degree on manual obser-
vation. Innovations that increase genetic gain may come
from genomic selection, new high-throughput phenotyping
techniques, or a combination of both [4–7]. These tech-
niques are essential to select important wheat traits linked
to yield potential, disease resistance, or adaptation to abiotic
stress. Even though high-throughput phenotypic data acqui-
sition is already a reality, developing efficient and robust
models to extract traits from raw data remains a significant
challenge. Among all traits, wheat head density (the number
of wheat heads per unit ground area) is a major yield com-
ponent and is still manually evaluated in breeding trials,
which is labour intensive and leads to measurement errors
of around 10% [8, 9]. Thus, developing image-based
methods to increase the throughput and accuracy of count-
ing wheat heads in the field is needed to help breeders
manipulate the balance between yield components (plant
number, head density, grains per head, grain weight) in their
breeding selections.

Thanks to increases in GPU performance and the emer-
gence of large-scale datasets [10, 11], deep learning has
become the state of the art approach for many computer
vision tasks, including object detection [12], instance seg-
mentation [13], semantic segmentation [14], and image
regression [15, 16]. Recently, several authors have proposed
deep learning methods tailored to image-based plant pheno-
typing [17–19]. Several methods have been proposed for
wheat head quantification from high-resolution RGB images.
In [8, 9], the authors demonstrated the potential to detect
wheat heads with a Faster-RCNN object detection network.
They estimated in [8] a relative counting error of around
10% for such methods when the image resolution is con-
trolled. In [20], the authors developed an encoder-decoder
CNNmodel for semantic segmentation of wheat heads which
outperformed traditional handcrafted computer vision tech-
niques. Gibbs et al. [21] developed a wheat head detection
and probabilistic tracking model to characterize the motion
of wheat plants grown in the field.

While previous studies have tested wheat head detection
methods on individual datasets, in practice, these deep learn-
ing models are difficult to scale to real-life phenotyping plat-
forms, since they are trained on limited datasets, with
expected difficulties when extrapolating to new situations
[8, 22, 23]. Most training datasets are limited in terms of
genotypes, geographic areas, and observational conditions.
Wheat head morphology may significantly differ between
genotypes with notable variation in head morphology,
including size, inclination, colour, and the presence of awns.
The appearance of heads and the background canopy also

change significantly from emergence to maturation due to
ripening and senescence [24]. Further, planting densities
and patterns vary globally across different cropping systems
and environments, and wheat heads often overlap and
occlude each other in fields with higher planting densities.

A common strategy for handling limited datasets is to
train a CNN model on a portion of a phenotyping trial field
and test it on the remaining portion of the field [25]. This
is a fundamental flaw of empirical approaches against causal
models: there is no theoretical guarantee that a CNNmodel is
robust on new acquisitions. In addition, a comparison
between methods from different authors requires large data-
sets. Unfortunately, such large and diverse phenotyping head
counting datasets do not exist today because they are mainly
acquired independently by single institutions, limiting the
number of genotypes, the environmental and the observa-
tional conditions used to train and test the models. Further,
because the labelling process is burdensome and tedious,
only a small fraction of the acquired images are processed.
Finally, labelling protocols may be different between institu-
tions, which will limit model performance when trained over
shared labelled datasets.

To fill the need for a large and diverse wheat head dataset
with consistent labelling, we developed the Global Wheat
Head Detection (GWHD) dataset that can be used to bench-
mark methods proposed in the computer vision community.
The GWHD dataset results from the harmonization of sev-
eral datasets coming from nine different institutions across
seven countries and three continents. This paper details the
data collection, the harmonization process across image
characteristics and labelling, and the organization of a wheat
head detection challenge. Finally, we discuss the issues raised
while generating the dataset and propose guidelines for
future contributors who wish to expand the GWHD dataset
with their labelled images.

2. Dataset Composition

2.1. Experiments. The labelled images comprising the
GWHD dataset come from datasets collected between 2016
and 2019 by nine institutions at ten different locations
(Table 1) covering genotypes from Europe, North America,
Australia, and Asia. These individual datasets are called
“sub-datasets.” They were acquired over experiments follow-
ing different growing practices, with row spacing varying
from 12.5 cm (ETHZ_1) to 30.5 cm (USask_1). The charac-
teristics of the experiments are presented in Table 1. They
include low sowing density (UQ_1, UTokyo_1, UTokyo_2),
normal sowing density (Arvalis_1, Arvalis_2, Arvalis_3,
INRAE_1, part of NAU_1), and high sowing density
(RRes_1, ETHZ_1, part of NAU_1). The GWHD dataset
covers a range of pedoclimatic conditions including very pro-
ductive context such as the loamy soil of the Picardy area in
France (Arvalis_3), silt-clay soil in mountainous conditions
like the Swiss Plateau (ETHZ_1), or Alpes de Haute Provence
(Arvalis_1, Arvalis_2). In the case of Arvalis_1, Arvalis_2,
UQ_1, and NAU_1, the experiments were designed to com-
pare irrigated and water-stressed environments.
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2.2. Image Acquisition. The GWHD dataset contains RGB
images captured with a wide range of ground-based pheno-
typing platforms and cameras (Table 2). The height of the
image acquisition ranges between 1.8m and 3m above the
ground. The camera focal length varies from 10 to 50mm
with a range of sensor sizes. The differences in camera setup
lead to a range of Ground Sampling Distance (GSD) ranging

from 0.10 to 0.62mm with the half field of view along the
image diagonal varying from 10° to 46°. Assuming that wheat
heads are 1.5 cm in diameter, the acquired GSDs are high
enough to detect heads and even awns visually. Although
all images were acquired at the nadir-viewing direction, some
geometric distortion may be observed for a few sub-datasets
due to the different lens characteristics of the cameras used.

Table 1: Characteristics of the experiments used to acquire images for GWHD dataset.

Sub-
dataset
name

Institution Country Lat (°)
Long
(°)

Year
No. of
dates

Targeted
stages

Row
spacing
(cm)

Sowing density
(seeds·m2)

No. of
genotypes

UTokyo_1
NARO &
UTokyo

Japan 36.0N 140.0 E 2018 3 Postflowering 15 186 66

UTokyo_2
NARO &
UTokyo

Japan 42.8N 143.0 E 2016 6 Flowering∗ 12.5 200 1

Arvalis_1 Arvalis France 43.7N 5.8 E 2017 3
Postflowering-

ripening
17.5 300 20

Arvalis_2 Arvalis France 43.7N 5.8 E 2019 1 Postflowering 17.5 300 20

Arvalis_3 Arvalis France 49.7N 3.0 E 2019 3
Postflowering-

ripening
17.5 300 4

INRAE_1 INRAE France 43.5N 1.5 E 2019 1 Postflowering 16 300 7

USask_1
University of
Saskatchewan

Canada 52.1N 106W 2019 1 n.a 30.5 250 16

RRes_1
Rothamsted
research

UK 51.8N 0.36W 2016 1 n.a n.a 350 6

ETHZ_1 ETHZ Switzerland 47.4N 8.6 E 2018 1 n.a 12.5 400 354

NAU_1
Nanjing Agric.
University

China 31.6N 119.4 E 2018 1 Flowering∗ 20 300 or 450 5

UQ_1 UQueensland Australia 27.5 S 152.3 E 2016 1
Flowering
-ripening

22 150 8

∗Images were checked carefully to ensure that heads have fully developed and flowered.

Table 2: Image characteristics of the sub-datasets comprising the GWHD dataset. All cameras looked vertically downward.

Sub-dataset
name

Vector Camera
Focal length

(mm)
Field of
view (°)∗

Shooting
mode

Image size
(pixels)

Distance to
ground (m)

GSD
(mm/px)

UTokyo_1 Cart
Canon PowerShot G9 X

mark II
10 38.15 Automatic 5472 × 3648 1.8 0.43

UTokyo_2 Handheld
Olympus μ850 & Sony

DSC-HX90V
7/4 45.5 Automatic

3264 × 2488 &
4608 × 3456 1.7 0.6

Arvalis_1 Handheld Sony alpha ILCE-6000 50 & 60 7.1 Automatic 6000 × 4000 2.9 0.10-0.16

Arvalis_2 Handheld Sony RX0 7.7 9.99 Automatic 800 × 800† 1.8 0.56

Arvalis_3 Handheld Sony RX0 7.7 9.99 Automatic 800 × 800† 1.8 0.56

INRAE_1 Handheld Sony RX0 7.7 9.99 Automatic 800 × 800† 1.8 0.56

USask_1 Minivehicle FLIR Chameleon3 USB3 16 19.8 Fixed 2448 × 2048 2 0.45

RRes_1 Gantry
Prosilica GT 3300 Allied

Vision
50 12.8 Automatic 3296 × 2472 3-3.5§

0.33-
0.385

ETHZ_1 Gantry Canon EOS 5D mark II 35 32.2 Fixed 5616 × 3744 3 0.55

NAU_1 Handheld Sony RX0 24 16.9 Automatic 4800 × 3200 2 0.21

UQ_1 Handheld Canon 550D 55 17.3 Automatic 5184 × 3456 2 0.2
∗The field of view is measured diagonally. The reported measure is the half-angle. †Original images were cropped, and a subimage of size 800 × 800 was
extracted from the central area. §The camera was positioned perpendicular to the ground and automatically adjusted to ensure a 2.2 m distance was
maintained between the camera and canopy.
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Datasets UTokyo_1 and ETHZ_1 are particularly affected by
this issue. Each institution acquired images from different
platforms, including handheld, cart, minivehicle, and gantry
systems. The diversity of camera sensors and acquisition con-
figurations resulted in a wide range of image properties,
which will assist in training deep learning models to better
generalize across different image acquisition conditions.

2.3. Data Harmonization. An important aspect of assembling
the GWHD dataset was harmonizing the various sub-
datasets (Figure 1). A manual inspection of images was first
conducted to ensure that they could be well interpreted.
Images acquired at too early of a growth stage were removed
when heads were not clearly visible (Figure 2(d)). Most of the
images were also acquired before the appearance of head
senescence since heads tend to overlap when the stems start
to bend at this stage.

Object scale, i.e., the size of the object in pixels, is an
important factor in the design of object detection methods
[8]. Object scale depends on the size (mm) of the object
and on the resolution of the image. Wheat head dimensions
may vary across genotypes and growth conditions, but are
generally around 1.5 cm in diameter and 10 cm in length.
The actual image resolution, at the level of wheat heads, var-
ied significantly between sub-datasets: the GSD varies by a
factor of 5 (Table 1) while the actual resolution at the head
level also depends on canopy height and the panoramic effect
of the camera. The panoramic effect will be much larger
when images were acquired too close to the canopy. Images
were therefore rescaled to keep more similar resolution at
the head level. Bilinear interpolation was used to up- or
downsample the original images. The scaling factor applied
to each sub-dataset is displayed in Table 3.

Most deep learning algorithms are trained with square-
sized image patches. When the original images were cropped

into square patches, the size of the patches was selected to
reduce the chance that heads would cross the edges of the
patches and be partly cut off. Images were therefore split
into 1024 × 1024 squared patches containing roughly 20
to 60 heads each, with only a few heads crossing the patch
edges. The number of patches per original image varied
from 1 to 6 depending on the sub-dataset (Table 3). These
squared patches will be termed “images” for the remainder
of the paper.

2.4. Labelling. A web-based labelling platform was developed
to handle the evaluation and labelling of the shared sub-
datasets using the coco annotator (https://github.com/
jsbroks/coco-annotator; [26]). The platform hosts all the
tools required to label objects. In addition, it also grants
simultaneous access to different users, thus allowing contri-
butions from all institutions. Wheat heads were interactively
labelled by drawing bounding boxes that contained all the
pixels of the head. Labelling is difficult if heads are not clearly
visible, i.e., if they are masked by leaves or other heads. We
did not label partly hidden heads unless at least one spikelet
was visible. This was mostly the case for images acquired at
an early stage when heads were not fully emerged. Overlap
among heads was more frequently observed when the images
were acquired using a camera with a wide field of view as in
UTokyo_2 or ETHZ_1. These overlaps occurred mainly
towards the borders of the images with a more oblique view
angle. When the bounding box was too large to include the
awns, it was restricted to the head only (Figure 2(a)). Further,
heads cropped at the image edges were labelled only if more
than 30% of their basal part was visible (Figure 2(e)).

Several institutions had already labelled their sub-
datasets. For the datasets not labelled, we used a “weakly
supervised deep learning framework” [27] to label images
efficiently for these sub-datasets. A YoloV3 model [28] was

Steps

1. Acquired images

2. Up- or down-
sampling of acquired

images

3. Selection of patches
for each subdatasets

4. Crop acquired
images to a set

of patches

Arvalis_1 Arvalis_2 RRes_1 UQ_1

Figure 1: Overview of the harmonization process conducted. Images were first rescaled using bilinear interpolation up- or downsampling
techniques. Then, the rescaled images were split into 1024 × 1024 squared patches.
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(a) (b) (c)

(d) (e) (f)

Figure 2: Examples of wheat heads difficult to label. These examples are zoomed-in views from images contained in the dataset, with different
zoom factors. It includes overlapping heads (a–c), heads at emergence (d), heads that are partly cut at the border of the image (e), and images
with a low illumination (f). Note that image (d) was removed from the dataset because of the ambiguity of heads at emergence. Wheat heads
in the image (e) were not labelled because less than 30% of their basal part is visible, as defined in Section 2.4.

Table 3: Statistics for each component of the Global Wheat Head Detection.

Sub-dataset
name

No. of acquired
images

No. of patch
per image

Original
GSD (mm)

Sampling
factor

Used GSD
(mm)

No. of labelled
images

No. of
labelled
heads

Average no. of
heads/images

UTokyo_1 994 1 0.43 1 0.43 994 29174 29

UTokyo_2 30 4 0.6 2 0.3 120 3263 27

Arvalis_1 239 6 0.23 0.5 0.46 1055∗ 45716 43

Arvalis_2 51 4 0.56 2 0.28 204 4179 20

Arvalis_3 152 4 0.56 2 0.28 608 16665 27

INRAE_1 44 4 0.56 2 0.28 176 3701 21

USask_1 100 2 0.45 1 0.45 200 5737 29

RRes_1 72 6 0.33 1 0.33 432 20236 47

ETHZ_1 375 2 0.55 1 0.55 747∗ 51489 69

NAU_1 20 1 0.21 1 0.21 20 1250 63

UQ_1 142 1 0.2 0.5 0.4 142 7035 50

Total 2219 — — — — 4698 188445 —
∗Some labelled images have been removed during the labelling process.
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trained over UTokyo_1 and Arvalis_1 sub-datasets and then
applied to the unlabelled sub-datasets. Boxes with an associ-
ated confidence score greater than and equal to 0.5 were
retained and proposed to the user for correction. This semi-
automatic active learning increased the throughput of the
labelling process by a factor of four as compared to a fully
manual process. The process is detailed in Figure S1.

This first labelling result was then reviewed by two indi-
viduals independent from the sub-datasets institution. When
large discrepancies between reviewers were observed, another
labelling and reviewing round was initiated. Approximately 20
individuals contributed to this labelling effort. This collabora-
tive process and repeated reviews ensure a high level of accu-
racy and consistency across the sub-datasets.

3. Description of the Dataset

3.1. General Statistics. The GWHD dataset represents 4698
squared patches extracted from the 2219 original high-
resolution RGB images acquired across the 11 sub-datasets
(Table 3). It represents 188445 labelled heads which average
40 heads per image in good agreement with the 20 to 60 tar-
geted heads per image. However, the distribution among and
within sub-datasets is relatively broad (Figure 3(a)). We
included about 100 images that contain no heads to represent
in-field capturing conditions and add difficulty for bench-
marking. Few images contain more than 100 heads with a
maximum of 120 heads. Multiple peaks corresponding to
the several sub-datasets (Figure 3(b)) can be observed due
mainly to variations in head density that depends on geno-
types and environmental conditions. The size of the bound-
ing boxes around the heads shows a slightly skewed
Gaussian distribution with a median typical dimension of
77 pixels (Figure 3(b)). The typical dimension is computed
as the square root of the area. It corresponds well to the tar-
geted scale, i.e., 1:5 cm × 10 cm approximate head size with
an average resolution close to 0.4mm/pixel which represents
a typical dimension of 97 pixels per head, although the simple

horizontal area projected does not correspond exactly to the
viewing geometry of the RGB cameras. The harmonization of
object scale across sub-datasets can be further confirmed
visually in Figure 4.

3.2. Diversity of Sampled Genotypes, Environments, and
Developmental Stages. The diversity of acquisition conditions
sampled by the GWHD dataset is well illustrated in Figure 4:
illumination conditions are variable, with a wide range of
heads and background appearance. Further, we observe var-
iability in head orientation and view directions, from an
almost nadir direction up to a mostly oblique direction as
in the case of ETHZ_1 (Figure 4). A selection of bounding
boxes extracted from the several sub-datasets (Figure 5)
shows a variation of bounding-box area and aspect ratio,
depending on the head orientation and viewing direction. A
large diversity of head appearance is observed, with variation
in the presence of awns and awn size, head colour, and blur-
riness. In addition, a few heads were cut off when the bound-
ing box crossed the edge of the image.

3.3. Comparison to Other Datasets. Several open-source data-
sets have already been proposed in the plant phenotyping
community. The CVPPP datasets [29] have been widely used
for rosette leaf counting and instance segmentation. The
KOMATSUNA dataset also includes segmented rosette
leaves, but in time-lapse videos [30]. The Nottingham ACID
Wheat dataset includes wheat head images captured in a con-
trolled environment with individual spikelets annotated [17].
However, comparatively few open-source datasets include
images from outdoor field contexts, which are critical for
the practical application of phenotyping in crop breeding
and farming. A few datasets have been published for weed
classification [31, 32]. The GrassClover dataset includes
images of forage fields and semantic segmentation labels for
grass, clover, and weed vegetation types [33]. Datasets for
counting sorghum [27, 34] and wheat heads [35] have also
been published with dot annotations.
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Figure 3: Distribution of the number of bounding boxes per image (a) and bounding boxes size∗ (b) in the GWHD dataset. ∗The bounding
box size is defined as the square root of the bounding box area in pixel.
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In terms of phenotyping datasets for object detection, our
GWHD dataset is currently the largest open labelled dataset
freely available for object detection for field plant phenotyp-
ing. MinneApple [36] is the only comparable dataset in terms
of diversity in the field of phenotyping but proposes fewer

images and less diversity in terms of location. Other datasets
like MS COCO [37] or Open Images V4 [38] are much larger
and sample many more object types for a wide range of other
applications. The corresponding images usually contain
fewer objects, typically less than ten per image (Figure 6).

UTokyo_1 UTokyo_2 Arvalis_1 Arvalis_2 INRAE_1

USask_1 RRes_1 ETHZ_1 NAU_1 UQ_1

Figure 4: Example of images from different acquisition sites after cropping and rescaling.

UQ_1

NAU_1

ETHZ_1

RRes_1

USask_1

INRAE_1

Arvalis_3

Arvalis_2

Arvalis_1

UTokyo_2

UTokyo_1

Figure 5: A selection of bounding boxes for each sub-dataset. The same size of pixels is used across all the bounding boxes displayed.
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However, some specific datasets like PUCPR [39], CARPK
[40], and SKU-110K [41] are tailored to the problem of
detecting objects (e.g., cars, products) in dense contexts. They
have a much higher object density than the GWHD dataset,
but with fewer images for PUCPR and CARPK, while SKU-
110 contains more images than our GWHD dataset
(Figure 6). The high occurrence of overlapping and occluded
objects is unique to the GWHD dataset. This makes labelling
and detection more challenging, especially compared to
SKU-110K, which does not seem to present any occlusion.
Finally, wheat heads are complex objects that have a wide
variability of appearance as demonstrated previously, sur-
rounded by a very diverse background which would consti-
tute a more difficult problem than detecting cars or densely
packed products on store shelves.

4. Target Use Case: Wheat Head
Detection Challenge

The main goal of the dataset is to contribute to solving the
challenging problem of wheat head detection from high-
resolution RGB images. An open machine learning competi-
tion will be held from May to August 2020 to benchmark
wheat head detection methods using the GWHD dataset for
training and testing (http://www.global-wheat.com/2020-
challenge/).

4.1. Split between Training and Testing Datasets. In machine
learning studies, it is common to randomly split a dataset
into training and testing samples. However, for the GWHD
competition, we specifically aim to test the performance of
the method for unseen genotypes, environments, and obser-
vational conditions. Therefore, we grouped all images from

Europe and North America as the training dataset, which
covers enough diversity to train a generic wheat head detec-
tion model. This training dataset corresponds to 3422
images representing 73% of the whole GWHD dataset
images. The test dataset includes all the images from Aus-
tralia, Japan, and China, representing 1276 images to eval-
uate model performance, including robustness against
unseen images.

4.2. Evaluation Metrics. The choice of bounding boxes as
labels in the GWHD dataset allows it to be used for object
detection. The mean average precision computed from the
true and false positives is usually used to quantify perfor-
mance in object detection tasks. A true positive corresponds
to a predicted bounding box with an intersection over union
(IoU) greater than and equal to 0.5 with the closest labelled
bounding box. A false positive corresponds to a predicted
bounding box with an IoU strictly lower than 0.5 with the
closest labelled bounding box. In the case of two predicted
boxes with an IoU greater than or equal to 0.5 on the same
bounding box, the most confident one is considered as a true
positive and the other as a false positive. The mean Average
Precision noted as mAP@0.5 is the considered metric for
evaluating the localization performance. Detection of indi-
vidual wheat heads is required for characterizing their size,
inclination, colour, or health. However, the number of wheat
heads per image is also a highly desired trait. Future compe-
titions using the GWHD dataset could focus on wheat
head counting with metrics such as the Root Mean Square
Error (RMSE), relative RMSE (rRMSE), and Coefficient of
Determination (R2) to quantify the performance of object
counting methods.

4.3. Baseline Method. To set a baseline detection accuracy for
the GWHD dataset, we provide results based on a standard
object detection method. We trained a two-stage detector,
Faster-RCNN [12], with a ResNet34 and ResNet50 as the
backbone. Faster-RCNN is one of the most popular object
detection models and used in Madec et al. [8]. ResNet34 is
used along with ResNet50 because it is less prone to overfit-
ting and faster to train. Due to memory constraints, the input
size was set to 512 × 512 pixels. We randomly sampled ten
patches of size 512 × 512 pixels for each image in the training
dataset resulting in a training dataset composed of 34220
patches. We predicted on a set of overlapping patches of size
512 × 512 pixels regularly extracted from the test images of
size 1024 × 1024 pixels and then merged the results. After
10 epochs, representing 342200 iterations in total, the best
model is obtained at epoch 3 for both backbones. It yielded
a mAP@0.5 of 0.77 and a mean RMSE of 12.63 wheat heads
per image which corresponds to rRMSE = 39%. The coeffi-
cient of regression is 0.57. All results are provided in
Figure S2. The relatively poor performance of a standard
object detection network on the GWHD dataset provides
an opportunity for substantial future improvement with
novel methods. The GWHD competition is expected to
instigate new wheat head detection approaches that will
provide more accurate results.
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Figure 6: Comparison of GWHD dataset with other object
detection datasets. Both axes are in log-scale.
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5. Discussion

5.1. Image Acquisition Recommendations. To successfully
detect wheat heads, they should be fully emerged and clearly
visible within the images, with minimum overlap among
heads and leaves. For some genotypes and environmental
conditions, we observed that the wheat stems tend to bend
for the latest grain filling stages, which increases the overlap
between heads. Conversely, for the stages between heading
and flowering, some heads are not yet fully emerged and
are therefore difficult to see. Therefore, we recommend
acquiring images immediately after flowering when the
wheat heads have fully emerged and are still upright in
the field.

For image acquisition, a near nadir viewing direction is
recommended to limit the overlap between heads, especially
in the case of populations with high head density. Likewise,
a narrow field of view is preferred. However, a narrow field
of view may result in a small image footprint when the cam-
era is positioned at a height close to the top of the canopy.
Therefore, we recommend increasing the camera height to
get a larger sampled area and reduce the number of heads
that will be cropped at the edge of the image. The size of
the sampled area is important when head identification is
used for estimating the head population density. The mini-
mum sampled area should be that of our squared patch, i.e.,
1024 × 1024 pixels of 0.4mm/pixel which corresponds to an
area of about 40 cm2. To achieve this sampled area, while
maintaining a narrow field of view of ±15°, the distance
between the camera and the top of the canopy should be

around 1.0m. However, a larger sampling area is preferable
for head population density estimation, where at least
100 cm2 should be sampled to account for possible heteroge-
neity across rows. This would be achieved with a 2.5m dis-
tance between the camera and the top of the canopy.

When estimating wheat head density, i.e., the number of
heads per unit ground area, accurate knowledge of the sam-
pled area is critical. The nonparallel geometry of image
acquisition, with significative “fisheye” lens distortion effects,
induces uncertainty about the sampled area. Even for our
typical case with limited distortion effects (±15° field of view),
for an image acquired at 2.5m from the top of the canopy, an
error of 10 cm in canopy height estimation induces 8% error
in the sampled area, which directly transfers to the head den-
sity measurement. Further, the definition of the reference
height at which to compute the sampled area is still an open
question, because within a population of wheat plants, the
heights of the heads can vary by more than 25 cm, which
induces a 21% difference in the sampled area between the
lowest and highest head. Further work should investigate this
important question.

Finally, our experience suggests that using a sub-
millimetre resolution at the top of the canopy is required
for efficient head detection. However, the optimal resolution
is yet to be defined. Previous work [8] recommended 0.3mm
GSD, while the GWHD dataset includes GSD ranging from
0.28 to 0.55mm. Further work should investigate this impor-
tant aspect of wheat imaging, particularly regarding the pos-
sibility to use UAV observations for head density estimation
in large wheat breeding experiments.

Table 4: The minimum metadata that should be associated with images of wheat heads.

Session level Image level

Experiment metadata

Name of the experiment (PUID)† Microplot id

Name of institution Row spacing

GPS coordinates (°) Sowing density

Email address of the contact person Name of the genotype (or any identifier)†

Date of the session (yyyymmdd)

Presence or not of awnsWheat species (durum, aestivum …)∗

Development stage/ripening stage∗

Acquisition metadata

Vector characteristics: Camera aperture

Name Shutter speed

Type (handheld, cart, phenomobile, gantry, UAV) ISO

Sampling procedure Distance from camera to canopy (m)‡

Distance to the ground (m)∗

Position of the image in the microplot§

Camera characteristics:

Model

Focal length of the lens (mm)

Size of the pixel at the sensor matrix (μm)

Sensor dimensions (pixels × pixels)
∗This may be alternatively reported at the image level if it is variable within a session. †Persistent unique identifier (PUID). This may be a DOI as for genetic
resources regulated under the on Plant Genetic Resources for Food and Agriculture (https://ssl.fao.org/glis) or any other identifier including the information of
the maintainer of the genetic material, ripening stage. ‡The distance between camera and canopy is an essential piece of information to harmonize dataset and
calculate the density and should be carefully monitored during an acquisition. §In case of multiple images over the same microplot.
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5.2. Minimum Information Associated with the Sub-datasets
and FAIR Principles. The FAIR principles (Findable, Accessi-
ble, Interoperable, and Reusable [42]) should be applied to
the images that populate the GWHD dataset. A minimum
set of metadata should be associated with each image as pro-
posed in [43] to verify the FAIR principles. The lack of meta-
data was an issue for precise data harmonization and is
limiting factor for further data interpretation [44] and possible
meta-analysis. Therefore, we recommend attaching a mini-
mum set of information to each image and sub-dataset. In
our case, a sub-dataset generally corresponds to an image
acquisition session, i.e., a series of images acquired over the
same experiment on the same date and with the same camera.
The experiment metadata are all the metadata related to agro-
nomic characteristics of the session; the acquisition metadata
are all themetadata related to the camera and acquisition vehi-
cle used. Both can be defined at the session level and the image
level. Our recommendations are summarized in Table 4. We
encourage attaching more metadata such as camera settings
(model, white balance correction, et al.) when possible because
it adds context for further data reuse.

5.3. Need for GWHD Expansion. The innovative and unique
aspect of the GWHD dataset is the significant number of
contributors from around the world, resulting in a large
diversity across images. However, the diversity within each
continent and environmental conditions is not well covered
by the current dataset: more than 68% of the images within
the GWHD dataset come from Europe and 43% from France.
Further, some regions are currently missing, including
Africa, Latin America, and the Middle East. As future work,
we hope to expand the GWHD dataset in order to get a more
comprehensive dataset. Therefore, we invite potential con-
tributors to complement the GWHD dataset with their sub-
datasets. The proposed guidelines for image acquisition and
the associated metadata should be followed to keep a high
level of consistency and respect the FAIR principles. We
encourage potential contributors to contact the correspond-
ing authors through http://www.global-wheat.com. We also
plan to extend the GWHD dataset in the future for classifica-
tion and segmentation tasks at the wheat head level, for
instance, the size of the wheat head or flowering state. This
expansion would require an update of the current labels.

6. Conclusion

Object detection methods for localizing and identifying
wheat heads in images are useful for estimating head density
in wheat populations. Head detection may also be considered
as a first step in the search for additional wheat traits, includ-
ing the spatial distribution between rows, the presence of
awns, size, inclination, colour, grain filling stage, and health.
These traits may prove useful for wheat breeders and some
may help farmers to better manage their crops.

In order to improve the accuracy and reliability of wheat
head detection and localization, we have assembled the
Global Wheat Head Detection dataset—an extensive and
diverse dataset of wheat head images. It is designed to
develop and benchmark head detection methods proposed

by the community. It represents a large collaborative interna-
tional effort. An important contribution gained through the
compilation of diverse sub-datasets was to propose guide-
lines for image acquisition, minimum metadata to respect
the FAIR principles and guidelines, and tools for labelling
wheat heads. We hope that these guidelines will enable prac-
titioners to expand the GWHD dataset in the future with
additional sub-datasets that represent even more genotypic
and environmental diversity. The GWHD dataset has been
proposed together with an open research competition to
find more accurate and robust methods for wheat head
detection across the wide range of wheat growing regions
around the world. The solutions proposed in the competi-
tion will be made open-source and shared with the plant
phenotyping community.
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