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Polyploidization has played an important role in plant evolution. However, upon 
polyploidization, the process of meiosis must adapt to ensure the proper segregation 
of increased numbers of chromosomes to produce balanced gametes. It has been 
suggested that meiotic gene (MG) duplicates return to a single copy following whole 
genome duplication to stabilize the polyploid genome. Therefore, upon the polyploidization 
of wheat, a hexaploid species with three related (homeologous) genomes, the stabilization 
process may have involved rapid changes in content and expression of MGs on 
homeologous chromosomes (homeologs). To examine this hypothesis, sets of candidate 
MGs were identified in wheat using co-expression network analysis and orthology 
informed approaches. In total, 130 RNA-Seq samples from a range of tissues including 
wheat meiotic anthers were used to define co-expressed modules of genes. Three 
modules were significantly correlated with meiotic tissue samples but not with other tissue 
types. These modules were enriched for GO terms related to cell cycle, DNA replication, 
and chromatin modification and contained orthologs of known MGs. Overall, 74.4% of 
genes within these meiosis-related modules had three homeologous copies which was 
similar to other tissue-related modules. Amongst wheat MGs identified by orthology, 
rather than co-expression, the majority (93.7%) were either retained in hexaploid wheat 
at the same number of copies (78.4%) or increased in copy number (15.3%) compared 
to ancestral wheat species. Furthermore, genes within meiosis-related modules showed 
more balanced expression levels between homeologs than genes in non-meiosis-related 
modules. Taken together, our results do not support extensive gene loss nor changes in 
homeolog expression of MGs upon wheat polyploidization. The construction of the MG 
co-expression network allowed identification of hub genes and provided key targets for 
future studies.
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INTRODUCTION

Meiosis is a specialized mode of cell division which generates 
haploid gametes. Prior to meiosis, chromosomes are replicated. 
On entry into meiosis, homologous chromosomes (homologs) 
locate each other and intimately align (synapse) along their 
length. Within this paired structure, chromosomes recombine 
and crossover before being accurately segregated (Kleckner, 1996; 
Mercier et al., 2015; Zickler and Kleckner, 2015). This complex 
and dynamic process is essential to maintain genome stability 
and integrity over sexual life cycles and to generate genome 
variation, which is a major evolutionary driving force (Capilla 
et al., 2016; Melamed-Bessudo et al., 2016). The genetic variation 
created by meiotic recombination underpins plant breeding to 
improve crop species (Wijnker and de Jong, 2008; Choi, 2017; 
Fernandes et al., 2018). Polyploidization has played an important 
role in the evolution and speciation of flowering plants (Comai, 
2005; Alix et al., 2017), although the resultant multiplicity of 
related genomes poses a major challenge for the meiotic process. 
Segregation of the chromosomes to produce balanced gametes 
requires correct pairing, synapsis, and recombination between 
only true homologs, rather than any of the other highly related 
chromosomes (homeologs) (Ramsey and Schemske, 2002; 
Comai, 2005; Stenberg and Saura, 2013).

In the last two decades, there have been significant advances in 
our understanding of plant meiosis. Since the isolation of the first 
meiosis-specific cDNA from lily in the mid-1990s (Kobayashi 
et al., 1993; Kobayashi et al., 1994), more than 110 plant meiotic 
genes (MGs) have been identified, mainly from studies of the 
model diploid plants Arabidopsis and rice (Mercier and Grelon, 
2008; Luo et al., 2014; Mercier et al., 2015). Although 25–30% 
of flowering plants are extant polyploids (Alix et al., 2017), the 
meiotic mechanisms responsible for their stabilization remain 
poorly understood. An exception is hexaploid wheat (Triticum 
aestivum L.), where there is now better understanding of these 
processes (Blary and Jenczewski, 2019). Despite possessing 
multiple related genomes, durum wheat, a tetraploid (AABB), 
and bread wheat, a hexaploid (AABBDD) behave as diploids 
during meiosis. Thus, most of the meiotic studies conducted in 
hexaploid wheat have focused on providing better understanding 
of the meiotic processes required to stabilize this polyploid 
species (Riley and Chapman, 1958; Riley, 1960; Holm, 1986; 
Martinez-Perez et al., 2000; Martinez-Perez et al., 2003). An 
emphasis has been to characterize the role of the Ph1 locus in 
the suppression of recombination between homeologs (Riley 
et al., 1968; Holm, 1988; Holm and Wang, 1988; Feldman, 1993; 
Aragon-Alcaide et al., 1997; Martinez-Perez et al., 2001; Prieto 
et al., 2004; Colas et al., 2008; Martín et al., 2017). Recent studies 
have defined this phenotype to a ZIP4 gene which duplicated 
and diverged on polyploidization (Martín et al., 2017; Rey et al., 
2017; Martín et al., 2018; Rey et al., 2018). This event resulted 
in the suppression of homeologous crossover, and promotion of 
homologous synapsis.

Although all flowering plants have undergone at least one 
event of whole genome duplication during their evolutionary 
history (Jiao et al., 2011), it has been suggested that MG duplicates 
return to a single copy following whole genome duplication, 

more rapidly than the genome-wide average (Lloyd et al., 2014). 
Therefore, it has been assumed that the stabilization process upon 
the polyploidization of wheat also involved rapid changes in the 
content and expression of the genes on homeologs. This process 
would facilitate the correct pairing and synapsis of homeologs 
during meiosis. The recent development of an expression atlas 
for hexaploid wheat revealed that 70% of homeologous genes in 
syntenic triads showed balanced expression (Ramírez-González 
et al., 2018); however, this study did not include analysis of the 
genes expressed during meiosis.

Here, we assessed whether the level of expression of all genes 
in triads was balanced between homeologs during meiosis. 
Analysis indicated similar balanced expression to that observed 
in other wheat tissues. However, it could be argued that only 
meiotic specific genes might show differential expression 
between homeologs. Sets of candidate MGs were identified 
using co-expression network analysis and orthology informed 
approaches, allowing us to evaluate the effect of polyploidization 
on wheat MG copy number and expression. The combination of 
co-expression network analysis, in conjunction with orthologue 
information, will now contribute to the discovery of new MGs 
and greatly empower reverse genetics approaches (such as wheat 
TILLING and CRISPR) that can be used to validate the function 
of the identified candidate genes in wheat.

RESULTS AND DISCUSSION

An initial assessment of the homeolog expression pattern in 
triads during meiosis in hexaploid wheat was undertaken. 
Relative expression abundance of 19,801 triads (59,403 genes) 
was calculated for 8 tissues, including meiotic anther tissue, 
according to published criteria (Ramírez-González et al., 2018). 
This analysis revealed that the percentage of balanced triads was 
slightly higher in meiotic anther tissue (77.3%) than in other 
type of tissues (ranging from 67.3% in floral organs and 76.6% in 
leaves) (Figure S1). The copy number of genes expressed during 
meiosis was also investigated. This involved the definition of 
19,801 triads (59,403 genes), 7,565 duplets (15,130 genes), 15,109 
monads (single-copy genes), and 18,250 genes from the “others” 
group with various copy numbers, based on the Ensembl Plants 
database for the high confidence (HC) genes of hexaploid wheat 
(International Wheat Genome Sequencing Consortium, 2018) 
(IWGSC v1.1 gene annotation; Table S1). Comparison of copy 
number of genes expressed in the eight different tissues showed 
that 70.9% of the genes expressed during meiosis belonged to 
triads. This percentage ranged between 66.5 and 72.5% for the 
genes expressed in floral organs and stem tissues, respectively 
(Figure S2). The overall results were consistent with a previous 
study, which analyzed a range of tissues, but not meiotic anther 
tissue, and reported significant balanced expression between 
homeologous genes in these tissues (Ramírez-González et al., 
2018). However, our analysis revealed a slightly higher percentage 
of balanced triads in meiotic anther tissue than in other types of 
tissues. These observations did not support the hypothesis that 
stabilization of polyploidization in wheat involved significant 
changes in gene content and expression between homeologs 
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(Freeling, 2009; Lloyd et al., 2014; Edger et al., 2017). Considering 
that not all genes expressed in meiotic anther tissue are directly 
involved in the meiosis process, it is possible that meiotic specific 
genes exhibit a different pattern. Therefore, a co-expression 
gene network was developed to compare the expression pattern 
of homeologous genes in meiosis-related modules, which 
potentially represent meiosis specific genes, and other tissue-
related modules.

Weighted Co-Expression  
Network Construction
Network-based approaches have been proved useful in systems 
biology, to mine gene function from high-throughput gene 
expression data. Gene co-expression analysis has become a 
powerful tool to build transcriptional networks of genes involved 
in common biological events in plants (Usadel et al., 2009; 
He and Maslov, 2016; Krishnan et al., 2017; Ma et al., 2018; Yu 
et al., 2018; Liu et al., 2019). The use of co-expression networks 
has uncovered candidate genes to regulate biological processes 
in many plants including wheat (International Wheat Genome 
Sequencing Consortium, 2018), rice (Aya et al., 2011; Tan et al., 
2017), and Arabidopsis thaliana (Costa et al., 2015; Silva et al., 
2016). The recently published high-quality genome reference 
sequence (International Wheat Genome Sequencing Consortium, 
2018) and a developmental gene expression atlas (Borrill et al., 
2016; Ramírez-González et al., 2018), together with the gene 
expression data collected from meiotic samples, were used to build 
a co-expression gene network. One hundred and thirty samples 
from different tissue types were included in this co-expression 
analysis (Table S2; Figure 1A). A set of 60,379 genes out of the 
total 107,892 HC genes was considered expressed during meiosis 
[transcript per million (TPM) > 0.5 in at least one meiosis sample 
(biological replicate)] and used to run the co-expression analysis. 
Using the “WGCNA” package in R (Langfelder and Horvath, 2008; 
Langfelder and Horvath, 2012), genes with similar expression 
patterns were grouped into modules via the average linkage 
hierarchical clustering of normalized count expression values 
(Figure 1E). The power of β = 7 (scale free topology R2 = 0.91) 
was selected as the soft threshold power to emphasize strong 
correlations between genes and penalize weak correlations to 
ensure a scale-free network (Figures 1B, C). Based on this analysis, 
50,387 out of 60,379 genes (83.5% of expressed genes) could be 
assigned to 66 modules. Module size ranged from 52 to 7,541 genes 
(mean 763 genes; median 429 genes) (Figure 1D). The expression 
patterns of all genes within a single module were summarized into 
a module eigengene (ME; representative gene of the module) to 
minimize data size for subsequent analyses. Expression patterns of 
modules are shown as a heatmap by plotting ME values in relation 
to tissue samples (Figure 2).

Identification of Meiosis-Related Modules
A correlation analysis was conducted using the 66 MEs and the 
8 different tissue types. A module was considered as meiosis-
related when there was a strong correlation (r) with the 17 
meiosis samples, and a weak or negative correlation with other 
tissue types. Accordingly, three meiosis-related modules were 

identified: module 2 (containing 4,940 genes), module 28 (544 
genes), and module 41 (313 genes). Module 41 showed the 
strongest correlation with meiotic tissue (r = 0.73, FDR = 2.7 x 
10−20), compared to module 2 (r = 0.61, FDR = 9.2 x 10−13) and 
module 28 (r = 0.52, FDR = 2.1 x 10−8) (Figure 3).

Two other modules (modules 11 and 25) also showed 
significantly positive correlation with meiotic samples (r = 
0.68 and 0.65, respectively); however, they were not considered 
meiosis-related because they also correlated with samples from 
floral organs (at stages other than meiosis) and spike tissues, as 
shown in Figure 3. Therefore, our analysis focused on the three 
modules (2, 28, and 41), exhibiting a strong correlation with 
meiotic tissues and not with other floral organs, while modules 
11 and 25 were considered as non-meiosis specific modules 
(referred to in this paper as non-meiotic modules). Other tissue-
related modules (the top three correlated modules) were also 
identified to be used as controls for the meiosis-related modules 
in the subsequent analysis. These modules were grain-related 
modules 5, 13, and 32 (r = 0.89, 0.89, and 0.85, respectively); 
leaves-related modules 1, 45, and 60 (r = 0.72, 0.68, and 0.71, 
respectively); and roots-related modules 7, 9, and 64 (r = 0.70, 
0.76, and 0.85, respectively) (Figure S3).

Biological Significance of Expression 
Similarity in Modules
Several approaches were undertaken to validate the meiosis-related 
modules. The three modules (2, 28, and 41), strongly correlated 
with meiotic tissue expression, were found to be significantly 
enriched with the gene ontology (GO) slim terms “cell cycle,” 
“DNA metabolic process,” “nucleobase-containing compound 
metabolic process,” and “nucleus” (Figure 4). Among the top five 
enriched GO slim terms in each of the 66 modules, the term “cell 
cycle” was significant only in the three meiosis-related modules, 
suggesting this was not a general property of all modules and was 
instead specific to the meiosis modules. Module 2 in particular was 
significantly enriched with GO terms related to many biological 
processes occurring during meiosis such as “DNA replication,” 
“histone methylation,” “cytokinesis,” “nucleosome assembly,” and 
“chromatin silencing” (Table 1; Table S3). The term “double-strand 
break repair via homologous recombination,” an important process 
during meiosis, was the primary enriched Biological Processes 
GO term in module 41 (FDR < 0.05). The biological processes 
mediated by genes in module 28 included “protein deneddylation,” 
“positive regulation of G2/M transition of mitotic cell cycle,” “COP9 
signalosome,” and other terms related to protein deneddylation and 
cell cycle control (Table 1). GO terms of meiosis-related modules 
were compared with those of modules highly correlated with other 
tissues. The GO terms “chloroplast,” “plastids,” “thylakoid,” and 
“photosystem” were significantly enriched in module 1, the most 
highly correlated module with leaves. The terms related to protein 
ubiquitination and protein binding were enriched in module 5 (the 
most highly correlated module with grain), while the terms “lignin 
biosynthetic process,” “phenylpropanoid metabolic process,” and 
“response to wounding” were enriched in module 7, the largest 
module correlated with roots (Figure S4). This indicated that our 
co-expression module-tissue correlation was meaningful both from 
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FIGURE 1 | The weighted gene co-expression networks analysis (WGCNA). (A) Clustering dendrogram of 130 samples from different types of tissues. The sample 
clustering was based on the expression data of the genes expressed during meiosis. (B) Analysis of the scale-free fit index for various soft-thresholding powers 
(β). A scale-free network is a network with the property that the number of connections k originating from a given node exhibits a power law distribution P (k) ~ k−ɤ 
(where 2 < ɤ < 3). The red line indicates the scale-free topology fit index (of 0.9) for which the network obeys scale free network property. The soft power threshold 
used in constructing the weighted gene co-expression networks was chosen as the first power to exceed the red line (then β = 7). (C) Analysis of the mean 
connectivity for various soft-thresholding powers. (D) Number of genes in the modules with their frequency. (E) Dendrogram of the analyzed genes (60,379 genes) 
clustered based on a dissimilarity measure of topological overlap matrices (1-TOM). Blockwise dendrogram was obtained using average linkage hierarchical 
clustering with maximum block size of 46,000 genes. Modules were identified using height cut off equal to 0.15 with minimum module size of 30 genes. The 
different color modules correspond to the branches of the dendrogram.

https://www.frontiersin.org/journals/plant-science#articles
https://www.frontiersin.org/journals/plant-science/
www.frontiersin.org


A Meiotic Co-Expression Network in Hexaploid WheatAlabdullah et al.

5 October 2019 | Volume 10 | Article 1325Frontiers in Plant Science | www.frontiersin.org

the biological and physiological points of view. Detailed information 
of the enriched GO and GO slim terms in all modules is listed in the 
supplementary table Table S3. In summary, GO analysis confirmed 
that the three modules (2, 28, and 41) were enriched for genes 
associated with meiotic processes.

Enrichment of Meiosis-Related Modules 
for Wheat Orthologs of Known MGs
An assessment was undertaken to confirm that the meiosis-
related modules were enriched for wheat orthologs of known 
MGs. Although the first wheat meiotic cDNA clones were isolated 

concurrently with the early discoveries of MGs in other plants 
(Ji and Langridge, 1994), the identification of MGs in wheat has 
been hampered by the large wheat genome size, its polyploid 
nature, and the absence of a complete genome sequence. Thus, 
in comparison to model plants (Arabidopsis and rice), few MGs 
have been functionally characterized in wheat. Characterized 
wheat MGs include TaASY1 (Boden et al., 2007; Boden et al., 
2009), TaMSH7 (Lloyd et al., 2007), TaRAD51 (Khoo et al., 2008; 
Devisetty et al., 2010), TaDMC1 (Khoo et al., 2008; Devisetty 
et al., 2010), TaPSH1 (Khoo et al., 2012), TaZIP4 (Martín 
et  al., 2017; Martín et al., 2018; Rey et al., 2018), and RecQ-7 

FIGURE 2 | Heatmap plotting of MEs values in relationship to tissue samples. n indicates number of samples.
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(Gardiner  et al.,  2019). Given that, the assessment of whether 
the three modules contain known MGs was undertaken using 
orthology informed approaches. A set of 1,063 candidate MGs in 
wheat was identified and categorized based on the method used 
to identify the genes:

- The “orthologs” group contained 407 genes (Table S4; 
Sheet 1) that correspond to wheat orthologs of 103 
functionally characterized MGs in model plant species. 
The majority of these genes (97.5%) were retrieved from 
the Ensembl Plant ortholog database, while for MGs 
with no wheat orthologs identified using this method, 
potential wheat orthologs were identified by searching 

for amino acid sequence similarity using BLASTP (see 
Materials and Methods). A list of 10 wheat gene IDs 
that are potentially orthologs of 4 MGs (AM1, ATM, 
FANCM, and ZYP1) were identified using the BLASTP 
methods. These four genes were included in our 
analysis due to their importance for meiosis in other 
plant models. However, using homology methods (like 
BLASTP) to infer orthology has a considerably high 
false positive error rate (Chen et al., 2007). Thus, the 
corresponding proteins of those 10 genes together with 
any conclusions drawn from their identification are 
tentative and must be treated with caution. There were 
no apparent wheat orthologs for 14 plant MGs (AtDFO, 

FIGURE 3 | Co-expression network modules in relationship to tissues samples. Each row corresponds to a module; each column corresponds to a tissue type. 
Each cell contains the correlation value and, in parentheses, its corresponding FDR adjusted P value. n indicates number of samples. Only modules that have 
correlation value > 0.5 with meiotic anther tissue are shown.

FIGURE 4 | Enriched GO slim terms in the meiosis-related modules. Top five enriched GO terms in each module are shown. BP indicates biological processes and 
CC cellular component. No molecular function (MF) GO terms appear among the top five GO slim terms. Black bars indicate the number of genes in the GO term.
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AtNACK2, AtPRD2, AtRECQ4B, AtSGO1, CDKG1, 
GIG1, JASON, MMD1, MS5, OsMEL1, OsMOF, PANS1, 
and XRI).

- The “meiotic GO” group contained 927 wheat genes 
annotated with one or more meiotic GO terms 
(Table S4; Sheet 2).

There were 271 genes overlapping between the two groups 
(Figure 5A), which were considered in the “orthologs” group 
when undertaking gene enrichment analysis. The presence of 
each gene in the different modules was determined. A set of 848 
genes was assigned to modules in the co-expression network 
(Figure 5B), including 340 genes in meiosis-related modules. 
Genes from both groups were significantly over-represented (P < 
0.05) in four modules, including two meiosis-related modules (2 
and 28). Module 2, in particular, was the most enriched for these 
genes, possessing more than one third of the total candidate MGs 
assigned to modules. Module 2 had 142 wheat orthologs of MGs 
and 155 genes with meiotic GO terms, compared to the expected 
numbers (based on module size) of 27 and 42, respectively. 
Module 41 (the third meiosis-related module) was enriched only 
with genes from the “orthologs” group, having 15 orthologs of 
known MGs, whereas the expected number was 2 (Figure 5C). 
Consistent with this, genes from the “orthologs” and/or “meiotic 

GO” groups were significantly under-represented in modules 
strongly correlated with other types of tissue (modules 1, 7, 
and  9), and in modules with negative or no correlation with 
meiotic tissue (modules 3, 8, 14, and 17) (Table S4; Sheet 3).

In this study, three co-expression gene modules were identified 
that are strongly correlated to meiotic anther tissue and highly 
enriched with GO terms related to many processes occurring 
during meiosis, orthologs of known MGs, and genes having 
meiosis-specific GO terms. Although 67 (65%), out of the 103 
wheat orthologs, had at least one gene copy assigned to one of 
the three meiosis-related modules, there were 36 orthologs whose 
gene homeologs were assigned to other modules (Table S5). Some 
of those genes have essential meiotic functions, like ASY1, which 
encodes a protein essential for homologous chromosome synapsis 
(Caryl et al., 2000; Armstrong et al., 2002; Boden et al., 2007); 
and DMC1, a gene encoding a recombination protein that acts 
only in meiosis (Klimyuk and Jones, 1997; Devisetty et al., 2010). 
Others are known to have both meiotic and mitotic functions, 
like BRCA2, a DNA repair gene required for double strand 
breaks repair by homologous recombination (Trapp et al., 2011) 
and SMC1 and SMC3, chromosome cohesion genes (Lam et al., 
2005); thus, they are expressed in both reproductive and non-
reproductive tissues. Assessment of these 36 orthologs showed 
that the expression patterns of their gene copies did not allow 

TABLE 1 | Top five enriched GO terms in the meiosis-related modules for each ontology group.

GO term (FDR adjusted P value)

Biological process Molecular function Cellular components

M
o

d
ul

e 
2

Cell proliferation
(2.2 x 10−222)

Protein heterodimerization activity
(1.5 x 10−93)

Nucleosome
(9.3 x 10−162)

DNA replication
(4.8 x 10−151)

DNA binding
(1.8 x 10−69)

Nuclear chromatin
(2 x 10−100)

Histone H3-K9 methylation
(1.6 x 10−137)

Microtubule binding
(1.3 x 10−41)

Chromosome
(3.5 x 10−95)

DNA-dependent DNA replication
(5.4 x 10−135)

DNA-dependent ATPase activity
(1.6 x 10−32)

Pericentric heterochromatin
(3.2 x 10−88)

Regulation of DNA replication
(2.4 x 10−127)

Motor activity
(4.4 x 10−31)

Heterochromatin
(6.7 x 10−84)

M
o

d
ul

e 
28

Protein deneddylation
(3.6 x 10−16)

Apurinic or apyrimidinic site) endonuclease activity
(3.3 x 10−05)

COP9 signalosome
(3.3 x 10−21)

Positive regulation of G2/M transition of mitotic cell cycle
(5.4 x 10−11)

RNA cap binding
(1.8 x 10−03)

Nucleus
(6.8M x 10−10)

COP9 signalosome assembly
(1.2 x 10−7)

NADH activity
(3.2 x 10−3)

Nuclear cap binding complex
(1.5 x 10−6)

Mitotic recombination
(1.5 x 10−7)

Enoyl-[acyl-carrier-protein] reductase activity
(3.2 x 10−3)

Protein-containing complex
(1.9 x 10−6)

Photomorphogenesis
(1.7 x 10−7)

Signaling receptor activity
(3.9 x 10−3)

Cortical cytoskeleton
(1.5 x 10−3)

M
o

d
ul

e 
41

Double-strand break repair via homologous recombination
(3.9 x 10−5)

Methyl-CpG binding
(1 x 10−4)

Nuclear euchromatin
(7.3 x 10−5)

Somatic cell DNA recombination
(1.1 x 10−4)

siRNA binding
(1.6 x 10−3)

Nucleus
(1 x 10−4)

Megasporocyte differentiation
(4.3 x 10−4)

SUMO transferase activity
(2.1 x 10−3)

RNA polymerase IV complex
(1.1 x 10−3)

Gene silencing by RNA
(5.5 x 10−4)

DNA binding
(5.7 x 10−3)

RNA polymerase II, core complex
(4 x 10−3)

Positive regulation of sulfur metabolic process
(1.1 x 10−3)

Cytosine C-5 DNA demethylase activity
(1 x 10−2)

Proteasome regulatory particle, base subcomplex
(4.4 x 10−3)
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them to be clustered in any of the meiosis-related modules (or 
allocated to module 0 that is composed of genes not forming part 
of a co-expressed module), either because they were expressed 
in most samples from all types of tissues, or because they were 
expressed in a few samples of a specific tissue type (like meiotic 
anther tissue). The expression values (TPMs) of all gene copies of 
those 36 orthologs are summarized in Table S5. The number of 
meiotic anther samples (17) used in the present study might not 
be enough to identify all MGs being expressed in a specific meiotic 
stage. Such genes might be identified by WGCNA analysis when 
a larger number of meiotic samples become available. However, 
the analysis confirmed that the meiosis-related modules were 
indeed enriched for orthologs of known MGs, and for GO terms 
associated with processes involved in meiosis.

Copy Number of MGs
It has previously been suggested that MG duplicates return to a 
single copy following whole genome duplication more rapidly 
than the genome-wide average in angiosperms (Lloyd et al., 2014). 
The analysis of 19 meiotic recombination genes in hexaploid 
wheat and oilseed rape showed no evidence of gene loss after 
polyploidization. However, a recent study in tetraploid oilseed 

rape showed that reducing the copy number of MSH4, a key 
meiotic recombination gene involved in the ZMM (an acronym 
stands for the MGs Zip1/Zip2/Zip3/Zip4, Msh3/Msh5, and Mer3 
identified initially in yeast) pathway, prevents meiotic crossovers 
between non-homologous chromosomes (Gonzalo et al., 2019). 
This led to the suggestion that meiotic adaptation in polyploids 
could involve “fine-tuning” the progression or the effectiveness 
of meiotic recombination, which could be achieved through the 
loss of MG duplicates in the newly formed polyploids (Lloyd 
et al., 2014; Gonzalo et al., 2019). This hypothesis was evaluated 
in hexaploid wheat. The gene copy number was assessed for the 
genes in the three meiosis-related modules and compared with 
genes in all modules and in other tissue-related modules. Analysis 
showed that the percentage of genes belonging to triads was 
74.4% in the meiosis-related modules, which was similar to this 
percentage in other tissue-related modules (72.5, 74.0, and 76.1% 
in leaf-, grain-, and root-related modules, respectively); however, 
it was significantly higher than those of the non-meiotic modules 
(57.4%). The highest percentage of genes with three homeologs 
(83.3%) and lowest percentage of genes with single copy (2.7%) 
were observed in the group of genes identified as MG orthologs 
and/or possessing a meiotic GO term (Figure 6A).

FIGURE 5 | Enrichment of meiosis-related genes in the co-expression network modules. (A) Venn diagram of total number of genes in the three groups: meiosis-
related modules (genes in modules 2, 28, and 41), orthologs (wheat orthologs of MGs in model plant species), and meiotic GO (genes with meiotic GO terms). 
n indicates number of genes in each group. Numbers in brackets refer to number of genes not included in the WGCNA analysis because they are not expressed in 
meiotic anther tissue. (B) Total number of genes assigned to modules from orthologs of MGs (orthologs) and genes with meiotic GO terms (meiotic GO). (C) Gene 
enrichment in modules. Statistical significance of gene enrichment in a module is color coded (red indicates over-represented, blue under-represented, and gray not 
significant; P < 0.05). Rhombus shape indicates the expected number of genes in module.
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The high percentage of meiosis-related genes present as triads 
provides evidence that polyploid wheat did not experience 
significant gene loss (gene erosion) after polyploidization. 
However, this assumes that these genes were originally present as 
single copy genes in each of the A-, B-, and D-genome progenitor 
species which gave rise to polyploid wheat. Therefore, the copy 
number of the 103 wheat MG orthologs in wheat progenitor 

species was investigated. All possible orthologs (high and low 
confidence predicted orthologs) were retrieved from Ensembl 
Plants Genes 43 database for Triticum urartu (ASM34745v1; Ling 
et al., 2013), the diploid progenitor of the wheat A-genome; the 
D-genome ancestor Aegilops tauschii (Aet_v4.0; Luo et al., 2017), 
the diploid progenitor of the wheat D-genome; and Triticum 
dicoccoides (WEWSeq_v.1.0; Avni et al., 2017), the tetraploid 

FIGURE 6 | Copy number and homeolog expression pattern for genes from meiosis-related and other tissue-related modules. (A) Proportion of genes in each copy 
number category (triads, duplets, monads, and others) for different sets of expressed genes during meiosis including: “meiotic modules” refers to the three meiosis-
related modules 2, 28, and 41. “Non-meiotic modules” refers to the modules 11 and 25 that showed high correlation with meiotic anther but were not considered 
meiosis-related because they were also correlated with spike and floral organs tissues. The top three correlated modules with each of leaves (modules 1, 45, and 
60), grain (modules 5, 13, and 32), and roots (modules 7, 9, and 64) tissues. “All modules” contains all genes assigned to modules in the co-expression network, 
and “orthologs and meiotic GO” refers to the set of genes that are orthologs of known MGs in other plant species and/or have meiotic GO terms. n number of 
genes in each set. (B) Proportion of genes from each homeolog expression pattern category (balanced, dominant, and suppressed) calculated for triads in the 
previously mentioned sets of genes. n number of genes in each set. (C) Ternary plot showing relative expression abundance in meiotic anther tissue of 2,366 triads 
to which the genes of meiosis-related modules (2, 28, and 41) belong. Each circle represents a gene triad with an A, B, and D coordinate consisting of the relative 
contribution of each homeolog to the overall triad expression. Triads in vertices correspond to single-subgenome-dominant categories, whereas triads close to 
edges and between vertices correspond to suppressed categories. Box plots indicate the relative contribution of each subgenome based on triad assignment to 
the seven categories (balanced, A dominant, B dominant, D dominant, A suppressed, B suppressed, D suppressed). Percentages between brackets indicate the 
percentage of triad number in each category to the total number of triads.
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progenitor of the hexaploid wheat (genome AABB). There was 
no change in copy number of 78.4% of genes, while 6.3 and 15.3% 
of genes had a lower and greater number of copies, respectively 
(Table 2 and Table S6). Regardless of genome of origin, the 
percentage of MGs with more copies was always greater than the 
percentage of genes with fewer copies. Comparing the A-genome 
MG copy number in hexaploid wheat with the relevant orthologs 
copy number in the corresponding A-genome ancestor, 86 genes 
(84.5%) had the same gene copy number in T. dicoccoides as in 
hexaploid wheat, while only 64 genes (63.1%) had the same gene 
copy number in T. urartu. This is consistent with the evolutionary 
history of hexaploid wheat, with T. dicoccoides being a more 
recent wheat progenitor (~10,000 years) than T. urartu (> 5 
million years) (Marcussen et al., 2014).

An analysis on a subset of wheat genes, which were expected to 
be involved in meiotic recombination based on the function of their 
orthologs in model plants (64 genes; Table S6), was conducted. 
Again, results showed that the majority (94.9%) of those genes had 
greater or no change in number of copies (Table 2). Given it has 
been suggested that the reduction in the copy number of ZMM 
pathway genes could stabilize meiosis in Brassica (Gonzalo et al., 
2019), the copy number of the wheat orthologs of seven ZMM 
genes was evaluated. Five of the seven ZMM genes (MER3, MSH5, 
ZIP4, PTD, and SHOC1) had equal or greater number of copies. 
However, TaMSH4 gained one A-genome copy (comparing with T. 
urartu) and lost one D-genome copy (compared with Ae. tauschii), 
while TaHEI10 lost A-genome copy and gained a D-genome 
copy (Table S6). In conclusion, our findings did not support any 
significant gene loss upon the polyploidization of hexaploid wheat, 
as suggested for other polyploids (Scannell et al, 2006; Lloyd et al., 
2014; Gonzalo et al., 2019).

Homeolog Expression Patterns in Triads 
of MGs
Initial analysis revealed that most genes expressed during meiosis 
showed balanced expression between homeologs (Figure S1). The 
analysis was repeated using gene expression within the validated 
meiosis modules. Genes from all modules were assigned to three 
categories (balanced, dominant, and suppressed). Homeolog 
expression patterns in triads showed that meiosis-related modules 
2, 28, and 41 had the highest percentage (87.3%) of genes with 
balanced expression (belong to balanced triads), compared to 

the top three tissue-related modules for grain, leaves, and roots 
(Figure 6B). Surprisingly, the group of candidate MGs selected 
for being orthologs of known MGs in other plant species and/or 
having meiotic GO terms had a higher percentage of genes from 
balanced triads (88.3%), whereas the modules not considered 
meiosis-specific (having high correlation with meiotic anther 
tissue and with spike and floral organs) contained only 68.3% genes 
with balanced expression (Figure 6B). The majority (84.19%) of 
triads with genes in meiosis-related modules (2,366 triads) showed 
balanced expression in meiotic anther tissue (Figure 6C).

In wheat, meiotic recombination and gene evolution rates 
are strongly affected by chromosome position, with relatively 
low recombination rates in the interstitial and proximal regions 
(genomic compartments R2a, C, and R2b) but notably higher rates 
toward the distal ends of the chromosomes (genomic compartments 
R1 and R3) (Akhunov et al., 2003; Choulet et al., 2014). The lack of 
significant changes in gene content and more balanced expression 
between homeologs suggested that these genes might be more 
prevalent in the proximal genomic compartments (Ramírez-
González et al., 2018; International Wheat Genome Sequencing 
Consortium, 2018). The distribution of MGs was therefore assessed 
across the genomic compartments compared with the distribution 
of all HC genes across chromosomes. Analysis showed that genes 
from the meiotic modules (modules 2, 28, and 41) were significantly 
over-represented in the genomic compartments R2a, C, and R2b (P 
= 2.4 x 10−5, 3.1 x 10−6, and 1 x 10−5, respectively), while they were 
under-represented in the R1 and R3 genomic compartments (P = 
1.7 x 10−8 and 1.7 x 10−10, respectively) (Figure 7A). Enrichment in 
the R2a genomic compartment region was not observed for genes 
from any of the other top three tissue-related modules (Figure 
7B), since 21.7% of genes from the meiosis-related modules were 
assigned to R2a, while this percentage ranged between 18.2 and 
19.5% in other tissue-related modules (Table 3). Interestingly, the 
set of the genes identified through orthology approaches and MG 
ontology approaches had also similar high percentage (21%) of 
genes assigned to R2a genomic compartment (Table 3).

Our analysis reveals that homeologous MGs on homeologs 
mostly show balanced expression and lack a significant change in MG 
content following polyploidization. The majority of homeologous 
genes (not only MGs) on homeologs also show over 95% sequence 
identity to each other (Schreiber et al., 2012; International Wheat 
Genome Sequencing Consortium, 2018). Given these observations, 

TABLE 2 | Changes in copy number of wheat MGs in comparison with their orthologs in wheat progenitors. 

 Number of meiotic genes (%) Number of meiotic recombination genes (%)

Lower copy number Greater copy number Equal copy number Lower copy number Greater copy number Equal copy number

A genome
(Triticum urartu)

9 (8.7%) 29 (28.2%) 64 (63.1%) 3 (4.7%) 21 (32.8%) 40 (62.5%)

A genome
(Triticum dicoccoides)

5 (4.9%) 11 (10.7%) 86 (84.5%) 3 (4.7%) 9 (14.1%) 52 (81.3%)

B genome
(Triticum dicoccoides)

6 (5.8%) 12 (11.7%) 84 (82.5%) 3 (4.7%) 6 (9.4%) 55 (85.9%)

D genome
(Aegilops tauschii)

6 (5.8%) 11 (10.7%) 85 (83.5%) 4 (6.3%) 5 (7.8%) 55 (85.9%)

Average per all genomes 7 (6.3%) 16 (15.3%) 81 (78.4%) 3 (5.1%) 10 (16.0%) 51 (78.9%)

Comparison was done for two sets of genes: wheat orthologs of MGs (n = 103) and wheat meiotic recombination genes (n = 64).
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such homeologs could synapse and recombine during meiosis. 
However, in allohexaploid wheat, homologs rather than homeolog 
synapse and recombine during meiosis ensuring the stability and 

fertility of this species, and the Ph1 locus, in particular to the TaZIP4 
gene copy inside this locus, has been identified as the main locus 
controlling this process. The wheat ZIP4, an ortholog of ZIP4/Spo22 

FIGURE 7 | Enrichment of genes from different tissue-related modules in the wheat genomic compartments. (A) Number of genes (actual and expected) from the 
three meiosis-related modules in each genomic compartment. (B) Comparison of number of genes from different tissue-related modules in genomic compartments. 
Statistical significance of gene enrichment in modules is color coded (red indicates enriched, blue depleted, and gray not significant; P < 0.05). Black dots indicate 
the expected number of genes in groups.

TABLE 3 | Number of genes from different groups in the wheat genomic compartments.

Modules R1 R2a C R2b R3

No. % No. % No. % No. % No. %

Meiotic modules 625 10.9% 1,246 21.7% 531 9.3% 1,823 31.8% 1,515 26.4%
Non-meiotic modules 158 10.5% 292 19.5% 123 8.2% 469 31.3% 456 30.4%
Grain modules 338 10.2% 649 19.5% 287 8.6% 1,144 34.4% 903 27.2%
Leaves modules 838 10.8% 1,466 18.9% 853 11.0% 2,557 33.0% 2,037 26.3%
Roots modules 270 10.3% 479 18.2% 177 6.7% 951 36.1% 754 28.7%
All modules 5,147 10.3% 9,880 19.9% 4,507 9.1% 16,491 33.1% 13,738 27.6%
Orthologs and meiotic GO 78 6.5% 253 21.0% 164 13.6% 387 32.1% 324 26.9%
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in A. thaliana and rice, is a member of the ZMM genes involved 
in the synaptonemal complex formation and class I crossover 
pathway (Chelysheva et al., 2007; Shen et al., 2012). Moreover, wheat 
lacking Ph1 exhibits extensive genome rearrangements, including 
translocation, duplications, and deletions (Martín et al., 2018). 
Thus, the evolution of Ph1 during wheat polyploidization is likely 
to explain why wheat has largely maintained a similar gene content 
and balanced expression of its homeologs. How meiosis has adapted 
to cope with allopolyploidy in other species is still to be resolved; 
however, it has been suggested that reduction in the copy number of 
MGs may stabilize the meiotic process after polyploidization (Lloyd 
et al., 2014; Gonzalo et al., 2019). The present study shows that this 
is not the case in wheat. It is likely that the presence of Ph1 in wheat 
enabled the retention of multiple copies of MGs as an alternative 
mechanism to ensure proper segregation of chromosomes during 
meiosis. The identification of the TaZIP4 gene within the Ph1 locus 
as the gene responsible for the Ph1 effect on recombination and the 
observed effects of Ph1 in wheat suggests that it may have more of 
a central role in meiosis than originally suspected from studies on 
model systems (Chelysheva et al., 2007; Shen et al., 2012). It has 

recently been suggested that ZIP4 might act as a scaffold protein 
facilitating physical interactions and assembly of different proteins 
complexes (De Muyt et al., 2018). Therefore, our co-expression 
network was used to identify the wheat orthologs of known MGs 
connected with TaZIP4. The analysis indicates that the three TaZIP4 
homeologs on group 3 chromosomes (TraesCS3A02G401700, 
TraesCS3B02G434600, and TraesCS3D02G396500) were clustered 
in module 2, the largest meiosis-related module, and strongly 
connected to many orthologs of MGs with various meiotic functions 
(Figure 8). However, the TaZIP4 copy responsible for Ph1 phenotype 
(TraesCS5B02G255100) did not cluster in the same module, 
reflecting its different expression profile from the other homeologs, 
being expressed in most tissues (Martín et al., 2017; Martín et al., 
2018; Rey et al., 2018). The analysis reveals that TaZIP4 is connected 
to several genes involved in centromere function. Studies on budding 
yeast have suggested that ZIP4 may affect centromere pairing during 
meiosis (Kurdzo et al., 2017). Moreover, the Ph1 locus has been 
shown to affect centromere pairing during meiosis in hexaploid 
wheat (Martinez-Perez et al., 2001). Therefore, it will be important 
to assess whether TaZIP4 within the Ph1 locus is responsible for 

FIGURE 8 | The wheat MG orthologs connected to TaZIP4. The alluvial diagram shows the connected genes to the TaZIP4 homeologs TaZIP4-A1, TaZIP4-B1, and 
TaZIP4-D1. Edge weight > 1 was used as threshold to visualize connected genes. Black bars indicate the number of homeologs for each connected gene.
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this centromere effect. TaZIP4 was connected to wheat orthologs of 
genes known to be involved in crossover formation such as MSH2, 
SHOC1, FANCM, FLIP, EME1B, and MUS81 (Mercier et al., 2015). 
This suggests that there may be an interplay between TaZIP4 and 
genes from the anti-crossover pathway. This may be important as 
knockouts of genes involved in the anticrossover pathway have been 
shown to increase crossovers in other crops (Mieulet et al., 2018). 
However, on wheat’s polyploidization, TaZIP4 has been duplicated 
and diverged in order to improve homolog pairing and prevent 
homeolog crossover (Martín et al., 2018; Rey et al., 2018). This event 
may also affect the action of these anticrossover genes and the effects 
of their knockouts. Thus, TaZIP4 sub-network analysis supports a 
more central role of ZIP4 in meiosis than originally suspected from 
studies on model species.

Further Characterization of the Wheat 
Meiotic Co-expression Network
Identification of Hub Genes in the Meiosis- 
Related Modules
Hub genes were identified within our meiosis-related modules 
by calculating the correlation between expression patterns of 

each gene and the ME: the most highly correlated genes to the 
eigengene being the hub genes. The top 10 hub genes of each 
module with their functional annotation are shown in Table 4. 
The top 10 hub genes in module 2 were core histone genes, 
supporting the strong contribution of histones in this meiosis-
related module. For further verification of histone involvement 
in module 2 and other modules in general, all wheat genes 
annotated as core histones or having GO terms related to histone 
modification were retrieved for enrichment analysis. Analysis 
showed that the five types of histones (H1, H2A, H2B, H3, and 
H4) were enriched only in module 2 (P = 3.6 x 10−4, 1.2 x 10−22, 
1.1 x 10−19, 9.4 x 10−21, and 3.3 x 10−26, respectively), having 433 
genes (85% of all core histone genes in all modules), compared 
to an expected number of genes of 39 (Figure 9). Similar results 
were obtained for histone modification genes. Module 2 was 
the most enriched module with this group of genes (P = 9.3 x 
10−52), containing 438 genes (30% of all histone modification 
genes in all modules). The histone modification genes were 
also enriched in 11 other modules, including the other meiosis-
related modules (modules 28 and 41), however, with much lower 
numbers of enriched genes (Figure 9). Detailed information 
about genes included in this analysis is provided in Table S7. The 

TABLE 4 | The top 10 hub genes of each meiosis-related module with their functional annotation.

 
Gene Functional annotation GO terms

M
o

d
ul

e 
2

TraesCS1B02G192500 Histone H2B Nucleosome; DNA binding; protein heterodimerization activity
TraesCS1D02G286600 Histone H4 Nucleosome; DNA binding; nucleosome assembly; protein heterodimerization 

activity
TraesCS3A02G534100 Histone H2A Nucleosome; DNA binding; protein heterodimerization activity
TraesCS6A02G034300 Histone H2A Nucleosome; DNA binding; protein heterodimerization activity
TraesCS6A02G034600 Histone H2A Nucleosome; DNA binding; protein heterodimerization activity
TraesCS6B02G048300 Histone H2A Nucleosome; DNA binding; protein heterodimerization activity
TraesCS6B02G049000 Histone H2A Nucleosome; DNA binding; protein heterodimerization activity
TraesCS6D02G326800 Histone H2B Nucleosome; DNA binding; protein heterodimerization activity
TraesCS7B02G408400 Histone H2A Nucleosome; DNA binding; nucleus; protein heterodimerization activity
TraesCSU02G095700 Histone H3 Nucleosome; DNA binding; protein heterodimerization activity

M
o

d
ul

e 
28

TraesCS1A02G263400 Zinc finger CCCH domain protein DNA binding; protein binding; zinc ion binding
TraesCS2B02G281900 Receptor kinase Protein kinase activity; protein binding; ATP binding; protein phosphorylation
TraesCS2D02G000100 Histone deacetylase complex subunit SAP30 Protein binding
TraesCS2D02G263500 Receptor kinase Protein kinase activity; protein binding; ATP binding; protein phosphorylation
TraesCS5B02G379400 Vacuolar protein sorting-associated 2-2-like protein Vacuolar transport
TraesCS5D02G070800 Aminotransferase Catalytic activity; biosynthetic process; pyridoxal phosphate binding
TraesCS5D02G386000 Vacuolar protein sorting-associated 2-2-like protein Vacuolar transport
TraesCS6A02G253900 High mobility group protein Chromatin assembly or disassembly; chromatin binding; chromatin 

remodeling; DNA binding
TraesCS6B02G271600 High mobility group protein Chromatin assembly or disassembly; chromatin binding; chromatin 

remodeling; DNA binding
TraesCSU02G072600 Vacuolar protein sorting-associated 2-2-like protein Vacuolar transport

M
o

d
ul

e 
41

TraesCS1D02G003800 Serine/threonine-protein kinase ATM NA
TraesCS1D02G072800 Chaperone protein dnaJ Cytoplasm; protein folding; unfolded protein binding; heat shock protein 

binding; response to stress
TraesCS2A02G120400 Adenine nucleotide transporter 1 NA
TraesCS2D02G401100 High mobility group family Nucleus; DNA binding; transcription factor activity; sequence-specific DNA 

binding
TraesCS3A02G162200 Zinc finger CCCH domain-containing protein 4 Metal ion binding
TraesCS3D02G127500 Ankyrin repeat protein-like Protein binding
TraesCS4D02G284200 F-box family protein Protein binding
TraesCS5A02G170400 F-box protein Protein binding
TraesCS7A02G233900 Poor homologous synapsis 1 protein Nucleus; synapsis; intracellular signal transduction; kinase activity
TraesCS7D02G181800 Interleukin-6 NA
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strong enrichment of histone modification genes in module 2 
(the largest meiosis-related module) supports the important role 
of histone modifications in meiosis (Maleki and Keeney, 2004; 
Oliver et al., 2013; Hu et al., 2015; Luense et al., 2016; Xu et al., 
2016; Wang et al., 2017).

Hub genes such as “poor homologous synapsis 1” (PHS1) 
were also identified with module 41, the module most highly 
correlated to meiotic samples. This gene has been previously 
reported to have a key role in homologous chromosome pairing, 
synapsis, DNA recombination, and accurate chromosome 
segregation during meiosis in maize (Pawlowski et al., 2004), 
Arabidopsis (Ronceret et al., 2009), and wheat (Khoo et al., 2012). 
Other hub genes identified in modules 28 and 41 encoded for the 
high mobility group proteins (Tessari et al., 2003; Di Agostino 
et al., 2004; Pedersen et al., 2011; Antosch et al., 2015; Alonso-
Martin et al., 2016), histone deacetylase (Akiyama et al., 2004; 
Wang et al., 2006; Magnaghi-Jaulin and Jaulin, 2006; Getun et al., 
2017), and F-box proteins (Zheng et al., 2016).

Analysis of Transcription Factors Within the Meiosis-
Related Modules
Many transcription factors (TFs) have been reported as key 
regulators of meiosis from studies on animals (Bolcun-Filas 

et al., 2011; Yan et al., 2016), yeast (Xu et al., 1995; Horie et al., 
1998; Pierce et al., 2003; Beaudoin et al., 2018), and protozoa 
(Zhang et al., 2018). However, very little is known about the 
involvement of TFs in plant meiosis. The meiotic co-expression 
network was therefore exploited to identify potential meiosis-
specific TFs. An assessment was undertaken of the enrichment 
of previously identified TF families in hexaploid wheat in the 
meiosis-related modules 2, 28, and 41. A total of 4,889 HC 
genes belonging to 58 TF families were predicted from the 
annotation of the wheat genome sequence. Of these, 2,439 TFs 
from 57 families could be assigned to the 66 modules in the gene 
co-expression network. Modules 2, 28, and 41 (meiosis-related 
modules) had 225, 25, and 17 TFs belonging to 31, 13, and 9 
TF families, respectively (Table S8). Compared to the expected 
number of TF family genes in each module, only five TF 
families were significantly enriched in module 2: mitochondrial 
transcription termination factor (mTERF), growth-regulating 
factor (GRF), abscisic acid-insensitive protein 3/viviparous1 
(ABI3/VP1), forkhead-associated domain (FHA), and E2F/
dimerization partner (DP). On the other hand, four TF families 
were significantly depleted (Figure 10). The TF family NAC 
was the only TF family significantly enriched in module 41, 
containing 5 NAC genes (expected number 0.6; P < 0.05). 

FIGURE 9 | Histone genes enrichment in the gene co-expression network modules. The analysis included all the genes annotated as core histones (H1, H2A, H2B, 
H3, and H4) in the wheat genome and the genes with GO terms related to histone modification. Statistical significance of gene enrichment in a module at P < 0.05 
is color coded (red indicates enriched, blue depleted, and gray not significant). Rhombus shape indicates the expected number of genes in module.
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Module 28 was not enriched with any TF family, although E2F/
DP TFs were enriched in this module with borderline statistical 
significance (P = 0.06), with 4 genes in this module (the expected 
number was 0.2). Except in module 2, E2F/DP and FHA TF 
families were not enriched in any other modules in the gene 

co-expression network (Table S8). E2F/DP plays an important 
role in regulating gene expression necessary for passage through 
the cell cycle in mammals and plants (Zwicker et al., 1996; Zheng 
et al., 1999; Sozzani et al., 2006). Members of FHA contain the 
forkhead-associated domain, a phosphopeptide recognition 

FIGURE 10 | Transcription factor families in the meiosis-related modules. Statistical significance of gene enrichment in the modules is color coded (red indicates 
over-represented, blue under-represented, and gray not significant; P < 0.05). Rhombus shape indicates the expected number of genes in module.
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domain found in many regulatory proteins. Genes belonging to 
the FHA group are reported to have roles in cell cycle regulation 
(Hollenhorst et  al., 2000; Zhu et al., 2000; Kim et al., 2002), 
DNA repair (Sun et  al., 1998; Bashkirov et al., 2003; Palmbos 
et al., 2008; Liang et al., 2015), and meiotic recombination and 
chromosome segregation (Pérez-Hidalgo et al., 2003; Cigliano et 
al., 2011; Crown et al., 2013). A previous meiotic transcriptome 
study identified up-regulation of TFs belonging to the MADS-
box, bHLH, bZIP, and NAC families in Arabidopsis and maize 
meiocytes at early meiosis (Dukowic-Schulze et al., 2014). 
Zinc finger-like TFs have also been suggested to be regulators 
of maize MG expression (Ma et al., 2008). The present study 
indicates that TF families known to have roles in cell cycle, and 
meiosis processes are over-represented in the meiosis-related 
modules (module 2 in particularly). Those TF families contain 
about 20 meiosis-specific candidate TF genes whose function 
can be validated using the available reverse genetics resources in 
polyploid wheat (Krasileva et al., 2017).

Visualization of Networks and Identification 
of Candidate MGs
Having identified meiosis-related modules, the networks within 
such modules can be visualized, highlighting genes for future 
studies. Edge files were created with gene annotation for the 
three meiosis-related modules 2, 28, and 41. Those files can be 
used to investigate the relation between orthologs of MGs within 
a module and ranked based on the strength of the connection 
(weight value). Another application of co-expression networks is 
the identification of previously uncharacterized genes regulating 
biological processes (Usadel et al., 2009; Aya et al., 2011; Costa 
et  al., 2015; Silva et al., 2016; Krishnan et al., 2017; Tan et al., 
2017; International Wheat Genome Sequency Consortium, 
2018; Ma et al., 2018; Yu et al., 2018; Liu et al., 2019). Cytoscape 
3.7.1 software (Shannon et al., 2003) was therefore used to 
visualize our network and to show connections between different 
orthologs of MGs in meiosis-related modules. Wheat MG 
orthologs in meiosis-related modules were used as “guide genes” 
to construct co-expression subnetworks containing only genes 
with direct connections to the guide genes. One such subnetwork 
is shown in Figure 11, where the following wheat orthologs of 
MGs in module 41 were selected and used to construct a meiotic 
subnetwork: poor homologous synapsis 1 (TaPHS1; Khoo et 
al., 2012), argonaute (AGO9/AGO104; Durán-Figueroa and 
Vielle-Calzada, 2010; Singh et al., 2011), replication protein A2c 
(OsRPA2c; Li et al., 2013), meiotic nuclear division protein 1 
(AtMND1; Domenichini et al., 2006; Kerzendorfer et al., 2006), 
MMS and UV sensitive 81 (AtMUS81; Hartung et al., 2006; 
Higgins et al., 2008), and parting dancers (AtPTD; Wijeratne 
et  al., 2006; Lu et al., 2014) (guide genes; red circles in Figure 
11). The network complexity was reduced using an edge weight > 
0.05. The visualized subnetwork contained 53 gene IDs including 
9 guide gene copies. The gene TraesCS7A02G233900 (TaPHS1), 
a hub gene in module 41, was central in the network having 
the highest number of direct edges (41 direct edges; connected 
with 77.4% of the genes in the subnetwork). This subnetwork 
allowed identification of other genes with putative roles in 
meiosis (pink circles): (a) RNA recognition motif-containing 

gene (TraesCS5A02G319000) similar to Mei2, a master regulator 
of meiosis and required for premeiotic DNA synthesis as well 
as entry into meiosis in Schizosaccharomyces pombe (Watanabe 
and Yamamoto, 1994; Watanabe et al., 1997); (b) the gene 
TraesCS4D02G050000 showed similarity to Male meiocyte death 
1 (MMD/DUET), a PHD-finger protein plays role in chromatin 
structure and male meiotic progression in A. thaliana (Reddy 
et al., 2003); and (c) the gene TraesCS5D02G454900, a possible 
TF belonging to the FHA family known to have function in 
cell cycle regulation (Hollenhorst et al., 2000; Zhu et al., 2000; 
Kim et al., 2002), DNA repair (Sun et al., 1998; Bashkirov et 
al., 2003; Palmbos et al., 2008; Liang et al., 2015), and meiotic 
recombination and chromosome segregation (Pérez-Hidalgo et 
al., 2003; Cigliano et al., 2011; Crown et al., 2013). The meiotic 
subnetwork contained genes with similarity to cell cycle like F-box 
family proteins, high mobility family proteins, and chromatin 
remodeling genes. The subnetwork also contained a group of 
genes connected to most of our guide genes, which thus might 
be involved with them in similar biological processes. Examples 
of such genes are TraesCS3A02G101000, TraesCS1A02G292700, 
and TraesCS1D02G291100 which encode for zinc finger 
CCCH domain-containing proteins (Figure 11). Other meiotic 
subnetworks were also constructed using other guide genes from 
modules 2 and 28.

The Meiotic Co-Expression Network Is Accessible 
in a Larger Biological Contest
Our WGCNA co-expression network and GO enrichment 
data have been integrated with the wheat knowledge network 
(Hassani-Pak et al., 2016) to make it publicly accessible and 
searchable through the KnetMiner web application (http://
knetminer.rothamsted.ac.uk; Hassani-Pak, 2017). KnetMiner 
can be searched with keywords (incl. module ID and GO terms) 
and wheat gene identifiers. The gene knowledge graphs generated 
contain many additional relation types such protein–protein 
interactions, homology, and links to genome wide association 
studies and associated literature placing the co-expression 
networks generated here in a wider context.

CONCLUSION

In summary, the present study shows that most MGs in wheat are 
retained as three homeologous genes, which are expressed during 
meiosis at similar levels, suggesting that they have not undergone 
extensive gene loss nor sub/neo-functionalization. Meiosis-
related modules have been used to create networks and identify 
hub genes providing targets for future studies. The network 
containing the ZIP4 gene, recently defined as Ph1 (Martín et al., 
2017; Martín et al., 2018; Rey et al., 2018)—for example, highlights 
potential interacting partners. Finally, the networks highlight 
genes such as ZIP4 and “poor homologous synapsis 1,” which 
may play a more central role in meiosis than previously thought. 
The co-expression network analysis combined with orthologue 
information will contribute to the discovery of new MGs and 
greatly empowers reverse genetics approaches to validate the 
function of candidate genes (Krasileva et al., 2017). Ultimately, 
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this will lead to better understanding of the regulation of meiosis 
in wheat (and other polyploid plants) and subsequently improve 
wheat fertility.

MATERIALS AND METHODS

RNA-Seq Data Collection
For co-expression network analysis, we included 130 samples, 
containing 113 samples previously described in Ramírez-González 
et al. (2018) and 17 samples from anthers during meiosis (9 samples 
from Martín et al. (2018), and 8 samples downloaded from https://
urgi.versailles.inra.fr/files/RNASeqWheat/Meiosis/). Samples were 
selected to represent all main tissue types: grain (n = 37 samples), 
leaves (n = 21 samples), roots (n = 20 samples), anther at meiosis (n 
= 17 samples), spike (n = 12 samples), floral organs (anther, pistil, 
and microspores) at stages other than meiosis (n = 10 samples), 
stem (n = 7 samples), and shoots (n = 6 samples). All samples were 
under nonstress conditions and mostly from the reference accession 

Chinese Spring. Detailed information about the used samples are 
listed in the Supplementary Materials (Table S2).

Mapping of RNA-Seq Reads to Reference
Kallisto v0.42.3 (Bray et al., 2016) was used to map all RNA-Seq 
samples to the Chinese Spring transcriptome reference IWGSC 
RefSeq Annotation v1.1 (International Wheat Genome Sequencing 
Consortium, 2018), following default parameters previously 
shown to result in accurate homeolog-specific read mapping in 
polyploid wheat (Borrill et al., 2016; Ramírez-González et al., 
2018). Tximport v1.2.0 was then used to summarize expression 
levels from transcript to gene level (Text S1; Part 1).

Co-Expression Network Construction
The WGCNA package in R (Langfelder and Horvath, 2008; 
Langfelder and Horvath, 2012) was used to construct the scale-
free co-expression network. Metadata for all samples were 
assigned with eight tissue types (average 16.25; median 14.5 

FIGURE 11 | A meiotic co-expression subnetwork in hexaploid wheat. This subnetwork was constructed using 9 guide genes in module 41. Guide genes are 
wheat orthologs of MGs in other plant species (red circles); pink circles represent genes with putative meiosis function. Edge weight 0.05 was used as threshold to 
visualize genes in the subnetwork using Cytoscape 3.7.1 software.
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replicates per factor). Only HC genes (International Wheat 
Genome Sequencing Consortium, 2018) with expression > 0.5 
TPM in at least one meiosis sample were retained for co-expression 
network construction using the R Package WGCNA (version 
1.66). Using the varianceStabilizingTransformation() function 
from DESeq2 (Love et al., 2014), the count expression level 
of selected genes was normalized to eliminate differences in 
sequencing depth between different RNA-Seq studies (Text S1; 
Part 2). To select a soft power threshold (β) for adjacency 
calculation (as aij = |sij|β; where sij is the correlation between gene 
i and gene j), the scale-free topology criterion was used (Zhang 
and Horvath, 2005). The soft thresholding means suppressing 
low correlations in a continuous (“soft”) manner by using β value 
to power the correlation of the genes to that threshold, which 
reduces the noise of the correlations in the adjacency matrix. 
Using the pickSoftThreshold() function to calculate β values, the 
soft power threshold emphasizing strong correlations between 
genes and penalizing weak correlations was selected as the first 
power to exceed a scale-free topology fit index of 0.9 (Ramírez-
González et al., 2018) (Text S1; Part 3). The correlation type used 
to calculate adjacency matrices was biweight midcorrelation 
(bicor). The adjacency matrices were transformed into a 
topological overlap matrix (TOM), measuring the network 
connectivity of a gene defined as the sum of its adjacency with 
all other genes for network generation. The blockwiseModules() 
function was used to calculate matrices and construct blockwise 
networks considering the following parameters: network 
type (NetworkType) = “signed hybrid,” maximum block size 
(maxBlockSize) = 46,000 genes, soft power threshold (power) = 
7, correlation type (corType) = “bicor” (biweight midcorrelation 
with maxPOutliers set to 0.05 to eliminate effects of outlier 
samples), topological overlap matrices type (TOMType) 
= “unsigned” with the mergeCutHeight = 0.15, and the 
minModuleSize = 30 to classify genes with similar expression 
profiles into gene modules using average linkage hierarchical 
clustering, according to the TOM-based dissimilarity measure 
with a minimum module size of 30 genes (Text S1; Part  4). 
MEs, summarizing the expression patterns of all genes within 
a given module into a single characteristic expression profile, 
were calculated as the first principal component in the principal 
component analysis (PCA) using the moduleEigengenes() 
function (Text S1; Part 4).

Identifying Meiosis-Related Modules
The MEs were used to test correlations between gene modules 
and traits (eight tissue types) using the cor() function. To 
assess the significance of correlations, Student asymptotic 
P values for correlations were calculated using the function 
corPvalueStudent() and corrected for multiple testing by 
calculating FDR (false discovery rate) using a p.adjust() 
function following the Benjamini and Yekutieli (2001) 
method. We considered a module meiosis-related when its 
correlation was strong with meiosis samples (r > 0.5 and 
FDR < 0.05) and weak (r < 0.3) or negative with other type of 
tissues (Text S1; Part 5).

Analysis of GO Term Enrichment 
in Modules
GO term enrichment was calculated using the “goseq” 
package (Young et al., 2010). Gene ontology (GO) annotations 
of IWGSC RefSeq v1.0 genes were retrieved from the file 
“FunctionalAnnotation.rds” in https://opendata.earlham.ac.uk/
wheat/under_license/toronto/Ramirez-Gonzalez_etal_2018-
06025-Transcriptome-Landscape/data/TablesForExploration/
FunctionalAnnotation.rds (Ramírez-González et al., 2018) 
by filtering for ontology “IWGSC+Stress.” GO data was then 
converted to IWGSC RefSeq Annotation v1.1 by replacing “01G” 
by “02G” in the IWGSC v1.0 gene IDs and retaining only genes > 
99% similar with > 90% coverage in the v1.0 and v1.1 annotation 
versions (as determined by BLASTn of the cDNAs) (called “all_
go”). P values for GO term enrichment were calculated using 
the goseq() function (using the following parameters: the pwf 
object was created using the nullp() function which calculated 
a probability weighting function for the genes v1.1 based on 
their length, the gene2cat = all_go, and test.cats = “GO : BP,” to 
specify the biological process GO term category to test for over 
representation amongst the inquired genes) and corrected using 
the FDR method (Benjamini and Hochberg, 1995). A GO term 
was considered enriched in a module when FDR adjusted P 
value < 0.05 (Text S1; Part 6). All figures shown for enriched GO 
terms in the modules were produced using RAWGraphs software 
(Mauri et al., 2017).

Orthologs of MGs in Wheat
A comprehensive literature search was performed for MGs in 
model plant species (mainly A. thaliana and rice; Table S9), 
identifying gene IDs based on the “Os-Nipponbare-Reference-
IRGSP-1.0” for rice (Oryza sativa Japonica Group) and “TAIR10” 
for A. thaliana. Wheat orthologs of MGs were then retrieved 
from Ensembl Plants Genes 43 database through BioMart (in; 
http://plants.ensembl.org/biomart) where orthologs calculated 
according to Vilella et al. (2009) using the following gene datasets: 
“Triticum aestivum genes (IWGSC),” “Oryza sativa Japonica 
Group genes (IRGSP-1.0),” and “A. thaliana genes (TAIR10)” for 
wheat (International Wheat Genome Sequencing Consortium, 
2018), rice (Kawahara et al., 2013; Sakai et al., 2013), and A. 
thaliana (Waese et al., 2017), respectively. For MGs with no 
wheat orthologs identified using this method, potential wheat 
orthologs were identified by searching for amino acid sequence 
similarity using BLASTP (Korf et al., 2003) in Ensembl Plants 
according to the following criteria: e-value < 1e-10; ID% > 25% 
with Arabidopsis and > 70% with rice. By blasting the amino acid 
sequences of rice and Arabidopsis MGs against wheat proteins, a 
list of genes (that do not have rice and Arabidopsis MG orthologs 
in the Ensembl Plants database) was identified. For this list of 
wheat genes, we checked whether they have any other rice or 
Arabidopsis orthologs. Then, only wheat genes that did not have 
any rice or Arabidopsis orthologs were considered as orthologs of 
MGs. Finally, 407 wheat gene IDs were identified as orthologs of 
103 plant MGs (listed in Table S4; Sheet 1). This group of genes 
was referred to in this study as “orthologs.”
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Wheat Genes With MG Ontology (GO)
A total number of 46,909 GO terms used by Ramírez-González 
et al. (2018) to calculate GO term accessions for wheat genes 
(IWGSC v1.0 gene annotation) were filtered for meiosis-related 
GO terms, using 15 meiosis-specific keywords (“meiosis,” 
“meiotic,” “synapsis,” “synaptonemal,” “prophase I,” “metaphase I,” 
“anaphase I,” “telophase I,” “leptotene,” “zygotene,” “pachytene,” 
“diplotene,” “chiasma,” “crossover,” and “homologous chromosome 
segregation”). A total of 284 meiosis GO accessions were identified 
and used to retrieve 927 wheat genes with potential roles during 
meiosis (Table S4; Sheet 2). All genes identified by gene orthologs 
and gene ontology methods were then filtered to retain only genes 
had expression > 0.5 TPM in at least one meiosis sample. This group 
of genes was referred to in this paper as “meiotic GO.” Enrichment 
analysis for the genes from “orthologs” and “meiotic GO” groups in 
all module was conducted (Text S1; Part 7). The number of genes 
from each group was assessed in all modules and compared with 
the expected number based on the module size. There was a set of 
genes overlapping between “orthologs” and “meiotic GO” groups, 
which was considered in the “orthologs” group when undertaking 
gene enrichment analysis. Fisher’s exact test was used to calculate 
significant enrichment in the modules. Gene group considered 
over- or under-represented in a module when P < 0.05.

Identifying Highly Connected Hub Genes
Hub genes within each module were identified using the WGCNA 
R package function signedKME() to calculate the correlation 
between expression patterns of each gene and the ME. Hub genes 
were considered those more highly correlated to the eigengene 
(Text S1; Part 8).

Assessment of TF Families in Modules
A total of 4,889 wheat HC genes (IWGSC RefSeq Annotation 
v1.1; International Wheat Genome Sequencing Consortium, 2018) 
belonging to 58 TF families were predicted from the annotation 
of the wheat genome sequence (https://github.com/Borrill-Lab/
WheatFlagLeafSenescence/blob/master/data/TFs_v1.1.csv). The 
number of TFs from each family was assessed in all modules and 
compared with the expected number based on the module size. 
Fisher’s exact test was used to calculate significant enrichment 
of TFs in the modules. TF family considered over- or under-
represented in a module when P < 0.05 (Text S1; Part 9).

Defining Gene Categories Based 
on Number of Homeologs
A list of homeologs for all HC hexaploid wheat genes (IWGSC 
v1.1 gene annotation; International Wheat Genome Sequencing 
Consortium, 2018) was retrieved from Ensembl Plants Genes 
43 database through BioMart (in; http://plants.ensembl.org/
biomart). Based on number of homeologs from each of the A-, 
B-, and D-sub-genomes, genes were assigned to four groups: 
triads that refer to 1:1:1 triads (with a single copy from each 
of the A-, B-, and D-sub-genomes); duplets referring to 1:1:0, 
1:0:1, and 0:1:1 duplets; monads group containing genes with 
no homeologs (e.g. 0:0:1); and “others” containing genes with 
more than two homeologs, in conjunction with genes from the 

homeologous groups 0:1:2, 0:2:1, 1:0:2, 2:0:1, 1:2:0, 2:1:0, 2:0:0, 
0:2:0, and 0:0:2. Accordingly, 19,801 triads (59,403 genes), 7,565 
duplets (15,130 genes), 15,109 monads (single-copy genes), and 
18,250 genes from the “others” group were identified (Table S1).

Defining Gene Categories Based on 
Homeolog Expression Patterns in Triads
Homeolog expression pattern in triads was determined for each 
of the eight tissue types (Text S1; Part 10). For triads, it was 
calculated according to Ramírez-González et al. (2018) where a 
triad can be described as balanced, A dominant, A suppressed, B 
dominant, B suppressed, D dominant, or D suppressed, based on 
the relative expression contribution of its A, B, and D homeologs. 
Briefly, the relative contribution of each gene in a triad was 
calculated with the following formula:

Relative expression contribution (A) = TPM(A)/[TPM(A) + 
TPM(B) + TPM(D)]
where A, B, and D represent the gene corresponding to the A, B, 
and D homeologs in the triad. Each category is defined by the 
following ideal relative expression contributions:

Category A B D

Balanced 0.33 0.33 0.33
A suppressed 0 0.5 0.5
B suppressed 0.5 0 0.5
D suppressed 0.5 0.5 0
A dominant 1 0 0
B dominant 0 1 0
D dominant 0 0 1 

The triad was assigned to the category with the shortest 
Euclidean distance to its relative contribution. Triads were defined 
as expressed when one of its homeologs was expressed according 
to the criterion used in our WGCNA analysis (Table S10; 
Sheet 1). This insured that all triads contain genes from modules 
were included in the homeolog expression bias analysis (Text S1; 
Part 11). Genes from a triad might not belong to the same module 
due to dissimilarity of their expression patterns. Thus, to allow the 
assessment of the expression pattern of genes in each module, each 
homeolog (A, B, and D homeologs) in a triad was assigned to one 
of the three categories “balanced,” “dominant,” and “suppressed” 
based on the homeolog origin (A, B, and D sub-genome) and 
the triad description (balanced, A dominant, A suppressed, B 
dominant, B suppressed, D dominant, or D suppressed) as shown 
in Table S10 (Sheet 2). The values of the relative contributions of 
each homeolog per triad were used to plot the ternary diagrams 
using the R package ggtern (Hamilton, 2016).

Co-Expression Gene Network Visualization
Cytoscape software (version 3.7.1; Shannon et al., 2003) was 
used to visualize the network described in this study. Firstly, 
the “exportNetworkToCytoscape” function was used to create 
edge files which could be used to visualize the network, then 
depending on network complexity, different weight value 
thresholds were used to filter genes to be visualized (Text S1; 
Part 12). The term “weight value” in the input files for Cytoscape 
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refers to the connection strength between two nodes (genes) 
in terms of correlation value obtained from the topological 
overlap matrices (TOM). The co-expression network data 
has also been integrated with the wheat knowledge network 
(Hassani-Pak et al., 2016) to make it publicly accessible through 
the KnetMiner web application (http://knetminer.rothamsted.
ac.uk; (Hassani-Pak, 2017). The data was semantically modeled 
as nodes of type gene, co-expression-module, co-expression-
study, and GOterm, connected by relations of type part-of and 
enriched. Each module was given a unique identifier composed 
of the module number and the prefix “AKA.” KnetMiner can be 
searched with keywords (incl. module ID and GO terms) and 
wheat gene identifiers.
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FIGURE S1 | Homeolog expression patterns of expressed triads in hexaploid 
wheat. Homeolog expression pattern was calculated for 19,801 triads (59,403 
genes) across 8 tissue types according to published criteria (Ramírez-González 
et al., 2018), where triad defined as expressed when the sum of the A, B, and 
D subgenome homeologs was > 0.5 TPM. (A) Proportion of triads in each 
homeolog expression pattern across the 8 tissues. n is number of expressed 
triads. (B) Ternary plot showing relative expression abundance of 14,837 
expressed triads (44,511 genes) in the meiotic anther tissue. Each circle 
represents a gene triad with an A, B, and D coordinate consisting of the relative 
contribution of each homeolog to the overall triad expression. Triads in vertices 
correspond to single-subgenome–dominant categories, whereas triads close to 
edges and between vertices correspond to suppressed categories. Box plots 
indicate the relative contribution of each subgenome based on triad assignment 
to the seven categories. Percentages between brackets indicate the percentage 
of triad number in each category to the total number of triads.

FIGURE S2 | Proportion of genes in each homeologs number category. 
Expressed genes across 8 tissues were assigned to four categories (triads, 
duplets, monads and others). n indicates number of expressed genes.

FIGURE S3 | Module-tissue relationship. Each row corresponds to a module; 
each column corresponds to a tissue type; Each cell contains the correlation 
value (r) and, in brackets, its corresponding FDR adjusted P value. n indicates 
number of samples. Only modules that have correlation value > 0.5 are 
shown.

FIGURE S4 | Enriched GO terms in the meiosis-related and other tissue-related 
modules. Top 5 GO terms are shown for each module. Black bars indicate the 
number of genes in the GO term.
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