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Progress towards the production of potatoes and cereals 
with low acrylamide-forming potential 
Nigel G Halford, Sarah Raffan and Joseph Oddy   

The presence of acrylamide in foods derived from grains, 
tubers, storage roots, beans and other crop products has 
become a difficult problem for the food industry. Here we 
review how acrylamide is formed predominantly from free 
asparagine and reducing sugars, the relationship between 
precursor concentration and acrylamide formation, and the 
challenge of complying with increasingly stringent regulations. 
Progress made in reducing acrylamide levels in foods is 
assessed, along with the difficulty of dealing with a raw material 
that may be highly variable due to plant responses to nutrition, 
disease, and cold storage. The potential for plant breeding and 
biotechnology to deliver low acrylamide varieties is assessed, in 
the context of a regulatory landscape covering acrylamide, crop 
biotechnology, and crop protection. 
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Introduction 
Acrylamide (C3H5NO) is a familiar chemical in bio-
chemistry labs and in its polymeric form has a variety of 
industrial uses, including as a flocculant in wastewater 
and sewage treatment. While the polymeric form is 
nontoxic, the monomer is a potent neurotoxin, affects 
male reproduction, causes birth defects, and is carcino-
genic in laboratory animals [1]. Formally, it is classed as a 
Group 2A carcinogen by the International Agency for 
Research on Cancer [2], as an ‘extremely hazardous 
substance’ in the United States and ‘a serious health 
hazard with acute toxicity’ in the European Union. It 
caused something of a seismic shock, therefore, when it 
was discovered in food [3]. 

Acrylamide is predominantly associated with fried, 
baked, roasted and toasted foods derived from plant 
grains, beans, tubers and storage roots, including bread 
(particularly when toasted), biscuits, breakfast cereals, 
potato crisps (US chips) and similar products produced 
from sweet potatoes or vegetables, French fries, roast 
potatoes and coffee [4]. It is not detectable in boiled 
foods and to our knowledge has never been found in raw 
crop products; it can therefore be classed as a processing 
contaminant. 

Acrylamide formation and its relationship with 
precursor concentration 
Not long after acrylamide was discovered in food, it was 
demonstrated that it could form from free (soluble, non- 
protein) asparagine and reducing sugars, such as glucose, 
fructose and maltose, in the Maillard reaction [5,6]. We 
will not review the Maillard reaction in detail here: 
suffice to say that it is a complex series of reactions be-
tween amino groups, principally those of free amino 
acids, and reducing sugars. It is an important reaction for 
the food industry because it also produces the colour, 
flavour and aroma compounds that give fried, baked, 
toasted and roasted foods the characteristics that con-
sumers expect. 

It is important to note that other routes have been pro-
posed for the formation of acrylamide, for example, with 
3-aminopropionamide as a possible transient inter-
mediate [7] or through pyrolysis of gluten [8] or oxida-
tion of lipids [9]. Nevertheless, the Maillard reaction 
appears to be the predominant route, and free asparagine 
and reducing sugars can therefore be regarded as the 
precursors for acrylamide formation. 

The ratio of free asparagine to reducing sugars in potatoes 
means that the concentrations of the latter usually de-
termine the amount of acrylamide that forms in potato 
products [10–19] (Figure 1a). However, free asparagine 
concentration may contribute to the variance in acryla-
mide, particularly in varieties with relatively high redu-
cing sugar concentrations [12,16–18] (Figure 1b). These 
varieties are generally those used for French fry rather 
than crisp production (denoted by F and C, respectively, 
in Figure 1, a and b), or those grown for the fresh food 
market. Modelling suggests that free asparagine con-
centration contributes to the variance in acrylamide for-
mation when the ratio of free asparagine to reducing 
sugars is below approximately 2.3 [18]. Note that the data 
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used for Figure 1a and 1b were obtained for potato flour 
after heating at 160 °C for 20 min. This method produces 
higher levels of acrylamide formation than are typically 
seen in commercial products, but gives a good, consistent 
indication of acrylamide-forming potential [17]. 

Glucose and fructose are the predominant reducing su-
gars in potato tubers, with very little maltose, and the 
ratio of glucose to fructose is also important. Both of 
these sugars contribute to the formation of acrylamide, 
but fructose has been shown to favour the production of 
acrylamide over colour compounds during the cooking of 
French fries, in comparison with glucose [21,22]. This is 
consistent with predictions obtained in a study model-
ling the kinetics of acrylamide formation in French fries  
[23], and blanching French fries to remove the soluble 
sugars and then adding glucose back to enable the 
Maillard reaction to proceed is a widely used acrylamide- 
mitigation measure [24•]. 

In wheat, rye and probably other cereals, the lower free 
asparagine concentration in the grain compared with 
potato tubers means that free asparagine rather than 
reducing sugar concentration determines acrylamide- 
forming potential (Figure 1c) (see [4,20] for a more de-
tailed review). 

The problem of regulatory compliance 
There is no evidence that we are aware of that the dis-
covery of acrylamide in food products has affected con-
sumer preferences in any way. However, acrylamide in 
food has become a major regulatory compliance issue for 
the food industry. This is particularly true in the 
European Union, where the screening of products for 
acrylamide content has informed the development of the 
European Commission’s risk-management measures. 
The data were analysed in the European Food Safety 
Authority (EFSA’s) Scientific Panel on Contaminants in 
the Food Chain (CONTAM Panel) assessment of the 
risk posed by dietary acrylamide [1]. In that report, 
published in 2015, the panel expressed concern for the 
potential neoplastic (tumour-inducing) effects of dietary 
acrylamide, prompting the European Commission to 
introduce Commission Regulation (EU) 2017/2158 [25], 
which came into force in 2018. 

Since the CONTAM report was published, a unique 
mutational ‘signature’ has been linked to acrylamide and 
its metabolite, glycidamide [26••]. Samples from 184 

Figure 1  
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Graphical representations of the relationships between precursor 
concentration and acrylamide formation in potato and wheat flour. 
(A) Relationship between reducing sugar concentration (g kg-1 on the 
loge scale) and acrylamide formation (ppb (μg kg-1) on the loge scale) in 
potato flour heated to 160 °C for 20 min. Replotted from [16]. (B) Free 
asparagine concentration (mmol kg-1 on the loge scale) and acrylamide 

formation (ppb on the loge scale) in the same potato samples. Replotted 
from [16]. Points on graphs A and B from French fry varieties are 
denoted F, whereas those for crisping varieties are denoted C, the 
results for correlation (r) being given overall and then for types 
separately. (C) Free asparagine concentration and acrylamide formation 
in heated wheat and rye flour [20]. 
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liver tumours and 217 tumours of other cancer types 
were found to carry this mutation and were considered 
likely to do so as a result of dietary or occupational ex-
posure to acrylamide. Nevertheless, some researchers 
still question how great a risk is posed by dietary acry-
lamide: Eisenbrand [27•], for example, reviewed the 
available data on the genotoxicity of acrylamide and 
concluded that genotoxic effects occurred only at doses 
that were irrelevant to dietary exposure. However, this 
does not appear to have changed the opinion of the 
CONTAM Panel and the European Commission has a 
long record of acting on EFSA’s advice alone. 

Regulation (EU) 2017/2158 [25] set Benchmark Levels 
for acrylamide in different foods, including 500 parts per 
billion (ppb, µg kg-1) for French fries, 750 ppb for potato 
crisps, 50 ppb for soft bread, 300 ppb for wheat-based 
breakfast cereals and 150 ppb for breakfast cereals made 
with other grains, 350 ppb for biscuits (150 ppb if they are 
for infants) and 40 ppb for cereal-based baby foods. The 
Benchmark Levels replaced Indicative Values, which had 
been in place since 2011, and for most products were 
lower. The justification given for this was that Indicative 
Values were ‘triggers for investigation’, whereas Bench-
mark Levels were ‘performance indicators’: there was 
little evidence that manufacturers had been able to re-
duce acrylamide levels in their products between 2011 
and 2017. European Snacks Association data on acryla-
mide in potato crisps from 2002 to 2019, for example, 
showed a fall of 53% from 763 ppb in 2002 to 358 ppb in 
2011, but then a flattening out, with the lowest mean so 
far being attained in 2018 at 353 ppb, scarcely lower than 
the 2011 figure [28••]. The progress made between 2002 
and 2011 was due to measures such as improved control of 
cooking temperature and duration, blanching (removal of 
sugars and other soluble metabolites in hot water before 
frying), vacuum frying, control of moisture levels in the 
finished product, and the use of very low-sugar varieties, 
as well as postfrying quality control based on colour [24•]. 
Some manufacturers also introduced checks on potato 
sugar concentration at harvest, during storage and at the 
factory gate. 

By 2019, 7.75% of crisp samples still remained above the 
Benchmark Value of 750 ppb, while pronounced geo-
graphical and seasonal effects on acrylamide levels meant 
that there were striking differences between regions and a 
strong trend of higher acrylamide levels from November 
to May (Figure 2), arising from the behaviour of potatoes 
in cold storage [28••]. European potatoes are harvested 
between July and October and for the rest of the year are 
used from storage. Potatoes in storage are prone to cold 
and senescent sweetening, both of which bring about an 
increase in glucose and fructose concentrations associated 
with vacuolar invertase (VInv) activity [29–31]. Senescent 
sweetening is also driven by the breakdown of starch 
through the actions of phosphorylase L (PhL) and starch- 

associated R1 (R1). Manufacturers are careful to use po-
tatoes only within their optimum storage window, which 
differs between varieties, and the temperature and other 
conditions of commercial potato stores are very carefully 
controlled. Nevertheless, the proportion of samples ex-
ceeding the 750 ppb mark in the 2017–2019 period was 
almost 18% in southern Europe in January and above 10% 
in every region for some of the year (Figure 2). Overall, 
there is little to suggest that acrylamide levels in potato 
crisps could be kept below the current Benchmark Level 
all of the time. 

Data in the public domain on acrylamide levels in cereal 
products are relatively sparse, but a recent study in Spain 
found that 15% of breakfast cereals contained acryla-
mide above the Benchmark Level [32••]. The European 
Commission is currently considering replacing Bench-
mark Levels with Maximum Levels [33•], to be set in 
accordance with Regulation (EEC) No 315/93 [34]. It 
would be illegal to sell a product containing acrylamide 
above the Maximum Level for that product type, yet the 
intention appears to be to set Maximum Levels at or 
below the current Benchmark Levels. This would have 
serious repercussions for the food industry, with manu-
facturers and retailers possibly facing the prospect of 
having to deal with product recalls or even prosecutions. 

Crop-management strategies 
Different fertilisation regimes have been known to af-
fect potato tuber composition since the 1990s [35] and 
the discovery of acrylamide in potato products led to 
many more studies being conducted, particularly on the 
effect of nitrogen and, to a lesser extent, sulphur ferti-
lisation [10,15,36]. We will not review the results of 
those studies in detail here because we have done so 
previously [4], but summarise by saying that the effects 
are complex, with nitrogen application generally in-
creasing the acrylamide-forming potential of French fry 
varieties while having no effect on crisping varieties, but 
with different varieties within type also showing mark-
edly different responses. Sulphur application can miti-
gate the effect of high nitrogen application but only in 
some varieties. The complexity of these responses 
means that general advice has never been issued on the 
optimal levels of nitrogen and sulphur application to 
potatoes to address the acrylamide issue. 

Drought stress has also been shown to initiate complex 
responses in potatoes, with severe drought stress causing 
a big increase in free asparagine concentration that was 
not observed under mild stress [37] and, as with re-
sponses to nutrition, different varieties responding in 
different ways, indicating that there is no single, uni-
fying potato drought-stress response. One amino acid 
that was shown to increase substantially (15-fold) under 
mild stress conditions was free proline and this did 
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correlate negatively with acrylamide formation [37], 
consistent with proline being shown to inhibit acryla-
mide formation in model systems [38]. 

In contrast to potato, the responses of wheat and barley 
to nitrogen and sulphur are clear and well-established, 
with nitrogen causing a rise in free asparagine con-
centration in the grain [39–41] and sulphur having the 
opposite effect [42–46]. Sulphur deficiency in particular 
causes a huge increase in free asparagine concentration 
in wheat grain and we recommend that nitrogen fertiliser 
should not be applied to excess and should always be 
accompanied by sufficient sulphur. Both nitrogen and 
sulphur application also affect rye, but the effect of 
sulphur under field conditions is much less severe [47], 
perhaps because rye is better at scavenging available 
sulphur even when it is scarce, but also because rye 
appears to respond differently, with wheat and barley 
using free asparagine as a nitrogen store when sulphur is 
scarce in a way that rye does not. 

Free asparagine concentration in wheat grain can in-
crease in response to biotic as well as abiotic stress, and 
good disease control has been shown to be another im-
portant acrylamide-mitigation measure [41,48]. 

Genetic and biotech approaches 
Since crop-management and food-processing strategies 
to reduce acrylamide formation in foods have already 
been implemented [24•], further gains from those 

approaches may be difficult to achieve. This makes it 
important that plant breeders engage on the acrylamide 
issue and produce new varieties with reduced acryla-
mide-forming potential. This would enable food manu-
facturers to comply with tightening regulations on 
acrylamide without costly changes to production lines or 
damaging reductions in product quality. In potato, 
breeders have been selecting for low reducing sugar 
concentration for several decades to enable crisp manu-
facturers to produce crisps with an even, golden colour. 
Further reductions by conventional breeding may be 
difficult to achieve, but the genetic control of free as-
paragine and reducing sugar concentration during sto-
rage may be viable additional targets. Indeed, both have 
been the target for biotechnological interventions al-
ready: low acrylamide genetically modified (GM) potato 
varieties, Innate® and Innate® Generation 2 [49,50], 
have reduced expression of StASN1, one of the two as-
paragine synthetase genes of potato, specifically in the 
tubers [51]. These varieties were developed by the 
Simplot Company of Boise, Idaho, and have been on the 
market in the United States and Canada for several 
years. Both also have decreased expression of genes PhL 
(starch phosphorylase L) and R1 to slow down starch 
breakdown during storage, while Innate® Generation 2 
also has reduced expression of a vacuolar invertase gene 
(VInv), so is less prone to cold and senescent sweetening. 
The VInv gene has also been targeted using the tran-
scription activator-like effector nucleases (TALENs) 
genome editing technique [52], resulting in potatoes 
with undetectable levels of reducing sugars and crisps 
with much lower levels of acrylamide than controls. 
However, varieties carrying this trait have not been 
commercialised yet. 

Several studies have shown large varietal differences in 
the free asparagine content of wheat grain  
[45,46,48,53–56]. In field trials of winter wheat varieties 
in the United Kingdom, for example, free asparagine 
concentration ranged from 0.71 to 11.29 mmol kg-1 [46]. 
That study also showed that, while varietal rankings 
changed from one year to the next due to environmental 
factors, it was possible to identify some varieties that 
were consistently low. The problem for food businesses 
is that by the time multiyear studies have established 
whether a variety is low or high for free asparagine, new 
varieties are coming onto the market. We would support 
free asparagine concentration being measured during 
variety development, but this is not standard practice at 
present. Varietal differences in and environmental in-
fluences on free asparagine concentration have also been 
revealed for rye, maize and oats [47,56,57]. 

The wide range in free asparagine concentration in the 
grain of different varieties suggests that it should be 
possible to select for the low asparagine trait, and free 

Figure 2  
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Proportion (%) of samples of potato crisps produced by manufacturers 
affiliated to the European Snacks Association from 2017 to 2019 with 
more than 750 ppb acrylamide, shown for each month and separated 
into geographic regions of Europe (north, south, east and west). 
Replotted from [28••].   
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asparagine concentration has been shown to have mod-
erate heritability in some studies (e.g. [58,59••]). There 
is also little evidence to suggest that breeding for low 
grain asparagine concentration would have a negative 
effect on other agronomic traits [59••,60]. 

The breeding of low asparagine wheat or other cereals 
would be greatly facilitated by the development of ge-
netic resources associated with the trait. One such re-
source for wheat arises from the natural deletion of an 
asparagine synthetase gene [61]. Wheat has five aspar-
agine synthetase genes on each genome: TaASN1, 
TaASN2, TaASN3.1, TaASN3.2 and TaASN4 [62,63•], 
with the TaASN2 gene highly and specifically expressed 
in the embryo and endosperm of the grain [64,65]. In 
some varieties, the TaASN2 gene on the B genome 
(TaASN-B2) is missing, and this has been shown to affect 
the free asparagine content of grain in two different field 
trials (Figure 3a) [61]. However, to date, this represents 
the only multienvironment quantitative trait locus 
(QTL) for low asparagine because other QTL for the 
trait have not yet been verified across more than one 
environment [66,67]. 

As with potato, biotechnology could have an important 
part to play in developing wheat and other cereals with 
substantially reduced acrylamide-forming potential. For 
example, genome editing using the clustered regularly 
interspaced palindromic repeats/CRISPR-associated 
protein 9 (CRISPR/Cas9) system has been used to ‘edit’ 
the TaASN2 genes of wheat, producing partial and total 
‘knockouts’ of the gene [68••], reducing free asparagine 
concentration by up to 90% in glasshouse experiments 
(Figure 3B). The line showing that level of reduction 
turned out to have an additional partial ‘knockout’ of the 
TaASN1 gene (unpublished data). These edited lines 
grew normally under glass, except that in one genera-
tion, they showed poor germination, something that 
could be rescued by applying asparagine solution to the 
soil [68••]. Some of the lines also showed an increase in 
grain weight, and this requires further investigation. A 
field trial of the partial and full TaASN2 ‘knockout’ lines 
was sown in October 2021 and the plants germinated 
well (unpublished data). 

The fact that there is a single copy of each asparagine 
synthetase gene per genome in wheat lends itself to 
chemical mutagenesis as well as genome editing, and 
wheat plants with ethyl methanesulfonate induced null 
TaASN-A2 alleles have already been studied in a field trial  
[69••]. The plants showed reductions of between 9% and 
34% in free asparagine concentration in the grain with no 
apparent effects on yield or quality traits. 

Similar asparagine synthetase gene families to that of 
wheat are present in the other members of the Triticea 
tribe, including barley and rye, but sorghum, maize and 

Figure 3  
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Evidence for reduced free asparagine in wheat grain due to natural and 
induced mutations in TaASN2 genes. (A). Concentrations (back- 
transformed data) of free asparagine in the grain of different varieties of 
wheat in which the TaASN-B2 gene was either present or absent, grown in 
field trials with plentiful sulphur as well as nitrogen in the United Kingdom 
in 2011–2012 and 2012–2013. Crosses indicate the means, while boxes 
show the interquartile range and median, and whiskers show the smallest 
and largest value within 1.5 times the interquartile range above and below 
the 75th and 25th percentile. Replotted from [61]. (B). Free asparagine 
concentrations in the grain of wheat (Triticum aestivum) cv. Cadenza (wild 
type) and plants in which the TaASN-A2 gene, all of the TaASN2 genes 
and all of the TaASN2 genes plus one TaASN1 gene were ‘knocked out’ 
using CRISPR/Cas9. The plants were from the T2 generation and free 
asparagine concentrations are shown for five individual seeds from each 
plant. Replotted from [68••]. 
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rice have fewer genes and all lack the TaASN2 gene  
[63•]. Indeed, rice has only two asparagine synthetase 
genes, OsASN1 and OsASN2 (equivalent to TaASN4 and 
TaASN3, respectively) and lines lacking a functional 
OsASN1 gene showed effects on plant height, root 
length and tiller number [70••]. 

Conclusions 
The presence of acrylamide in popular foods is an in-
creasingly difficult regulatory compliance issue for the 
European food industry, whether located in the 
European Union or selling into that market. It is clear 
that the European Commission expects to see acryla-
mide levels in food decrease in response to its risk- 
management measures and if these expectations are not 
met, it intends to ramp up its measures, up to and in-
cluding the introduction of Maximum Levels for some 
products. Regulators in other parts of the world may well 
follow suit. Some sectors of the European food industry 
were able to show impressive reductions in acrylamide in 
the first decade after acrylamide was discovered in food  
[28••], mainly arising from changes to manufacturing 
processes and crop management or better quality con-
trol. Those improvements have slowed, and further 
substantial reductions from those approaches may be 
difficult to achieve. Food manufacturers are, therefore, 
looking to plant breeders to develop varieties with lower 
acrylamide-forming potential. 

Plant breeding is a slow process, but it is now 20 years 
since acrylamide was discovered in food and the food 
industry may well ask why such varieties are not yet 
available. Clearly, reducing sugars and asparagine are 
important metabolites and decreasing their concentra-
tions in crop products may not be easy. In addition, plant 
breeders often attach higher priority to issues that im-
pact farmers directly over those that affect the food in-
dustry. That may change if farmers find that their crops 
become unsuitable for some high-value end uses, but 
plant breeders need to be preparing now for future 
regulations on acrylamide. 

Genetic modification and genome editing could speed 
up the process of developing low acrylamide varieties 
and take acrylamide-forming potential well below the 
range achievable by conventional breeding. Indeed, as 
we have discussed, low acrylamide GM potato varieties 
are already on the market in the United States [49–51]. 
There is no prospect at all of similar varieties being 
developed for cultivation in the European Union, 
however, because the EU approval process for GM 
varieties is so dysfunctional that no one even attempts 
to negotiate it [71]. The situation for genome edited 
crops is no different because under current EU reg-
ulations, genome edited crops have to be treated as if 
they were GM, and edited genes as if they were 

transgenes. This is an example of how one set of reg-
ulations in the European Union may hinder attempts to 
comply with another set of regulations. The UK gov-
ernment on the other hand has already revised its 
regulations on field trials of genome edited crops and 
the Genetic Technologies (Precision Breeding) bill, 
which establishes a new regulatory framework for the 
commercialisation of genome edited crops, is currently 
being considered by the UK parliament. 

Another example of EU regulations not being joined up 
is the refusal in 2019 of the European Commission’s 
Standing Committee on Plants, Animals, Food and Feed 
to renew the licence for chlorpropham (CIPC, isopropyl 
(3-chlorophenyl)carbamate)), the potato-storage in-
dustry’s preferred sprout suppressant. Although there 
are some alternatives [72,28••], the loss of chlorpropham 
has certainly made potato storage more difficult and may 
lead to stores being kept at colder temperatures, in-
creasing the risk of cold sweetening and exacerbating 
the acrylamide problem. The range of crop-protection 
chemistry available to farmers in the European Union 
has also been reduced [73]. There are complex argu-
ments for and against this policy that are beyond the 
scope of this review, but good phytosanitary practice is 
included as a compulsory acrylamide-mitigation measure 
in Commission Regulation (EU) 2017/2158 [25], yet this 
does not seem to have been considered at all when as-
sessing the impact of withdrawing authorisation for im-
portant pesticides and fungicides. 
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