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A B S T R A C T   

Sugar homeostasis is a critical feature of biological systems. In humans, raised and dysregulated blood sugar is a 
serious health issue. In plants, directed changes in sucrose homeostasis and allocation represent opportunities in 
crop improvement. Plant tissue sucrose varies more than blood glucose and is found at higher concentrations 
(cytosol and phloem ca. 100 mM v 3.9–6.9 mM for blood glucose). Tissue sucrose varies with developmental 
stage and environment, but cytosol and phloem exhibit tight sucrose control. Sucrose homeostasis is a conse-
quence of the integration of photosynthesis, synthesis of storage end-products such as starch, transport of sucrose 
to sinks and sink metabolism. Trehalose 6-phosphate (T6P)-SnRK1 and TOR play central, still emerging roles in 
regulating and coordinating these processes. Overall, tissue sucrose levels are more strongly related to growth 
than to photosynthesis. As a key sucrose signal, T6P regulates sucrose levels, transport and metabolic pathways 
to coordinate source and sink at a whole plant level. Emerging evidence shows that T6P interacts with meristems. 
With careful targeting, T6P manipulation through exploiting natural variation, chemical intervention and genetic 
modification is delivering benefits for crop yields. Regulation of cereal grain set, filling and retention may be the 
most strategically important aspect of sucrose allocation and homeostasis for food security.   

1. Introduction 

Sucrose is the first major end-product of photosynthesis and starting 
point for growth and development. In this pivotal position between 
source and sink, sucrose plays a principal role in providing the carbon 
for the variety and diversity seen in the plant kingdom including for crop 
yields. The regulation of sugar homeostasis is a rule of life in biology that 
is more complex in plants than in other organisms as it involves more 
and varied components than for example the human insulin/glucagon 
control of blood glucose. Plant tissues have both symplasm (cytosol, 
phloem) where sucrose is most tightly controlled and apoplasm (vacu-
ole, cell wall space) where sugar levels are more variable. Whereas sugar 
stability is important in human fitness, provision of increased levels of 
sucrose to harvested sinks looks a promising route for improving crop 
yields for both yield potential and resilience (Nuccio et al., 2015; Flavell, 
2023; Shen et al., 2022). There is evidence of both historic and ongoing 
selection of components of sucrose and related carbohydrate meta-
bolism and homeostasis for yield in wheat e.g. trehalose 6-phosphate 
(T6P) metabolism (Lyra et al., 2021), sucrose and starch metabolism 
e.g. sucrose synthase (Hou et al., 2014), cell wall invertase CWIN (Wang 

et al., 2008), ADPG transport (Wang et al., 2019) and sugar transport e. 
g. Sugars Will Eventually be Exported Transporters (SWEET4) (Sosso 
et al., 2015). Sugar transporters, enzymes of sucrose synthesis and 
breakdown as well as the underlying regulatory systems e.g. trehalose 
6-phosphate (T6P) signalling which interacts with SNF1 related protein 
kinase1 (SnRK1) and TOR (target of rapamycin) kinase master regula-
tors are particularly important in determining tissue levels of sucrose 
(Zhang et al., 2009; Morales-Herrera et al., 2023). It is likely that se-
lection pressures for crops compared to plants in the natural environ-
ment are different in the area of sucrose homeostasis and allocation 
especially for the setting and filling of reproductive structures. This may 
involve altered expression levels of genes, gene duplication and prolif-
eration e.g. trehalose phosphate synthase (TPS) and trehalose phosphate 
phosphatase (TPP) genes (Paul et al., 2018; Lyra et al., 2021). For high 
yields, adequate provision of more sucrose to harvested plants of the 
plant e.g. grain, seed or tubers appears to have a high level of control 
downstream of photosynthesis. It is likely that photosynthetic 
improvement as a route to more sucrose will require effective integra-
tion of elevated photosynthesis within the source-sink and sucrose ho-
meostatic system to improve crop yields of major crops such as cereals in 
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typical agricultural conditions. 
In this review, we summarise recent developments in understanding 

sucrose homeostasis in plants including Arabidopsis as a model system 
where mechanistic understanding is often best developed, but also 
focusing to a large extent on cereals, the main food security crops, 
highlighting strategic importance and opportunity in yield 
improvement. 

2. The generation of sucrose in photosynthesis as starting point 
for sucrose homeostasis 

Sucrose is generated as the first major end product of photosynthesis 
from triose phosphate exported from chloroplasts counter-exchanged 
with inorganic phosphate from the cytosol (Fig. 1). Flux of triose 
phosphate towards sucrose is catalysed by fructose 1,6-bisphosphatase 
(FBPase) as a major control point regulated by fructose 2, 6-bisphos-
phate (F26BP) (Stitt et al., 1984). F26BP regulates partitioning be-
tween sucrose and starch in fluctuating light and temperature in 
Arabidopsis (McCormick and Kruger, 2015), but not in wheat (Trevan-
ion, 2002) and targeting F26BP has not been pursued as a target in crop 
improvement. Sucrose phosphate synthase (SPS) catalyses the next 
highly regulated step of carbon flux from photosynthesis to sucrose 
(Ruan, 2014) (Fig. 1). Overexpression of SPS can increase sucrose 
accumulation independently of photosynthetic rate at the expense of 
starch and amino acids in tomato (Laporte et al., 2001), but this trans-
genic strategy may not be readily reproducible and has not been 
deployed in crop improvement. Strong endogenous regulation of highly 
regulated steps by metabolites and phosphorylation control as for SPS 
(McMichael et al., 1995) may confound attempts to increase enzymatic 
activities in transgenic approaches. An enzyme not thought to be a 
strong control point in the flux to sucrose, sucrose phosphate 

phosphatase (SPP) shows more promise for increasing sucrose content 
and yield. Jing et al. (2022) showed higher expression of SPP (Fig. 1) 
TaSPP-5A in TaSPP-5A haplotypes (a group of alleles that are inherited 
together from a single parent) in wheat seedling leaves compared to 
haplotypes of TaSPP-5B and TaSPP-5D. Higher expression of TaSPP-5A 
was associated with increased sucrose content and spike thousand-grain 
weight. Selection of favourable SPP haplotypes may provide opportunity 
in breeding programmes. 

Once synthesised in the cytosol, sucrose can be transiently stored in 
the vacuole in leaves to high levels. Vacuoles occupy as much as 90 % of 
cell volume serving as short- and long-term sugar stores (Vu et al., 
2020). Sugar exchange with vacuoles is enabled by tonoplast mono-
saccharide transporters (TMT also known as TST), plant sucrose/H+

cotransporters (SUT or SUC), vacuolar glucose transporters, early 
response to dehydration-like (ERDL) monosaccharide transporters and 
SWEETs (Wormit et al., 2007; Schulz et al., 2011; Hedrich et al., 2015; 
Julius et al., 2017; Jeena et al., 2019). Induction of fructan synthesis by 
sucrose serves as a polysaccharide reserve in vacuoles of vegetative 
tissues of cereals (e.g. forage grasses, wheat and barley) and in the 
perennating organs of chicory, artichoke, asparagus, dahlia and the 
onion family (Cairns, 2003). In a transgenic approach sugars were 
relocalised from the vacuole by modifying the tonoplast transporters 
TMT and tonoplast sucrose/H+ cotransporter and SUC4 expression in 
Arabidopsis (Anaokar et al., 2021) which moved sucrose to stimulate 
fatty acid and triacylglycerol synthesis in the cytosol. This may be a 
strategy to alter the accumulation of end products in plants. Interest-
ingly, where sucrose is diverted to other end-products such as lipids as in 
Lolium perenne, in this case by introducing two genes of lipid synthesis 
and storage (Beechey-Gradwell et al., 2019), the transgenic plants 
exhibited increased photosynthesis and overall biomass. The accumu-
lation of foreign end-products in the form of fatty acids may disengage 

Fig. 1. Schematic of regulation of sucrose homeostasis in source leaves. Triose phosphate from chloroplasts is converted to fructose 6-phosphate (hexose-P) which 
together with UDP glucose provide substrate for sucrose synthesis through sucrose phosphate synthase (SPS), inhibited by phosphorylation and sucrose phosphate 
phosphatase (SPP). Glucose 6-phosphate (hexose-P) and UDP glucose provide substrate for the synthesis of T6P (trehalose 6-phosphate) through trehalose phos-
phatase synthase 1 (TPS1) and trehalose phosphate phosphatases (TPP). Apoplastic sucrose loading to the phloem is mediated by the successive action of SWEETs and 
SUC2. SUC2 is phosphorylated by WALL-ASSOCIATED KINASE LIKE 8 (WAKL8) and its turnover rate is regulated by UBIQUITIN-CONJUGATING ENZYME 34 
(UBC34), both in a light-dependent manner (Xu et al., 2020). ETHYLENE-INSENSITIVE3 (EIN3) directly inhibits SUC2 activity by binding to the SUC2 promoter. 
HEXOKINASE1 (HXK1) increases sucrose phloem loading in source tissues by destabilising EIN3 thereby elevating sucrose levels in sink roots (Tong et al., 2022). 
cwINV, cell wall invertase; FBP, fructose-1, 6-bisphosphate; FBPase, fructose 1,6 bisphosphatase; SnRK1, sucrose non-fermenting1 (snf1)-related kinase 1; SWEETs, 
sugars will eventually be exported transporters; Suc-6-P, sucrose 6-phosphate; SUT/SUC, sucrose transporter or carrier; TPTs, triose phosphate/inorganic phosphate 
translocators. 
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metabolism from normal endogenous sucrose homeostasis and feedback 
regulation of photosynthesis, thereby promoting overall productivity 
(Paul and Eastmond, 2020). This may represent a strategy of circum-
venting sucrose homeostatic mechanisms to increase productivity. 

In addition to sucrose synthesis in cytosol and accumulation in 
vacuole, both chloroplasts and mitochondria contain invertases and it is 
generally accepted that sucrose metabolism occurs in these compart-
ments too (Naegele et al., 2013; Martín et al., 2013; Vargas et al., 2008). 
For chloroplasts, invertases and a recently described chloroplastic H+

sugar antiporter may facilitate sucrose and hexose homeostasis between 
plastids and cytosol (Patzke et al., 2019). Overall, however, very little is 
known about the regulation of sucrose partitioning between sub-cellular 
compartments. 

The synthesis of transitory starch in chloroplasts provides carbon 
storage and buffering of sucrose and a further means of sucrose ho-
meostasis (Smith and Stitt, 2007). In leaves of grasses and cereals, 
however, diel starch turnover is small but there is substantial diel 
turnover of sucrose and accumulation of sucrose in leaves during the day 
(Smith and Zeeman, 2020). In wheat this was related to less inactivation 
of SPS by accumulating sucrose compared to starch-storing species 
(Trevanion et al., 2004). Other species do accumulate transitory starch 
during the day as main storage carbohydrate with models for the 
regulation of accumulation as either an overflow product from high 
photosynthesis or being more strongly related to the “anticipated” 
length of the night (in Arabidopsis) and hence regulated by growth 
rather than photosynthesis (Smith and Stitt, 2007; Mengin et al., 2017; 
Sharkey, 2017). 

3. The key roles of T6P-SnRK1 and TOR 

Trehalose 6-phosphate (T6P) is the sugar signal of a sucrose signal-
ling mechanism in plants discovered over the past 27 years (Goddijn 
et al., 1997; Paul et al., 2001; Wingler, 2002). A powerful regulatory role 
for T6P was first shown when T6P was found to be indispensable for 
sucrose utilization (Schluepmann et al., 2003). T6P has been shown 
subsequently to be a universal mechanism of integrating sucrose supply 
into metabolism, development and physiology in plants and crops and 
hence sucrose homeostasis (Paul et al., 2020; Fichtner and Lunn, 2021). 
Both SnRK1 and TOR sense carbon and nutrient status and act as master 
regulators of metabolic homeostasis acting as antagonistic promoters 
and inhibitors of catabolism and anabolism, respectively. There have 
been excellent recent reviews on both SnRK1 and TOR (Peixoto and 
Baena-González, 2022; Artins and Caldana, 2022; Flavell, 2023) so 
detailed coverage of each is not provided here. Instead we cover mode of 
action of T6P, as a major regulator of sucrose homeostasis, which is 
thought to be explained at least in part from T6P inhibition of SnRK1 
(Zhang et al., 2009) and recently through T6P activation of TOR 
(Morales-Herrera et al., 2023). 

SnRK1 is activated by low energy (directly by AMP) which leads to 
metabolic reprogramming by transcriptional control of a large number 
of genes towards catabolism and energy conservation (Baena-González 
et al., 2007; Henninger et al., 2022). TOR is activated by favourable 
energy and nutrient conditions including amino acids, adjusting growth 
to available resources, particularly through regulation of cell cycle, 
promotion of synthesis of ribosomes, protein, nucleotide, lipids and 
amino acids, and suppression of the turnover of macromolecules 
through autophagy (Artins and Caldana, 2022). TOR can also induce 
SnRK1 under favourable conditions as a means of feedback control of 
itself (Jamsheer et al., 2021) and SnRK1 can inhibit TOR (Belda-Palazón 
et al., 2022). 

T6P inhibits SnRK1 to regulate metabolic pathways to promote 
anabolism at the transcriptional level (Zhang et al., 2009; Nunes et al., 
2013a). In Arabidopsis rosettes T6P also regulates the enzymatic activity 
of key enzymes like phosphoenol pyruvate carboxylase (PEPC) and ni-
trate reductase through phosphorylation (Figueroa et al., 2016), starch 
metabolism through posttranslational redox activation of AGPase (Kolbe 

et al., 2005) and starch degradation (Martins et al., 2013) thereby 
regulating sucrose homeostasis. T6P inhibition of SnRK1 is unique in 
plants; activities of the closely related AMPK and SNF1 of other organ-
isms are not affected by T6P (Zhang et al., 2009). Zhang et al. (2009) 
showed that T6P inhibits SnRK1 in all Arabidopsis tissues except mature 
leaves and particularly strongly in sinks such as young inflorescences. In 
photosynthetic tissue where inhibition of SnRK1 by T6P is weakest, T6P 
levels were still related to SnRK1 marker gene transcripts (Peixoto et al., 
2021; Avidan et al., 2023). It is likely that other interacting factors 
(Zhang et al., 2009) for example upstream protein kinase (Zhai et al., 
2018) and class II TPSs (Van Leene et al., 2022) may modulate SnRK1 
response to T6P, but exactly how this operates in mature leaves or 
indeed growing tissues is still incomplete. The sugar-phosphates glucose 
6-phosphate and glucose 1- phosphate also inhibit SnRK1 (Nunes et al., 
2013b; Avidan et al., 2023) in an additive and synergistic manner with 
T6P, respectively (Nunes et al., 2013b). 

In actively growing sink tissue, T6P extends its role in cellular su-
crose homeostasis to play a dynamic role in promoting growth and 
development and regulating plant architecture and crop yield. Within 
individual cells of sink tissues the T6P: sucrose balance or nexus seen in 
Arabidopsis rosettes (Figueroa and Lunn, 2016) can be overridden by 
cell type and developmental stage e.g. in wheat grain (Martínez-Barajas 
et al., 2011) and in maize cobs (Oszvald et al., 2018) see later for fuller 
consideration of cereal grain. Variation in SnRK1 and TOR has been 
directly associated with crop yield (Flavell, 2023), but as SnRK1 and 
TOR themselves are highly conserved and so central, such direct asso-
ciations may be rare. A more successful approach to modify carbon/-
energy signalling for yield through SnRK1 and TOR may be through 
more specific targeting or expression control of SnRK1/TOR at certain 
developmental time points, through TPSs and TPPs which alter T6P 
levels and signalling or through chemical intervention of T6P (Griffiths 
et al., 2016; Paul et al., 2020; Flavell, 2023). 

Significant for crop yields is that emerging data reveal that T6P likely 
enables commitment of sucrose to reproductive development which 
forms the basis of cereal yields. It is likely that allocation of sucrose to 
reproductive tissues is not yet optimised for yield and in this regard 
targeting the T6P pathway presents great opportunity. Several TPS and 
TPP genes associated with reproductive traits were still undergoing 
positive selection in the HIBAP (high biomass association panel) wheat 
population (Lyra et al., 2021) indicating potential for further selection 
for yield. Whilst TPS and TPP genes clearly associate with grain yield 
traits (Lyra et al., 2021) detailed mode of action is not known. It is 
known that T6P regulates reproductive development through flowering 
time via FLOWERING LOCUS T (FT) in Arabidopsis (Wahl et al., 2013) 
shown to be dependent on SnRK1 in suppressor screens (Zacharaki et al., 
2022). FT and TERMINAL FLOWER1 (TFL1) have been identified as 
closely related eukaryotic phosphatidylethanolamine-binding proteins 
(EuPEBPs) that integrate multiple environmental stimuli and act 
antagonistically to determine the optimal timing of the floral transition 
(Bennett and Dixon, 2021). FT and TFL1 act like hormonal signals, 
transported in the phloem from their primary site of expression in leaves 
to a primary site of action in the shoot meristem (Bennett and Dixon, 
2021). In grasses compared to other species, copy number of EuPEBPs 
has expanded with unknown consequences for EuPEBP function. How 
T6P interacts with this expanded pathway in cereals is not known. 
Coincidently, the T6P pathway too has expanded in cereals (Paul et al., 
2018; Lyra et al., 2021) and may fulfil a more general role in repro-
ductive development beyond flowering time control. TPS and TPP genes 
are linked to several reproductive traits in wheat, particularly floret 
fertility and grain number (Lyra et al., 2021) (Fig. 2), and grain size and 
filling (Zhang et al., 2017; Liu et al., 2023). In maize, TPS genes are 
listed as domestication improvement genes (Hufford et al., 2012). 
However, the mechanistic details for the regulation of fertility, grain 
number and size by the T6P pathway are still sketchy. TEOSINTE 
BRANCHED1 (TB1) in maize, a domestication gene responsible for loss 
of tillers and apical dominance regulates the T6P pathway by binding 
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the promoter of class II TPS genes to promote their expression. Sucrose 
levels may be modulated through the TB1 target, ZmSWEET15b (Dong 
et al., 2019) (Fig. 2). TB1 may therefore regulate architecture at least in 
part through control of sucrose homeostasis and T6P. Interestingly, TB1 
also regulates meristems in spikes. Allelic variation of TB1 in wheat 
affects the rate of spikelet meristem formation reducing FT1-dependent 
activation of spikelet meristem identity genes (Dixon et al., 2018a,b), 
affecting spike fertility and the number of spikelets and paired spikelets 
(Dixon et al., 2018a,b). Genes involved in the regulation of meristems 
such as TB1 and others such as in the CLAVATA–WUSCHEL pathway 
which regulate inflorescence meristem size show great promise in yield 
improvement (Liu et al., 2021). Regulation of meristem activity by 
sucrose/T6P is assuming greater importance than previously appreci-
ated in axillary and spikelet meristems. Indeed, in axillary meristems 
regulation by T6P may supersede hormonal regulation (see Lindsay 
et al., 2024, for more general discussion). T6P also regulates new lateral 
roots from lateral root pericycle tissue (Morales-Herrera et al., 2023) 
(see later in this section). 

Recently, several different interactors with T6P and SnRK1 have 
been found. A new regulatory module links SnRK1 and a TPP gene 
through a bHLH111 transcription factor OsSGI1 in rice (Wang et al., 
2022). OsSnRK1a-dependent phosphorylation of OsSGI1 enhanced the 
direct binding to the E-box OsTPP7 promoter, inhibiting transcription of 
OsTPP7, which increased T6P content and decreased sucrose content. 
The knockout mutants, sgi1-1/2/3, had larger grain, enhanced seed 
germination and vegetative growth. In another regulatory node a 
NAC23 transcription factor represses a TPP driving a feedforward loop 
NAC23-TPP-T6P-SnRK1 to increase allocation of sucrose away from 
leaves towards grain and resulting up to 17 % higher yield due to more 
panicles and larger grains in paddy-field-grown rice and higher rates of 
photosynthesis (Li et al., 2022). Further, heterologous expression of a 
rice TPP in maize with a MADS6 promoter expressed in reproductive 
tissue decreased T6P in cobs during early reproductive development 

which altered sucrose allocation within the cob away from pith towards 
the developing grain. This modification also resulted in higher photo-
synthesis likely because of the higher sink demand from the sucrose 
stimulation of developing grain (Fig. 2) (Oszvald et al., 2018). Closer 
examination of cob tissues showed that pith cells with reduced T6P had 
less sucrose, but endosperm tissue with less T6P had more sucrose 
(Fig. 2), breaking the T6P: sucrose relationship seen in Arabidopsis ro-
settes (Figueroa and Lunn, 2016). Enhanced expression of SWEETs was 
proposed to account for altered sucrose allocation from pith to seed. 
Grain number retention and yield was increased, particularly under 
drought. The examples in Li et al. (2022) and Oszvald et al. (2018) both 
result in changes in sucrose allocation towards grain enhancing yield 
and photosynthesis (see fuller discussion in Paul et al., 2022). In wheat 
grain (Martínez-Barajas et al., 2011), it was found that in pericarp T6P 
was only related to high sucrose levels before grain filling, however in 
endosperm T6P/sucrose ratio was maintained during development. 
These results show strong tissue and developmental dependency of the 
T6P/sucrose nexus. 

Other work has shown integration of T6P and auxin signalling. In 
pea, T6P promotes the expression of the auxin biosynthesis gene 
TRYPTOPHAN AMINOTRANSFERASE RELATED2 (TAR2) in developing 
seed (Meitzel et al., 2021). The resulting effect on auxin concentrations 
mediated the T6P-induced activation of starch storage processes. In this 
case auxin acts downstream of T6P to facilitate seed filling. In a different 
scenario in lateral roots in Arabidopsis, auxin acts upstream of T6P to 
promote lateral root growth (Morales-Herrera et al., 2023) (Fig. 2). 
Here, auxin inhibited expression of TPPB in lateral root founder cells 
from the pericycle leading to increased T6P levels. T6P then inhibits 
SnRK1 and activates TOR through phosphorylation to promote lateral 
root growth. Both examples show integration of hormone and metabolic 
signalling; Morales-Herrera et al. (2023) shows for the first time possible 
direct regulation of TOR by T6P and interaction with lateral root 
meristems. 

Fig. 2. Simplified schematic of integration of sucrose homeostasis through trehalose 6-phosphate (T6P) into growth and development in sinks underpinning traits 
that impact crop yield in maize and wheat, and in Arabidopsis. Regulation of spikelet and grain number by TPSs (trehalose phosphate synthases) and grain size, 
spikelet and grain number by TPPs (trehalose phosphate phosphatases) (Lyra et al., 2021) through unknown mechanisms. Wheat domestication-related gene TB1 
regulates axillary meristems and tillering in maize (Dong et al., 2019) and paired spikelet formation in spikelet meristems (Dixon et al., 2018a,b). Targeted expression 
of TPP in maize using MADS6 promoter breaks the link between T6P and sucrose enhancing the flow of sucrose into grain from pith tissue increasing grain number 
retention under drought (Oszvald et al., 2018). Regulation of lateral root growth in Arabidopsis involves T6P downstream of auxin signalling in pericycle lateral root 
founder cells and regulation of SnRK1 and TOR Morales-Herrera et al., 2023). 
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In further examples that show the widespread and diverse impacts of 
T6P signalling, germination under anoxia in rice was promoted by a TPP 
gene expressed in seeds that underlay a quantitative trait locus for 
germination under flooding (Kretzschmar et al., 2015). The TPP gene is 
thought to reduce T6P levels to activate starch mobilisation through 
T6P/SnRK1 providing sugar to support germination. Beyond starch 
crops, oil metabolism can be enhanced by T6P in brassica (Zhai et al., 
2018). This latter finding implies general upregulation of primary 
end-product accumulation (oil and starch) by T6P. A link between 
another end product, raffinose, and TPS1 was also found in Arabidopsis. 
Functionally distinct TPS1 isoforms differentially affected raffinose 
particularly under heat stress, which was associated with reduced 
endogenous sucrose levels and thermotolerance (Reichelt et al., 2023). 

4. Export of sucrose from source leaves 

Sucrose is loaded apoplastically into the phloem in leaves of most 
herbaceous plants, including crops, for transport from leaves to sinks 
(Fig. 1) (Braun, 2022). Sucrose diffuses through plasmodesmata from 
mesophyll into the phloem parenchyma and then is effluxed to the cell 
wall by SWEET transporters. SWEETs are a family of around 20 
paralogues in angiosperms that mediate passive low-affinity and 
high-capacity transport of sugars across membranes following concen-
tration gradients essential for phloem loading (Eom et al., 2015). In 
Arabidopsis, SWEET11 and 12 are expressed in phloem parenchyma 
cells adjacent to the companion cell sieve element complex (Chen et al., 
2012) and are co-expressed with SPS for coordination of sucrose syn-
thesis and transport. SWEET11 and 12 are regulated post-translationally 
by phosphorylation through drought- and abscisic acid-activated SnRK2 
protein kinases (Chen et al., 2021). Activation through this mechanism 
enhances the oligomerisation and sucrose transport activity of SWEETs, 
elevating sucrose contents in roots, improving root growth and root: 
shoot ratio under drought stress, enhancing resilience to stress (Chen 
et al., 2021). 

After the action of SWEETs in exporting sucrose into the apoplastic 
space, sucrose transporters (SUT/SUC) in minor vein phloem actively 
take up sucrose into phloem companion cells and sieve elements. Active 
sucrose uptake generates sucrose concentrations of up to an order of 
magnitude higher than surrounding cells (Braun, 2022). The proton 
gradient across the membrane of the companion cell-sieve element 
complex is created by an ATPase at the companion cell plasma mem-
brane moving sucrose against its concentration gradient with a proton 
moving down its electrochemical potential (proton-sucrose symport). 
Once loaded in the sieve tubes sucrose moves by mass flow by the 
osmotically generated hydrostatic pressure difference between source 
and sink tissues according to the Munch pressure flow hypothesis. 
AtSUC2 and its homologues in crops is expressed specially in companion 
cells (Julius et al., 2017). SUC2 plays a central role in the loading of 
sucrose into the phloem (Slewinski and Braun, 2010) by setting the rate 
of carbon export from source leaves. SUC2 overexpression in paddy rice 
increased grain size and yield (Wang et al., 2015) (Fig. 1). SUC2 is 
phosphorylated by WALL-ASSOCIATED KINASE LIKE 8 (WAKL8) and its 
turnover rate is regulated by UBIQUITIN-CONJUGATING ENZYME 34 
(UBC34), both in a light-dependent manner (Xu et al., 2020). ubc34 
mutants of Arabidopsis increase phloem loading, which increases 
biomass and yield in Arabidopsis (Xu et al., 2020). Recently it was 
shown that transcription factor ETHYLENE-INSENSITIVE3 (EIN3) 
directly inhibits SUC2 activity by binding to the SUC2 promoter. 
HEXOKINASE1 increases sucrose phloem loading in source tissues by 
destabilising EIN3 thereby elevating sucrose levels in sink roots (Tong 
et al., 2022). A signalling role has been proposed for other members of 
the SUT gene family, most prominently for potato SUT4 in shade 
avoidance and in influencing the hormonal regulation of flowering and 
tuberization, without making any known major contribution to sucrose 
transport itself (Chincinska et al., 2008, 2013). Interestingly, maize 
sucrose transporter1 (sut1) loss-of-function mutant had severely reduced 

sucrose transport phloem pressure and mass flow due was maintained by 
increased K+ loading which compensated for decreased sucrose loading 
(Babst et al., 2022). In potato at the onset of tuber development, the 
mode of sucrose unloading switches from apoplastic to symplastic 
mediated by SP6A, the FLOWERING LOCUS T (FT) homologue in potato. 
SP6A as a mobile signal in the phloem interacts with the sucrose efflux 
transporter SWEET11 blocking leakage of sucrose to the apoplast 
thereby promoting the alternative symplastic sucrose transport (Abe-
lenda et al., 2019). This example shows the flexibility and complexity of 
sucrose transport and its regulation. Selection of beneficial SP6A alleles 
could alter plant architecture for improved tuber yield (Lehretz et al., 
2021). Interestingly, when sucrose production by photosynthesis ex-
ceeds sucrose loading into the phloem, the surplus sucrose accumulated 
in the apoplast is carried toward the stomata by the transpiration stream 
promoting stomatal closure via hexokinase, to feedback regulate 
photosynthesis and also limit water loss (Kelly et al., 2013). Overall, in 
the export of sucrose from leaves, the coupled action of SWEETs and 
sucrose transporters SUC/SUT is a key component of sucrose homeo-
stasis locally and at a whole plant level, representing possible targets to 
increase sucrose flow to sinks to increase crop yields. 

5. Import of sucrose into cereal reproductive tissue 

Sucrose import into yield-producing structures of crops is one of the 
most strategically important processes for food security. In cereals, su-
crose import and homeostasis in the reproductive structures determine 
grain numbers (grain set and retention) and grain filling (grain size). In 
wheat spikelets between 6 and 12 floret primordia are initiated per 
spikelet yet fewer than 4–5 floret primordia survive to reach anthesis 
(González et al., 2003). Sucrose supply in the two weeks before anthesis 
is thought to be crucial in establishing grain number as part of the 
decision-making process in plants for allocating resources (Sinclair and 
Jamieson, 2006; Reynolds et al., 2021) although is also related devel-
opmental factors (Backhaus et al., 2023) in addition to assimilate 
supply. 

Despite the discovery of genes that regulate grain number (Dixon 
et al., 2022) the molecular mechanisms through which sucrose regulates 
grain numbers are not known. Meristem fate in maize reproductive 
structures is regulated by putative sugar signalling genes TPPs 
RAMOSA3 and TPP4 but their mechanism of action remains unknown 
and may be independent of T6P (Claeys et al., 2019). Ovule initiation is 
thought to be controlled by sugar homeostasis and signalling through 
cell wall invertases (Liao et al., 2020). Sugar signals generated by in-
vertases in the cell wall matrix via invertases (CWIN) may be sensed by 
and transmitted through plasma membrane hexose transporters which 
modulate cytosolic sugar homeostasis and signalling and/or 
receptor-like kinases to potentially interact with small GTPase (Rop) 
pathways. These CWIN-originated signals are then relayed to the nuclei 
to regulate the expression of genes encoding auxin signalling compo-
nents and MADS-box transcription factors, thereby modulating ovule 
initiation and differentiation. Later, pollination is a key time when 
activation of sugar import and signalling during the transition of the 
ovary to grain establishes grain sink capacity to continue acquiring 
further carbon for grain survival and filling (Shen et al., 2020, 2023). 

Sugar import into developing grains after pollination is conserved in 
cereals (Shen et al., 2023). Sucrose moves symplastically through 
phloem plasmodesmata connecting the terminal vascular bundle to the 
pedicel of maize grain or the equivalent ventral surface of wheat and rice 
grains in the innermost cell layer of maternal-facing endosperm. Sucrose 
then moves out of the maternal tissue into the apoplast before uptake 
into the endosperm through basal cells. Here in the extracellular space of 
the maternal-filial interface, CWIN hydrolyses apoplastic sucrose into 
hexoses, to play a crucial role in the modulation of sugar uptake into 
filial tissues. Grain basal cells are enriched in diverse SUC/SUT, hexose 
transporters (MST, STP) and SWEETs for sugar uptake into endosperm 
(Shen et al., 2023). Loss of function of these transporters and CWINs via 
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mutation or genome-editing in rice reduced grain weight and size (Wang 
et al., 2008; Ruan, 2022). Clade III SWEET uniporters localized on the 
innermost cell layers of maternal tissue are key players for export of 
sucrose into the apoplast, such as OsSWEET11/15 and ZmSWEET11 
(Yang et al., 2018; Shen et al., 2022) and sugar transporters on outer cell 
layers of endosperm which take up sugars from the apoplast, including 
OsSUT1, HvSUT1/2, ZmSUT1, Clade III ZmSWEETs for sucrose and 
ZmSWEET4c for monosaccharides (Shen et al., 2022; Eom et al., 2015; 
Radchuk et al., 2017). In addition, a recent study identified a novel 
Sucrose and Glucose Carrier 1 (ZmSUGCAR1), a member of the nitrate 
transporter 1/peptide transporter family (NRT1/PTR), that acts as an 
active H+-sucrose symporter at the basal endosperm transfer cell layer of 
maize (Yang et al., 2022). 

After anthesis, grain can be lost due to abiotic stress such as drought 
and heat (Rajala et al., 2009) regulates at least in part by sugars. Lower 
soluble carbohydrate levels induce autophagy and floret death, espe-
cially in florets of the distal part of the spikelet (Ghiglione et al., 2008). 
Drought suppresses sugar transporters at the maternal filial interface, 
yet promotes uptake into filial tissues (Shen et al., 2022). Abortion can 
be alleviated by supplying sucrose (Zinselmeier et al., 1995). Sucrose 
utilization and transport e.g. through CWIN, T6P, SWEETs and the 
equilibrium between ethylene and spermine regulate the abortion pro-
cess under drought (Shen et al., 2020). 

Starch is a major consumer of sucrose during grain filling and con-
stitutes the main component of cereal seed at harvest. A recent study in 
wheat showed the expression of 74 genes linked to starch accumulation 
(Gu et al., 2021) that are expressed in the endosperm during the 
grain-filling stage after 8 DAA. SUT1 and sucrose synthase were pro-
posed as important for the entry of sucrose into starch biosynthesis in 
wheat (Gu et al., 2021), with several transcription factors coordinating 
the expression of starch biosynthesis genes (Huang et al., 2021). In rice, 
sucrose synthase involved in the entry of carbon into starch synthesis has 
been targeted successfully to increase grain weight (Fan et al., 2019). 

6. Supra accumulation of sucrose in cereals 

Different aspects of the sucrose homeostatic mechanism are causally 
involved in hyperaccumulation of sucrose. In sugar cane, many com-
ponents of sucrose metabolism appear necessary for high levels of su-
crose accumulation, including miRNA-target mRNA pairs which target 
transcription factors involved in sugar metabolism (Wang et al., 2022). 
Sugar cane contrasts with sugar beet, where tonoplast sugar transporters 
(BvTST2.1) are responsible for sucrose accumulation of up to 18 % of 
fresh weight in beet (Jung et al., 2015). Despite knowledge of the 
regulation of sugar accumulation, translating it into the improvement of 
sugar content in these sugar crops is still a challenge and there are no 
reports of this having been achieved. Sweetcorn accumulates very high 
concentrations of sugars in the kernels through naturally occurring 
mutations in genes encoding enzymes in starch biosynthesis, sugary-1 
(Su1) a starch-debranching enzyme (isoamylase-1) and shrunken-2 (Sh2) 
and Brittle-2 (Bt2) encoding subunits of AGPase (Halford et al., 2011). 
Mutated AGPase also was found as another target underpinning high 
sugar accumulation in tomato fruit in a screening of tomato mutants 
(Matsukura et al., 2007). In sorghum, manipulation of T6P metabolism 
by TPPs appears to be causally related to the large differences in 
assimilate partitioning between sweet and grain sorghum (Li et al., 
2019) underlying active starch, sucrose and cell wall metabolism and 
sugar accumulation in tall stems of sweet sorghum compared to the 
down-regulation of these pathways in stems of grain sorghum. Beyond 
sorghum there are no examples of T6P metabolism being related to 
hyperaccumulation of sucrose in cereals or indeed other crops. Rather in 
cereals T6P regulates and integrates sugar supply with starch meta-
bolism and reproductive development, spikelet formation, and final 
grain number and size. 

7. Concluding remarks 

Sucrose homeostasis in plants is regulated by a complex interaction 
of enzymes and transporters orchestrated at least in part by master 
regulators SnRK1 and TOR which respond to energy, carbon and nu-
trients. T6P-SnRK1 and TOR regulate metabolic reprogramming and 
growth and development in relation to resource supply to maintain su-
crose homeostasis and link sucrose with growth and development. For 
the complex trait of yield, some domestication genes that affect archi-
tecture such as TB1 will inevitably have affected sucrose homeostasis, in 
this case likely through T6P signalling. Changing sucrose homeostasis 
for yield could be enabled by simple interventions such as of sugar 
transporters and metabolic enzymes but given the complexity of the 
yield trait may require several changes or modification of master regu-
lators for larger coordinated changes in source and sink. Modifying su-
crose integration into yield traits through plant architecture, grain 
setting and filling and starch accumulation in sinks provides great op-
portunity to increase yield itself. Modulation of SnRK1 activity by T6P is 
providing successful examples of yield improvement which represents a 
major opportunity for selection of natural variation in the T6P pathway, 
gene editing, transgenic and chemical intervention strategies. 
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