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1.  INTRODUCTION

Climate change has significant impacts on various
systems worldwide, including ecology, hydrology,
and agriculture (IPCC 2014). Climate change impact
assessments are essential to developing policies and
strategies for climate change adaptation and mitiga-
tion. Climate change impact studies are often based
on modelling results using future climate scenarios to
drive impact models, such as hydrological models for
water resources, crop growth models for crop produc-

tion, and ecosystem models for the environment.
Global climate models (GCMs) are the major tools
used to project future climate scenarios, and their out-
puts are often used in the studies of climate change
im pacts (e.g. Qian et al. 2016a,b, Al Samouly et al.
2018). An increasing number of GCMs have been
available in recent years (Lutz et al. 2016). Moreover,
improvements in other aspects of climate modelling
are incorporated in the Coupled Model Intercompari-
son Project Phase 5 (CMIP5), including a new set of
emission scenarios, i.e. representative concentration
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ABSTRACT: Using climate scenarios from only 1 or a small number of global climate models
(GCMs) in climate change impact studies may lead to biased assessment due to large uncertainty
in climate projections. Ensemble means in impact projections derived from a multi-GCM ensem-
ble are often used as best estimates to reduce bias. However, it is often time consuming to run
 process-based models (e.g. hydrological and crop models) in climate change impact studies using
numerous climate scenarios. It would be interesting to investigate if using a reduced number of
climate scenarios could lead to a reasonable estimate of the ensemble mean. In this study, we gen-
erated a single ensemble-mean climate scenario (En-WG scenario) using ensemble means of the
change factors derived from 20 GCMs included in CMIP5 to perturb the parameters in a weather
generator, LARS-WG, for selected locations across Canada. We used En-WG scenarios to drive
crop growth models in DSSAT ver. 4.7 to simulate crop yields for canola and spring wheat under
RCP4.5 and RCP8.5 emission scenarios. We evaluated the potential of using the En-WG scenarios
to simulate crop yields by comparing them with crop yields simulated with the LARS-WG generated
climate scenarios based on each of the 20 GCMs (WG scenarios). Our results showed that simulated
crop yields using the En-WG scenarios were often close to the ensemble means of simulated crop
yields using the 20 WG scenarios with a high probability of outperforming simulations based on a
randomly selected GCM. Further studies are required, as the results of the proposed ap proach
may be influenced by selected crop types, crop models, weather generators, and GCM ensembles.
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pathways (RCPs) (Moss et al. 2010). In spite of im-
provements in CMIP5, uncertainty in climate projec-
tions is still large due to differences in model re sponse,
forcing scenarios, and internal climate variability.
Thus, it is recommended to use multi-model ensem-
bles in climate change impact studies to reduce po-
tential biases in impact projections (Semenov &
Stratonovitch 2010). For example, Gao et al. (2019) as-
sessed the responses of hydrological processes to cli-
mate change over the southeastern Tibetan Plateau
using 18 GCMs in CMIP5. Qian et al. (2019a) con-
ducted a comprehensive evaluation of climate change
impacts on Canada’s crop production under different
levels of global warming based on 20 GCMs.

However, it is often time consuming to run process-
based models, such as watershed hydrological mod-
els or crop growth models, in climate change impact
studies when a large number of climate scenarios are
used. For example, in a recent study (Webber et al.
2018), simulations were run on 8157 grids in Europe
to estimate the impact of climate change on wheat
and maize using 10 crop models and 5 GCMs. The
ensemble means provide essential information to
policymakers and the general public, as ensemble
means can serve as a best estimate for the impact of
climate change (Challinor et al. 2018). Moreover,
using ensemble means will reduce bias in assess-
ments where only 1 GCM is used. For example, Qian
et al. (2020) found that projections of crop production
in Canada using climate scenarios from 1 climate
model differ substantially from the ensemble means
derived using climate scenarios from multiple GCMs
in CMIP5. Moreover, multiple runs of the GCMs, i.e.
perturbed physics ensembles (PPEs), are often avail-
able, but only 1 run (member) of the GCMs is often
used in climate change impact studies where the
multi-GCM approach is adopted. Large uncertainty
due to internal climate variability was quantified for
crop yield projections in Canada using large ensem-
bles of 1 GCM and 1 regional climate model (Qian et
al. 2020). Therefore, it is practically useful if a single
climate scenario representative for climate change
scenarios from multiple GCMs, and particularly mul-
tiple members of PPEs, can be generated to drive
process-based impact models for efficient estimation
of ensemble means in climate change impact studies.
Adopting this approach may substantially reduce the
use of resources in running simulations with climate
scenarios from a large and increasing number of
GCMs and PPEs to derive ensemble means, thus
freeing up resources for other aspects in climate
change impact and adaptation studies, in addition to
reducing bias.

It has been reported that multi-model averaging
can enhance the reliability of climate projections
(Wang et al. 2017, Al Samouly et al. 2018), largely re -
sulting from the cancellation or compensation of er-
rors in the individual models even on the regional
scale (Pierce et al. 2009). However, directly averaging
daily climate outputs from multiple climate models to
drive process-based models is not applicable be cause
averaging smooths climate variability. It is even more
difficult, if not impossible, to develop such a single
scenario by averaging GCMs, as the relationship be-
tween climate variables and their impacts may not be
linear (Wang et al. 2018, Whitfield & Cannon 2000).

In this study, we attempted to generate the afore-
mentioned single ensemble-mean climate scenarios
(En-WG scenarios) by using ensemble means of the
change factors derived from 20 GCMs in CMIP5 to
perturb distributions of the site parameters of cli-
matic variables in the Long Ashton Research Station
Weather Generator (LARS-WG) (Semenov & Barrow
1997). The generated En-WG scenarios for 2 future
periods (2040−2069 and 2070−2099) under RCP4.5
and RCP8.5 were used to drive crop growth models
in the Decision Support System for Agrotechnology
Transfer (DSSAT) ver. 4.7 (Hoogenboom et al. 2017)
to simulate yields for 2 major crops (canola and
spring wheat) at selected locations across Canada.
Simulated crop yields using the En-WG scenarios
were compared with the ensemble means of simu-
lated yields using 20 climate scenarios generated by
perturbing the LARS-WG site parameters with
change factors estimated from each of the 20 GCMs
(WG scenarios), for the same future periods and
RCPs. The objective of this study was to investigate
the potential of generating 1 single ensemble-mean
climate scenario (En-WG), using a stochastic ap -
proach based on multiple GCMs, for estimating crop
yields and to compare them with the ensemble
means of simulated crop yields using individual cli-
mate scenarios (WG scenarios) from the multi-GCM
ensemble under different RCPs.

2.  MATERIALS AND METHODS

2.1.  Study areas

In this study, we selected 10 locations with diverse
climatic conditions and soils, covering agricultural
production areas across Canada (Fig. 1), for canola
and spring wheat yield simulation. Basic information
(including geographical position, climate, and soil)
for these 10 locations is presented in Table 1.
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2.2.  Climate data

Observed daily maximum temperature (Tmax), daily
minimum temperature (Tmin), and daily precipitation
(Prec) for 1971−2000 at the 10 locations were ob -
tained from Environment and Climate Change Can-
ada’s National Climate Data and Information Archive.
Values of daily solar radiation (Rad) were extracted
from a high-resolution global dataset of meteorologi-
cal forcings for land surface modelling (Sheffield et
al. 2006) because Rad was not observed at most
 locations.

Bias-corrected and downscaled GCM
data including daily Tmax, Tmin, Prec, and
Rad (GCM scenarios) were used to drive
the crop models and calculate the climate
change factors used in stochastic weather
generation. Daily outputs of Tmax, Tmin,
Prec, and Rad from the 20 GCMs in the
CMIP5 archive (Table 2) for the baseline
period 1971−2000 and 2 projection periods,
2040−2069 and 2070− 2099, under the forc-
ing scenarios RCP4.5 and RCP8.5 were
used in this study. RCP4.5 and RCP8.5 rep-
resent medium-low and high emission sce-
narios with a  radiative forcing of 4.5 and
8.5 W m−2 at the end of the 21st century, re-
spectively (IPCC 2014).

Observed data were used to bias  correct
and downscale the GCM simulations as
well as for calibrating the LARS-WG site
parameters. Bias  correction/ downscaling is
performed using a multivariate form of
quantile mapping — multivariate bias cor-

rection using N-dimensional probability distribu-
tion transfer (MBCn) (Kirchmeier-Young et al.
2017, Cannon 2018) — that, first, corrects GCM
marginal distributions and the multivariate depen -
dence structure between sites and variables to
match historical observations and, second, pre-
serves GCM-projected changes in quantiles in fu-
ture periods. Specifically, Tmax, Tmin, Prec, and Rad
from each GCM at each location are corrected si-
multaneously, using the 1971− 2000 observational
period for calibration. The MBCn bias correction
algorithm (ver. 0.10-1, https://cran.r- project.  org/
package= MBC; R ver. 3.3.2, www.r-project.org) is
applied over 30 yr sliding windows on concate-
nated historical (1950− 2005) and RCP scenario
(2006−2100) periods. In each window, the central
decade is replaced, the window is slid forward 1
decade, etc., until the end of the projection period
is reached. To ensure an unbiased seasonal cycle,

adjustments are applied over data that have been
pooled over 33 day-of-year sliding blocks — the cen-
tral 11 d are replaced, the block is slid 11 d, etc. To en-
sure that corrected values of Tmax exceed Tmin on all
days, MBCn is applied to the diurnal temperature
range (Tmax – Tmin) and approximate mean tempera-
ture ([Tmin + Tmax]/2) variables. Outside of the 1971−
2000 calibration period, changes in corrected quan-
tiles are constrained to match those in the raw climate
model simulations (i.e. the adjustments made by
MBCn are change preserving on a quantile-by-quan-
tile basis) (Cannon et al. 2015). After bias correction,
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Fig. 1. Selected locations in the agricultural production areas (shaded in 
green) across Canada

Site                   Latitude  Longitude   Clay   Silt     Ptotal     Tmean

                            (°N)           (°W)         (%)    (%)    (mm)     (°C)

Lethbridge         49.70        112.78        23      36     209.8     15.6
Swift Current     50.27        107.73        20      45     207.3     15.6
Indian Head       50.55        103.65        55      43     256.1     15.8
Melfort               52.82        104.69        50      40     242.7     15.0
Winnipeg           49.90        97.23        56      36     296.9     16.7
Guelph               43.55        80.22        12      53     349.3     16.9
Ottawa               45.38        75.72        43      40     348.9     18.1
Harrow               42.03        82.90        23      55     319.7     19.6
Quebec               46.79        71.39        37      44     445.2     16.2
Fredericton        45.92        66.62        10      20     366.2     16.4

Table 1. Site coordinates, soil texture (clay and silt percentages),
and climate normals for precipitation and temperature for 10 se-
lected locations across Canada. Ptotal and Tmean represent average
accumulated precipitation and mean temperature, respectively,
in the crop growing season (May 1 to Aug 31) for the period 

1971−2000
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diurnal temperature range and approximate mean
temperature are transformed back to Tmax and Tmin.

2.3.  Stochastic weather generation

LARS-WG was used to generate the En-WG and
WG scenarios. LARS-WG is a stochastic weather gen-
erator based on the series approach (Semenov & Bar-
row 1997, Semenov & Stratonovitch 2010), in compar-
ison with the Richardson-type stochastic weather
generators that use either first- or higher-order
Markov chains (Richardson 1981). It utilizes observed
daily weather data of a given site to compute a set of
parameters for probability distributions of weather
variables as well as correlations between them
 (Semenov & Stratonovitch 2010). This set of para -
meters is used to generate synthetic weather time se-

ries with statistical characteristics corresponding to
the observed datasets. To generate future weather
data, the LARS-WG parameters from historical cli-
mate data are perturbed by a scenario of climate
change in terms of change factors. LARS-WG is avail-
able from https:// sites.google.com/view/ lars-wg/.

Bias-corrected and downscaled daily Tmax, Tmin,
and Prec from 20 GCMs for the baseline period
(1971− 2000) and 2 relevant future periods (2040−
2069 and 2070−2099) under RCP4.5 and RCP8.5 at 10
locations across Canada were used to calculate
change factors. For each GCM at each location in the
baseline period and the 2 future periods under both
emission scenarios, monthly mean Tmax and Tmin,
monthly mean Prec, monthly mean duration of wet
and dry spells, and SDs of daily mean temperature
were calculated. Change factors of these climate sta-
tistics for the 2 future periods with respect to the
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No.       Model                              Resolution          Institute and country
                                                    (Lon. × Lat.)

1           bcc-csm1-1-m              1.125° × 1.125°      Beijing Climate Center, China Meteorological Administration, PR China
2           bcc-csm1-1                       2.8° × 2.8°          

3           BNU-ESM                        2.8° × 2.8°          College of Global Change and Earth System Science, Beijing Normal
University, PR China

4           CanESM2                        2.8° × 2.8°          Canada Centre for Climate Modelling and Analysis, Canada

5           CNRM-CM5                    1.4° × 1.4°          Centre National de Recherches Météorologiques and Centre Européen
de Recherche et Formation Avancée en Calcul Scientifique, France

6           CSIRO-Mk3-6-0              1.9° × 1.9°          Commonwealth Scientific and Industrial Research Organization and
Queensland Climate Change Centre of Excellence, Australia

7           FGOALS-g2                 1.875° × 1.25°        Sate Key Laboratory of Numerical Modeling for Atmospheric Sciences
and Geophysical Fluid Dynamics, Institute of Atmospheric Physics,
Chinese Academy of Sciences, and Center for Earth System Science,
Tsinghua University, PR China

8           GFDL-ESM2G                2. 5° × 2.0°          Geophysical Fluid Dynamics Laboratory, NOAA, USA
9           GFDL-ESM2M               2. 5° × 2.0°          

10         HadGEM2-AO            1.875° × 1.25°        National Institute of Meteorological Research, Korea Meteorological
Administration, Korea, and Met Office Hadley Centre, UK

11         HadGEM2-ES              1.875° × 1.25°        Met Office Hadley Centre, UK

12         IPSL-CM5A-LR             3.75° × 1.875°      Institut Pierre Simon Laplace, France
13         IPSL-CM5A-MR             2. 5° × 1.25°        

14         MIROC-ESM-CHEM      2.8° × 2.8°          Japan Agency for Marine-Earth Science and Technology, Atmosphere 

15         MIROC-ESM                   2.8° × 2.8°          and Ocean Research Institute (The University of Tokyo), and National
Institute for Environmental Studies, Japan

16         MIROC5                           1.4° × 1.4°          Atmosphere and Ocean Research Institute (The University of Tokyo),
National Institute for Environmental Studies, and Japan Agency for
Marine-Earth Science and Technology, Japan

17         MPI-ESM-LR               1.875° × 1.875°      Max Planck Institute for Meteorology, Germany
18         MPI-ESM-MR              1.875° × 1.875°      

19         MRI-CGCM3               1.125° × 1.125°      Meteorological Research Institute, Japan

20         NorESM1-M                   2. 5° × 1.9°          Norwegian Climate Centre, Norway

Table 2. Basic information for the 20 global climate models in CMIP5 used in this study



Ma et al.: Ensemble-mean climate scenarios

baseline period were then calculated for each GCM
at each location. Differences were calculated for
month ly mean Tmax and Tmin, while ratios were calcu-
lated for the other statistics. After that, 20 sets of
change factors corresponding to the 20 GCMs were
obtained. Each set includes 4 scenarios, 2 future peri-
ods under 2 RCPs for each location. They were used
to perturb the parameters in LARS-WG for generat-
ing 300 yr long daily site-specific weather data repre-
senting the climate conditions of 2040− 2069 and
2070−2099 under RCP4.5 and RCP8.5 for each GCM
(WG scenarios). Ensemble means of the change
 factors from the 20 GCMs were used to generate the
single En-WG scenarios, i.e. 4 En-WG scenarios for
each location under 2 RCPs for 2 future periods. Daily
Rad data in the WG and En-WG scenarios were esti-
mated using daily temperature and precipitation
data, with location-specific coefficients calibrated
with historical observed data (Qian et al. 2019b).

2.4.  Crop simulation

The CSM-CERES-wheat model and the CSM-
CROPGRO-canola model included in DSSAT ver. 4.7
were used to simulate crop yields for spring wheat
and canola in this study. Crop models in DSSAT have
been widely used in climate change impact studies
around the world (e.g. He et al. 2018, Cammarano et
al. 2020, Hussain et al. 2020, Ye et al. 2020). Further-
more, these 2 models have been calibrated and eval-
uated with field experimental data in Canada (Jing
et al. 2016, 2017) and used to assess climate change
impacts (Qian et al. 2016a, 2018, 2019a). Climate
data, soil information, crop cultivar parameters, and
crop management practices are required as inputs to
the crop models. Soil data for each site were obtained
from the Canadian Soil Information System, Soil
Landscapes of Canada, ver. 3.2 (Soil Landscapes of
Canada Working Group 2010). Spring wheat culti-
var AC Barrie and canola cultivar InVigor 5440 cali-
brated in Canada by Jing et al. (2016, 2017) were
used to simulate crop yields as continuous spring
wheat and canola. All simulations included the direct
effects of elevated atmospheric CO2 concentration.
Planting date in simulations for both spring wheat
and canola was May 15 for the baseline period 1971−
2000 and May 8 for the future periods. A fixed plant-
ing date was used for simplicity in crop simulations,
as planting date is considered a crop management
practice that can vary from year to year and by loca-
tion. Crops were harvested automatically at physio -
logical maturity in all the simulations. Al though N

fertilizer applications are an important agronomic
management practice for rainfed crop production,
we simulated only the water-limited yield (Yw) of
crops grown without N stress to emphasize the cli-
mate impacts. Soil texture may have significant
impacts on crop growth and yield in the simulations
of Yw; therefore, simulated crop yields at the selected
locations can be different if other soils are used.

2.5.  Quantitative evaluation

To quantitatively assess how close simulated crop
yields using En-WG scenarios are to the ensemble
means of simulated yields using multiple climate sce-
narios (WG scenarios), we compared them with the
yields from all (i.e. 20 in this study) or any one of the
WG scenarios using 2 statistical measures. Closeness
is defined as the absolute value of the difference
between the long-term mean of simulated yields
using En-WG scenarios (YEn) and ensemble mean
yields (Ym), i.e. |YEn – Ym|; Ym is the average of the
long-term means of simulated yields (Yi, i = 1, 20)
using the 20 WG scenarios. We defined relative dif-
ference (RD) in Eq. (1). We used the proportion as an
estimate of the probability (p) of the WG scenario
based on a randomly chosen GCM from the 20
GCMs (Yi, i = 1, 20), that may have a smaller differ-
ence to the ensemble mean (Ym) than En-WG (YEn),
i.e. |Yi – Ym|  < |YEn – Ym|, Ns is the total number of
GCMs with a smaller difference, in Eq. (2). Smaller
values of these indicators indicate better perform-
ance of the En-WG scenario at reproducing the
ensemble mean. The values of these indicators can
be averaged across locations for evaluating the over-
all performance.

(1)

(2)

(3)

3.  RESULTS

The long-term means of canola yields and spring
wheat yields simulated using En-WG scenarios were
compared with those using 20 WG scenarios for 2
future periods (2040−2069 and 2070−2099) under
RCP4.5 and RCP8.5 in Figs. 2 & 3, respectively. As
shown, the ranges of the simulated yields across the
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20 WG scenarios are generally smaller in eastern
Canada (i.e. Guelph, Ottawa, Harrow, Quebec, and
Fredericton) than in the Canadian Prairies (i.e. Leth-
bridge, Swift Current, Indian Head, Mel fort, and
Winnipeg) for both canola and spring wheat but
especially for spring wheat. This could be reflecting
the facts that crop yields on the Canadian Prairies are
limited by water stress and large uncertainties are
often present in the projections of precipitation in

GCMs. Smaller ranges across the 20 WG scenarios at
some locations may lead to a biased impression for
the performance of the En-WG scenarios, as all indi-
vidual members are relatively close to the ensemble
means of the 20 WG scenarios when they are com-
pared to locations with larger ranges. Interestingly,
as observed in Figs. 2 & 3 the canola/spring wheat
yields simulated using the En-WG scenarios are
close to the ensemble means of the canola/spring
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Fig. 2. Simulated canola yields in 2 future periods, 2040−2069 and 2070−2099, under RCP4.5 and RCP8.5 at 10 locations across
Canada. Boxplots show the 10th, 25th, 50th, 75th, and 90th percentiles of simulated yields across 20 WG scenarios. Red dashes
represent the means of yields derived from 20 WG scenarios; solid circles are the yields simulated with En-WG scenarios

Fig. 3. Simulated spring wheat yields in 2 future periods, 2040−2069 and 2070−2099, under RCP4.5 and RCP8.5 at 10 locations 
across Canada. Symbols are as described in Fig. 2
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wheat yields simulated using the 20 WG scenarios.
This is true across most of the 10 locations and all 4
future  scenarios.

Two statistical indicators for quantitatively assess-
ing the performance of the single En-WG scenarios
in terms of reproducing the ensemble means of
yields derived from multiple WG scenarios, RD and
p, were calculated for each location for the future
periods 2040−2069 and 2070−2099 under RCP4.5 and
RCP8.5. The results are shown in Table 3 for canola
and Table 4 for spring wheat. In Table 3, all values
for p are smaller than 0.3, and most of them are
smaller than 0.05, indicating that the single En-WG
scenarios, in most cases, outperformed a randomly
selected GCM for reproducing the ensemble means
of yields. For Harrow in 2070−2099 under RCP8.5,
the simulated canola yield using the En-WG scenario

shows the biggest relative difference from the en -
semble mean yield, with an RD value of 11.6%. The
p value is 0.20, which indicates that the En-WG sce-
nario would still be more likely to outperform the
cases using 1 GCM. In other cases, the RDs are all
less than 10% and mostly less than 5%, showing
small differences between the En-WG simulated
canola yields and the ensemble means of canola
yields derived from the 20 WG scenarios. The overall
performances of the single En-WG scenarios across
the 10 locations are satisfactory in the 2 future peri-
ods (2040−2069 and 2070−2099) under both RCP4.5
and RCP8.5.

In Table 4, all values for RD are less than 5%. The
small RD values indicate very small differences be -
tween spring wheat yields simulated using the
En-WG scenarios and the ensemble means of spring

wheat yields simulated using the
20 WG scenarios. For the other indica-
tor, p, except for Fredericton in 2040−
2069 under RCP4.5 (p = 0.79), Winni -
peg in 2070− 2099 under RCP4.5 (p =
0.60), and Guelph in 2040− 2069 under
RCP8.5 (p = 0.60), all p values are
under 0.5 and mostly under 0.25, indi-
cating that the en semble mean using
the En-WG scenarios is more likely
than not to outperform a randomly
selected WG scenario. However, even
in the 3 cases where the En-WG sce-
narios are less likely to outperform a
randomly se lected GCM, the RDs be -
tween En-WG simulated spring wheat
yields and the ensemble means of
yields simulated with the 20 WG sce-
narios are very small (2.5, 3.8, and
1.9%, respectively), reflecting good
performance of the single En-WG sce-
narios. In fact, the ranges of the simu-
lated yields across the 20 WG scenar-
ios are often relatively small in these 3
cases; hence, all ensemble members
are close to the ensemble mean, which
results in a large p in these 3 cases.
The average values for RD across the
10 locations in 2 future periods under 2
RCPs are all less than 3%, and the
average values for p are all smaller
than 0.30, implying satisfactory overall
performance of the En-WG scenarios
for producing crop yields close to the
ensemble mean yields based on the 20
WG scenarios.
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                             RCP4.5                          RCP8.5
             2040−2069 2070−2099 2040−2069 2070−2099
                           RD         p          RD         p          RD         p          RD         p

Lethbridge         2.1       0.10        4.4       0.10        0.7       0.00        7.3       0.15
Swift Current    0.7       0.00        1.0       0.00        1.7       0.00        8.5       0.05
Indian Head      0.5       0.05        2.2       0.05        0.7       0.00        2.7       0.05
Melfort               0.1       0.00        1.5       0.00        0.2       0.00        0.5       0.00
Winnipeg           1.6       0.05        1.3       0.00        1.4       0.05        5.1       0.05
Guelph               1.2       0.05        2.0       0.00        0.4       0.00        3.7       0.15
Ottawa               1.6       0.05        1.9       0.00        2.5       0.10        5.1       0.10
Harrow              3.7       0.15        5.0       0.10        5.2       0.20       11.6      0.20
Quebec              0.4       0.10        1.9       0.00        1.0       0.05        4.5       0.15
Fredericton        0.8       0.15        1.1       0.05        1.9       0.15        5.9       0.30

Average             1.3       0.07        2.2       0.03        1.6       0.06        5.5       0.12

Table 3. Relative difference (RD, %) and probability (p) for assessing the 
performance of En-WG scenarios for canola yield simulations

                             RCP4.5                          RCP8.5
             2040−2069 2070−2099 2040−2069 2070−2099
                           RD         p          RD         p          RD         p          RD         p

Lethbridge         2.8       0.20        5.0       0.45        0.3       0.10        3.3       0.30
Swift Current    2.1       0.15        0.1       0.00        1.5       0.05        4.0       0.25
Indian Head      0.3       0.00        1.3       0.05        1.5       0.05        0.7       0.05
Melfort               0.3       0.00        2.3       0.15        1.6       0.15        2.2       0.10
Winnipeg           1.2       0.20        3.8       0.60        2.0       0.05        2.5       0.25
Guelph               1.1       0.40        1.2       0.40        1.9       0.60        1.2       0.10
Ottawa               0.6       0.25        1.2       0.40        0.1       0.00        1.5       0.15
Harrow              0.8       0.15        0.7       0.15        1.5       0.15        2.4       0.10
Quebec              1.5       0.45        0.6       0.15        0.6       0.30        2.0       0.20
Fredericton        2.5       0.80        0.1       0.00        0.3       0.05        0.8       0.20

Average             1.3       0.26        1.6       0.24        1.1       0.15        2.1       0.17

Table 4. Relative difference (RD, %) and probability (p) for assessing the 
performance of En-WG scenarios for spring wheat yield simulations
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4.  DISCUSSION

In this study, a stochastic weather generator, LARS-
WG, was used to develop future climate scenarios
(i.e. WG and En-WG scenarios) from multiple GCMs
under 2 forcing scenarios, RCP4.5 and RCP8.5. Sto-
chastic weather generators have attracted attention
in the past decades as a convenient tool for producing
daily climate scenarios in climate change impact
studies (Qian et al. 2005, 2010, Kilsby et al. 2007).
Qian et al. (2011) compared simulated crop yields
with observed and synthetic weather data generated
by a stochastic weather generator. They found that
reliable crop yield estimates could be obtained by us-
ing the stochastic weather data to drive DSSAT crop
growth models at the Canadian locations in their
study. However, stochastic weather generators suffer
from the problem known as overdispersion, i.e. they
underestimate the interannual variability of climate
(Katz & Parlange 1998, Qian et al. 2004, Chen & Bris-
sette 2014). To represent the interannual variability of
climate in a 30 yr period, we calculated the SD of
mean temperature (Tmean) and the coefficient of varia-
tion of accumulated precipitation (Ptotal) in the crop
growing season (May 1 to Aug 31) based on 300 yr
long climate data from the 20 WG scenarios. The in-
terannual variability of Tmean and Ptotal in the growing
season derived from 20 bias-corrected and down-
scaled GCMs (GCM scenarios) was also calculated
for a comparison. Fig. 4 shows the results in 2070−
2099 under RCP8.5 for 2 locations as examples, Swift
Current on the Canadian Prairies and Ottawa in east-
ern Canada. As observed in Fig. 4, the interannual
variability of Tmean and Ptotal in the crop growing sea-
son derived from GCM scenarios is notably larger
than that derived from WG scenarios. The bias correc-
tion of GCMs, used previously in Qian et al. (2019a,
2020), did not change the relative year-to-year varia-
tions of climate (not shown). However, LARS-WG
does not consider potential changes in climate vari-
ability from year to year (Prudhomme et al. 2002), in
addition to the common overdispersion issue for the
baseline climate in stochastic weather generation,
and thus underestimates interannual variability.

Due to the underestimation of the interannual vari-
ability of climate in stochastic weather generation by
LARS-WG, it is very likely that the interannual vari-
ability of crop yields simulated using WG scenarios
will also be underestimated. Thus, we compared the
interannual variability of crop yields simulated using
GCM scenarios with that simulated using WG sce-
narios. Here we only presented the results for canola
yield simulations in 2070−2099 under RCP8.5 (Fig. 5),

as those from all other cases are similar. Al though en-
semble-mean yields derived from WG and GCM sce-
narios are relatively close for most locations (Figs. S1
& S2 in the Supplement at www. int-res. com/ articles/
suppl/  c083 p161_ supp. pdf), the interannual variability
(represented by SD) of crop yields derived from WG
scenarios is always lower than that derived from
GCM scenarios, which is consistent with what is seen
in the WG-generated climate.

Our results support the need for corrections or
improvements in stochastic weather generation algo-
rithms, such as LARS-WG used in this study, to rem-
edy the underestimation of interannual climate vari-
ability, as several previous studies do (Semenov et al.
1998, Mavromatis & Hansen 2001, Qian et al. 2004).
Efforts have been made to reduce overdispersion in
stochastic weather generators (Wang & Nathan 2007,
Kim et al. 2012). For example, Kim et al. (2012) cou-
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Fig. 4. (A) SDs of mean temperature (Tmean) and (B) coeffi-
cients of variation (CVs) of accumulated precipitation (Ptotal)
in the crop growing season (May 1−Aug 31) in 2070−2099
under RCP8.5 at 2 selected locations (i.e. Swift Current and
Ottawa). Boxplots show the 10th, 25th, 50th, 75th, and 90th
percentiles of SDs/CVs across 20 GCM/WG scenarios. Red
dashes represent the means of SDs/CVs derived from 20 

GCM/WG scenarios

https://www.int-res.com/articles/suppl/c083p161_supp.pdf
https://www.int-res.com/articles/suppl/c083p161_supp.pdf
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pled a generalized linear modelling (GLM) approach
into a stochastic weather generator, with seasonally
aggregated climate statistics as additional covariates
to the GLM-based weather generator, through which
the overdispersion phenomenon was effectively re -
duced. Similar measures should be incorporated into
other stochastic weather generators, especially for
studies in which the interannual variability is impor-
tant. However, implementation of such measures in
generating future climate scenarios is still a substan-
tial challenge. The goal of our study is to generate a
single En-WG scenario to drive the crop models in
DSSAT and evaluate its performance in reproducing
ensemble means of crop yields derived from the WG
scenarios of a multi-model ensemble. Our results also
show that the SDs of simulated yields using En-WG
scenarios match well to the ensemble means of the
SDs of yields simulated using WG scenarios. Improv-
ing the overdispersion issue in stochastic weather
generation is beyond the scope of this study. To the
best of our knowledge, our study is the first assess-
ment on the potential of using a single ensemble-
mean climate scenario for crop yield projections in
Canada, and there are no published studies available
for reference or comparison.

The En-WG scenarios are developed for effectively
simulating the ensemble means; thus, they are not ex-
pected to produce information on the spread in crop
yield projections associated with the uncertainty in
climate projections in a multi-model ensemble. As
shown in Figs. 2 & 3, the spread in projected crop
yields across the 20 WG scenarios is large at most lo-
cations, implying considerable uncertainty in crop
yield projections. In addition to the ensemble means
of crop yields as the best estimates, the ranges of crop
yields (uncertainty) will, in many contexts, also be re-
quired by stakeholders for decision making. Consid-

ering the large amount of time needed to run
process-based crop models driven by a large
number of climate scenarios, an algorithm for
selecting a limited number of climate scenarios
from a multi-model ensemble will be useful in
crop yield projections to account for uncer-
tainty. One of the possible options would be to
select a small number of GCMs based on their
climatic sensitivity representative to the full
CMIP5 en semble (Seme nov & Stratonovitch
2015) using a procedure such as the Kat-
savounidis-Kuo-Zhang algo rithm (Katsavouni-
dis et al. 1994), which can be applied for recur-
sively selecting members that best span the
spread of an ensemble (Cannon 2015). Using
estimates of the ranges based on a small subset

of GCMs in combination with the ensemble means
de rived using the approach proposed in this study
could effectively meet the demand of end users. How-
ever, further studies are required to evaluate the ef-
fectiveness of such selection methods on covering the
ranges of full ensembles for crop yield projections.

Nevertheless, more studies may be needed to bet-
ter understand the potential of the proposed ap -
proach for using ensemble-mean climate scenarios in
climate change impact studies with multi-GCM en -
sembles and to explore whether its results could be
reproduced well for different crop types, crop mod-
els, weather generators, and GCM ensembles, al -
though 2 different spring crops and 2 structurally dif-
ferent crop models were used in this study.

5.  CONCLUSIONS

In this study, we developed single ensemble-mean
climate scenarios (En-WG) for 2 future periods (2040−
2069 and 2070−2099) under 2 RCPs (RCP4.5 and
RCP8.5) at 10 locations across Canada using LARS-
WG based on the ensemble means of climate change
factors estimated from 20 CMIP5 GCMs. We com-
pared simulated crop yields using En-WG scenarios
with the ensemble means of simulated yields using
20 climate scenarios (WG scenarios) generated by
LARS-WG based on 20 individual GCMs. We intro-
duced 2 statistical measures, RD and p, of a randomly
chosen GCM outperforming the En-WG scenario for
reproducing the ensemble mean estimate. The simu-
lated crop yields using the En-WG scenarios were
close to the ensemble means of the simulated crop
yields using the 20 WG scenarios. Moreover, using
single En-WG scenarios in crop yield projections
often outperformed using individual WG scenarios.
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Fig. 5. SDs of simulated canola yields in 2070−2099 under RCP8.5 at 10
locations across Canada. Boxplots show the 10th, 25th, 50th, 75th, and
90th percentiles of SDs of yields across 20 GCM/WG scenarios. Red
dashes represent the means of SDs derived from 20 GCM/WG scenar-
ios; solid circles are the SDs of yields driven by En-WG scenarios
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However, climate scenarios generated by LARS-WG
usually resulted in the underestimation of interannual
variability in the simulated crop yields, which is com-
mon for many weather generators. The En-WG sce-
narios have the potential of efficiently estimating the
ensemble means of future crop yield projections in a
multi-GCM ensemble when a stochastic approach is
applied to each of the individual GCMs, in terms of
much less time (only 5% of a 20 GCM ensemble) for
running simulations and a reasonable accuracy (ap-
proximately a 2% error on average).
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