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Abstract: A sensitivity analysis is critical for determining the relative importance of model parameters
to their influence on the simulated outputs from a process-based model. In this study, a sensitivity
analysis for the SPACSYS model, first published in Ecological Modelling (Wu, et al., 2007), was
conducted with respect to changes in 61 input parameters and their influence on 27 output variables.
Parameter sensitivity was conducted in a ‘one at a time’ manner and objectively assessed through
a single statistical diagnostic (normalized root mean square deviation) which ranked parameters
according to their influence of each output variable in turn. A winter wheat field experiment provided
the case study data. Two sets of weather elements to represent different climatic conditions and four
different soil types were specified, where results indicated little influence on these specifications
for the identification of the most sensitive parameters. Soil conditions and management were
found to affect the ranking of parameter sensitivities more strongly than weather conditions for the
selected outputs. Parameters related to drainage were strongly influential for simulations of soil
water dynamics, yield and biomass of wheat, runoff, and leaching from soil during individual and
consecutive growing years. Wheat yield and biomass simulations were sensitive to the ‘ammonium
immobilised fraction’ parameter that related to soil mineralization and immobilisation. Simulations
of CO2 release from the soil and soil nutrient pool changes were most sensitive to external nutrient
inputs and the process of denitrification, mineralization, and decomposition. This study provides
important evidence of which SPACSYS parameters require the most care in their specification.
Moving forward, this evidence can help direct efficient sampling and lab analyses for increased
accuracy of such parameters. Results provide a useful reference for model users on which parameters
are most influential for different simulation goals, which in turn provides better informed decision
making for farmers and government policy alike.

Keywords: sensitivity analysis; winter wheat; drainage; yield; soil water dynamics; soil loss; soil pool

1. Introduction

Process-based models for agricultural systems provide a widely used and efficient
tool for understanding the complex interactions between soil water, carbon (C), nitrogen
(N), phosphorus (P), and plant growth [1,2], where both production under various envi-
ronmental conditions [3] and nutrient cycling [4] can be simulated. To run a simulation
successfully, models need to be informed with parameters that accurately quantify indi-
vidual processes, together with local soil conditions, weather, and management practices.
However, parameters that might vary with environmental conditions and have varying,
possibly complex distributions themselves [5] are often difficult to precisely characterise,
especially if they are costly to measure, requiring long-term monitoring [6]. In turn, this
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parameter variability, uncertainty, or quality directly affects the reliability of the model sim-
ulations [1,7]. In general, agricultural simulation models require a large amount of input
data and parameters, many of which are difficult to source or collect. At the same time, it
is common for only a few parameters to strongly influence (and maximize) the variability
of model outputs, while the majority of parameters only provide a weak influence in this
respect [8]. Therefore, understanding the likely influence of each parameter on a model’s
outputs is crucial, as this allows the number of parameters to be safely reduced without
a worrying loss of model accuracy, while at the same time, focus can be placed on data
collection for parameters that most strongly influence model performance.

To identify how parameters impact model outputs, sensitivity diagnostics can be
calculated through running multiple model simulations while varying the parameters
across specific ranges [9]. Sensitivity analysis for model parameterization and outputs
have been applied to various cropping systems, soil types and climate conditions using a
range of models. For example, Specka et al. [10] applied a parameter sensitivity analysis
for modelling above-ground biomass with regard to a future model calibration and an
improved understanding of model response patterns; Jabloun et al. [11] assessed the
sensitivity of outputs (crop yield and N leaching) from a crop simulation model, where
128 parameters were assessed. A sensitivity analysis quantifies those parameters which
are most influential on model outputs, and in this respect can guide the efforts towards
improving their accuracy as well as the model’s output accuracy [12].

The SPACSYS model is implemented in a modular approach and provides a field-scale
and weather-driven dynamic process-based simulation model of water, C and N cycling
between plants, soils, and microbes [13]. The model has been widely used to assess the
impact of climate change [14–16], tillage [17], fertilizer application [16,18], and different
cultivars [19] on agricultural systems in terms of crop yields, C and N budgets, soil physical
properties, and soil water redistribution. However, the model requires over 200 parameters
for the simulation of various processes and plant growth and development. It would
therefore be informative and beneficial to assess which parameters the SPACSYS outputs
are the most and the least sensitive to, so that there can be guidelines for its use when all
200 parameters are not readily available.

A sensitivity analysis has also been used in building and understanding the structure
of agro-ecosystem models [20,21]. Distinctions are made between a local and global
sensitivity analysis (LSA and GSA, respectively), where the former is also known as a
‘one at a time’ (OAT) approach, while the latter considers multiple parameters at the same
time. Thus, an LSA does not consider any interactions between parameters, while a GSA
does. Both GSA [22] and LSA [23–26] have merit, where in ideal situations both should
be applied and their results objectively assessed and compared [27,28]. In studies where
uncertainty and interactions in model parameters are minimal, then an LSA may suffice [27]
over the inherently more complex, GSA. Specifically, Link et al. [27] concludes that an LSA
may suffice for situations where the ranking of model parameters is of importance, while
GSA should be used for a precise attribution of variance in model outputs. Of course,
it should be noted that results and insights from literature are always dependent on the
characteristics of the process-based models employed.

Given this study is the first to identify parameter input sensitivity for the SPACSYS
model, we chose to present results in two stages: first, an LSA as presented here, and
second, a GSA (which is prep.) for presentation elsewhere. This two-stage reporting
approach is followed for computational reasons, together with differences in associated
interpretations, visualisations, and comparisons of the LSA and GSA outputs. Given
SPACSYS requires over 200 parameters, assessing and reporting the sensitivity of them
all would be problematic, for both an LSA and a GSA alike. Further, different subsets of
parameters would be chosen according to their likely importance in simulating different
processes under different background conditions. Because of computational and associated
interpretation constraints, an LSA can investigate the sensitivity of outputs to a greater
number of input parameters and investigate the distribution of each input parameter more
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intensively, than that feasible with a GSA. A GSA for, say, only four parameters entails the
added investigation of six 2-parameter interactions, four 3-parameter interactions, and one
4-parameter interaction, which themselves vary on how the parameter input distributions
are described (likely done simply, with say low, medium, and high values only). Given
these thorny design and implementation issues for a GSA, for this study, we only consider
the effects of a single parameter change on outputs via an LSA. This allows for a greater
number of parameters to be investigated coupled with more detailed descriptions of the
parameter distributions than would be viable within a GSA.

For this study, we carried out an LSA on the parameters that control soil water
redistribution, and C and N cycling with the SPACSYS model, using a winter wheat field
experiment conducted at Rothamsted Research in Harpenden, UK as the case study. To
investigate potential influences of climatic and soil conditions on the analysis, simulations
with the same configurations were run with different climatic and soil conditions. The
study objectives were: (1) to identify those parameters that have the maximum influence
on the simulation outputs with respect to wheat production and environment risks under
UK soils and climatic conditions, and (2) to examine and understand the relationships
between parameter sensitivity and model outputs.

2. Materials and Methods
2.1. Study Site

Data from a winter wheat field experiment was used for this study. The experiment
was conducted for three growing seasons from 2011 to 2014 in the experimental plots of
“Exhaustion Land”, one of the classical long-term experiments at Rothamsted Research in
Harpenden (51◦49′ N, 0◦21′ W and 128 m a.s.l.). The winter wheat cultivar was Xi-19. The
soil is classified as a Chromic Luvisol (FAO classification) with a silty clay loam texture
topsoil. Daily maximum and minimum air temperatures and precipitation during the
growing years are shown in Figure 1. Compared to the mean climatic conditions over the
growing season between 1981 and 2010 (mean temperature is 8.7 ◦C, precipitation 611mm),
the first growing season and the third growing season were warmer and wetter (9.4 ◦C and
770 mm, 10.1 ◦C and 814 mm, respectively), but the second season was cooler and dryer
(7.9 ◦C and 672 mm, respectively). The total sunshine hours of the three growing seasons
(1314, 1268, and 1363 h, respectively) were all higher than the 1981 to 2010 mean (1243 h).
Data for the study period were downloaded from the electronic Rothamsted Archive (e-RA,
http://www.era.rothamsted.ac.uk/, accessed on 30 June 2021).
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2.2. Parameters and Simulated Outputs

A total of 61 model required parameters, describing both water redistribution and
C and N processes, were chosen to investigate the responses of the system. To reduce
complexity in the analysis, parameters that relate to crop growth and development were
set as the usual default values, and thus not part of the 61 parameters investigated. The
ranges (maximum to minimum) of the chosen parameters were± 50% of the default values
used in previous studies [29–31]. Each parameter was set to one of 100 different values to
ensure sampling points are uniformly distributed across the probability distribution. A
total number of 6100 SPACSYS simulations were run, each with a 3-years length, meaning
that only one of 61 parameters (Table A1) was investigated in turn, whilst all others were
set at their default. Details on the linkage of each parameter to each process can be found
in various applied SPACSYS model studies [13,32] and also in subsequent, developmental
studies [31].

For the simulation outputs, a total of 27 variables were considered. Variables include
those for grain yield and above-ground dry matter biomass of winter wheat, soil water
dynamics, losses (runoff, leaching, and release) from soil and nutrient pool sizes (Table A2).

2.3. Sensitivity Analysis and Diagnostics

As indicated above, only the effect of a single parameter change on the simulated
outputs was considered—i.e., an LSA was followed. We analysed sensitivity to the 61 pa-
rameters by ranking the values of the root mean square deviation (RMSD) of simulated
outputs as follows:

RMSD =

√
1
n

n

∑
i=1

(D − Si)
2 (1)

where D represents the simulated value using the default parameter values (Wu, et al.,
2019) and Si represents the simulated values as defined above, at the ith step of parameter
changes and n is equal to 100 (the number of simulations). In order to ensure that all results
from the SPACSYS runs, with each of 61 parameters varying in turn, can be assessed and
objectively compered to each other, we used the normalized RMSD (NRMSD) as follows:

NRMSD =
RMSD

Smax
× 100% (2)

where Smax is the maximum value of all the simulated outputs for the whole set (100 simu-
lations) of a single parameter over the entire simulated period. The NRMSD diagnostic
combines RMSD values across multiple output variables to produce an overall measure
of model sensitivity, while normalising for the different scales of the outputs. It can be
interpreted as a fraction of the maximum values. The higher the NRMSD, the more sensi-
tive the output variables are to the given parameter specification. A parameter that yields
an NRMSD equal to 0% means it contributes very little on the simulated outputs and can
be taken as a fixed parameter [33]. Simulations are considered sensitive to parameters
yielding NRMSD values > 1%.

In order to capture the effects of different weather conditions on parameter sensitivity,
we calculated the NRMSD in each individual growing year (2011/12, 12/2013, and 13/2014)
and consecutive years (2011/13, 12/2014, and 11/2014). Further clarity was provided with
averaged NRMSDs for the individual growing years and consecutive years:

NRMSDIN =
NRMSD1 + NRMSD2 + NRMSD3

3
(3)

NRMSDCO =
NRMSD12 + NRMSD23 + NRMSD123

3
(4)

where NRMSDIN and NRMSDCD represent the averaged NRMSD for the individual and
the consecutive years, respectively. NRMSD1, NRMSD2, NRMSD3, NRMSD12, NRMSD23,
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and NRMSD123 represent the NRMSD for years 2011/12, 2012/13, 2013/14, 2011/13,
2012/14, and 2011/14, respectively. All analyses were carried out within the R statistical
programming environment (version 3.5.0).

2.4. Simulated Climate and Soil Data

In order to assess the impact of climate and soil type on the results of the sensitivity
analysis, four additional simulation runs were built with the same configuration as the
main simulation experiment described—replacing the weather over the simulation period
with another set collected for South West England (50◦46′10′ ′ N, 3◦54′05′ ′ W) and replacing
soil properties with (a) a sandy soil with 10% clay, 70% sand, and 20% silt content in the top
10 cm layer, with 12% clay, 72% sand, and 16% silt content in the 10–20 cm layer and with
15% clay, 75% sand, and 10% silt content in the 20–30 cm layer; (b) a loam soil with 20%
clay, 40% sand, and 40% silt content in the top 10 cm layer, with 22% clay, 42% sand, and
36% silt content in the 10–20 cm layer and with 25% clay, 45% sand, and 30% silt content in
the 20–30 cm layer; and (c) a clay soil with 80% clay, 10% sand, and 10% silt content in the
top 10 cm layer, with 76% clay, 12% sand, and 12% silt content in the 10–20 cm layer and
with 70% clay, 15% sand, and 15% silt content in the 20–30 cm layer. Additional simulations
were configured as described in Section 2.2, where the use of default parameter values was
considered reasonable.

3. Results

Figure 2 maps the influence of each of the 61 parameters with respect to their effect
on the simulations of 27 output variables both for the individual growing years and the
consecutive years. The values of NRMSD range between 0 to 16%, with 87.83% between 0
and 1%. Output variables were insensitive to 11 of the 61 parameters, as their NRMSDs
were all 0. The 11 parameters were: maximum nitrifier growth rate (MNG), maximum
growth yield on NO (MGY-NO), maximum growth yield on N2O (MGY-N2O), half ammo-
nium concentration (HAC), half NOx concentration (HNC), water content interval to unity
(WCI), unsaturated conductivity decrease (UCD), half saturation global radiation intensity
(HSG), drain pipe diameter (DPD), and finally, half closure vapour pressure deficit (HCV).

The influences of the parameters on the chosen output variable under alternative
weather conditions are shown in Figure 3 and with the three different soil types in Figure 4
(sandy), Figure 5 (loam), and Figure 6 (clay). The results from these additional climate
and soil simulations were hardly different to those from the main simulation experiment
(Figure 2), where the sensitive parameters with NRMSD greater than 1% were almost
identical. However, the number of fixed parameters reduced, especially in the sandy soil
where none of the 61 parameters could be taken as fixed.

As the most sensitive parameters had similar trends across all the simulations (main
and additional), regardless of climate or soil type, we now focus our attention only on the
relationships between the parameters and the output variables from the main simulation
experiment. Here the greatest sensitivity to parameter specification was observed for
simulated outputs grouped as: (1) soil water dynamics, (2) crop dry matter accumulation,
and (3) N and C losses and pools.
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3.1. Soil Water Dynamics

The drainpipe level (DPL) parameter had the greatest influence on the simulations
for ground water flow (GWF) and water content change (WSC) with NRMSD values > 7%
(Figure 2), especially when the specified value of DPL was from the surface to the 2 m soil
depth (Figure 7b,e,h). Here GWF increased and then plateaued at around 2 m, while WSC
decreased moving from positive to negative values. For DPL values between 0 and −2 m,
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surface runoff (SRO) decreased from about 570 mm/year to values of zero. Likewise, other
parameters relating to the drainage system, such as distance between drainpipes (DBD) and
minimum roughness length (MRL) were similarly influential with NRMSD values > 1%
and > 3% (Figure 2) for GWF, WSC, and SRO outputs (Figure 7). Here GWF, WSC, and
SRO outputs all decreased as the MRL parameter increased from its minimum (0.001 m)
to maximum specification (1 m) (Table A1 in Appendix A), while only GWF and SRO
outputs decreased as the DBD parameter increased from its minimum (2 m) to maximum
specification (100 m) (Table A1). The influence of minimum hydraulic conductivity (MHC),
runoff first order rate coefficient (RFO) and maximum surface storage (MSS) parameters
on GWF, WSC, and SRO outputs are given in Figure A1 in Appendix A.
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3.2. Dry Matter of Winter Wheat

The simulation of dry matter of leaves, stems, and grains for winter wheat (LDM, SDM,
and GDM) are particularly sensitive to parameters DBD, MRL, DPL, and AIF (ammonium
immobilisation fraction) following their NRMSD values (Figure 2). DBD was the most
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sensitive parameter (NRMSD > 3%) for LDM, SDM, and GDM in the individual years, with
increases in dry matter simulation only for DBD < 40 m. However, SDM and GDM were
most sensitive to AIF with NRMSD > 4%, where dry matter simulation increased slightly
across the full range of the AIF values specified (i.e., 0 to 1). Increases in dry matter were
found for DPL > −2 m, while a stepped but small increase in dry matter was observed for
MRL across its minimum to maximum values specified (Figure A2 in Appendix A).

3.3. Nitrogen and Carbon Losses from Soil
3.3.1. Losses with Surface Runoff

The simulations for nitrate (NO3) loss with surface runoff (NOR) were also highly
sensitive to DPL, with NRMSD values of 1.38% and 1.73% in the individual and pairs of
consecutive years, respectively (Figure 2). For DPL > −2 m, NOR displayed an increasing
trend (Figure 8a). As would be expected, simulations for NOR were also sensitive to the
fertiliser dissolution rate (SFD), where NOR simulations displayed a non-linear increase
for SFD < 0.2. (Figure 8b). With NRMSD values > 0%, the simulations of dissolved N loss
(NDR) and C loss (CDR) with surface runoff were sensitive to the loss of litter parameter
(LLF) (Figure 8c), and the simulations of residue N loss (NRR) and residue C loss (CRR)
were sensitive to the loss of residue parameter (RLF) (Figure 8d).

3.3.2. Nitrogen and Carbon Leaching

With the specification of parameters DBD, MRL, DPL, MHC, and ESP (the empirical
scale in pore shape), each had a clear influence on the simulations of leaching for NO3
(NOL), NH4 (NHL), N (NDL), and C (CDL) in the individual and pairs of consecutive years
(Figure 2). The same variable simulations were also sensitive to parameters AIF, LLF, RLF,
DFF (a transferring fraction of decomposed fresh litter to dissolved organic matter), DFL (a
transferring fraction of litter to dissolved organic matter), CWF (coefficient in the water
function for decomposition), and DPR (potential decomposition rate of dissolved organic
matter). DBD was a highly influential parameter for NOL and NHL with NRMSDs > 3%
whilst DPL was highly influential for NDL and CDL with NRMSDs > 4%. Relationships
between output simulations of NOL, NHL, NDL, and CDL and parameters DBD, MRL,
DPL, AIF, MHC, ESP, DFF, DFL, CWF, DPR, LLF, and RLF are given in Figures A3 and A4
in Appendix A.

3.3.3. Gas Emissions

Simulations of the N2O emission rate (N2O) were most sensitive to changes in the
maximum autotrophic nitrification rate (MAN), secondly, the NO production fraction
from nitrification (PFF-NO), and thirdly, the Q10 temperature coefficient for denitrification
(Q1D) (Figure 2). Specification of the latter two parameters also strongly influenced the NO
emission rate (NOE) and N2 emission rate (N2E) (Figure 2). In addition, N2O simulations
were found to be relatively sensitive to DBD, MRL, and DPL (Figure 2). Figure 9 displays
the relationships between the nitrogenous gas emissions outputs (NOE, N2O, and N2E)
and a range of values for parameters PFF-NO and Q1D. For the range of PFF-NO specified,
the simulation of NOE, N2O, and N2E were erratic with no clear pattern. Further plots for
NOE only are given in Figure A5 in Appendix A.

Parameters CWF, Q1M (Q10 temperature coefficient for mineralization), and ASF
(assimilation factor), in general, provided the highest NRMSDs (Figure 2) with respect
to influencing CO2 emissions from various soil organic C pools (DRE: dissolved release;
FLR: fresh litter release; HRE: humus release; MRE: microbial release). However, the
simulation of HRE was most sensitive to the humus potential decomposition rate (HPD)
(NRMSD > 15%) (Figure 2). Figure 10 displays the relationships between CO2 emissions
DRE, FLR, HRE, MRE with respect to the top-ranking sensitive parameters CWF, Q1M,
ASF over the simulation period. Almost all CO2 emission outputs deceased as CWF, Q1M,
and ASF parameters were increased through their minimum/maximums set (Table A1);
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the exception being MRE with ASF. Further CO2 emission plots depicting their sensitivity
to key parameters are given in Figures A6–A8 in Appendix A.

3.4. Changes of Soil C and N Pools

Although simulations of soil N and C pools in humus (NHP and CHP, respectively)
were most sensitive to HPD (Figure 2), no discernible trend in this sensitivity was observed
(Figure A9a in Appendix A). Simulations of N and C dissolved (NDP and CDP, respectively)
were most sensitive to CWF, DFL (dissolved fraction in litter), HFL (humus fraction from
fresh litter), and DBD (Figure 2), where in this case, clear increasing trends in this sensitivity
were observed, some plateauing (Figure A9b,e for CWF and DBD, respectively), some not
(Figure A9c,d for DFL and HFL, respectively). Further soil N and C pools plots depicting
their sensitivity to key parameters are given in Figures A10 and A11 in Appendix A.
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4. Discussion

Parameters describing drainage implementation (DBD and DPL) play a critical role
in the performance of the agriculture system reflecting changes in the weather and soil
condition. For this study, simulations for soil water dynamics, crop dry matter accumu-
lation and N and C losses, were all found to be highly sensitive to the specification of
DBD and DPL. Our results corroborate with Ballantine and Tanner [34], and Ritzema [35],
where both studies demonstrated how the drainage system was an important externality
for agricultural production to prevent waterlogging and salinization of the soil in arid and
semi-arid regions and strategically control drainage of excess water from the soil profile. It
has also been reported that water use efficiency for wheat with a controlled drainage with
a varying depth was 40% higher than that with the conventional drainage, depending on
the crop stage [36]. Tomic et al. [37] showed that a DBD value of 25 m provided the highest
wheat yield among seven different drainage systems, which is in agreement with our result
in that DBD is one of the most sensitive parameters for the dry matter of winter wheat.
However, this might not be transferrable to other crops, e.g., drainage control was found to
have no significant influence on soybean yield [38]. Designing an appropriate drainage
system in humid areas can reduce N loss from an agricultural field [39]. By raising the
water level in the soil profile, which is equivalent to increasing DPL in our study here,
controlled drainage has the potential to increase denitrification in the anaerobic zone [40].
Design of subsurface drainpipes involves the determination of depth (DPL), spacing (DBD)
and pipe diameter (DPD) [41]. As a parameter of a drainage system, however, DPD had no
influence on any of the 27 selected output variables (Figure 2), which implied the effects
of vertical water flow were stronger than horizontal water flow towards the pipes in our
study’s wheat field.

Our analysis suggests that simulations were sensitive to changes in MRL (minimum
roughness length), where it is known to strongly affect water and heat fluxes on the soil
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surface [42,43]. Wang et al. [44] have shown that an accurate assessment of soil moisture
might be problematic if MRL is inappropriately parameterised. However, our sensitivity
analysis showed that SRI, HSG, and HCV (all related to evaporation and transpiration
processes, see Table A1) had no influence on any of the 27 selected outputs.

4.1. Sensitive Parameters for Water Dynamics

Soil water dynamics is a key component for nutrient cycling and crop growth and de-
velopment. Our study showed that soil water dynamics were sensitive to MHC (minimum
hydraulic conductivity), DPL, DBD, and MRL (Figures 2 and A1). This is not surpris-
ing given that: (1) MHC is a key parameter to control the soil water infiltration process
where water moves downward from the surface [45] and (2) soil hydraulic conductivity
determines surface energy and water fluxes and then soil water content [46–48].

4.2. Sensitive Parameters for Yield and Biomass

For simplicity, we did not include in our sensitivity analysis, the plant biological
parameters. Therefore, the identified sensitivities influence biomass accumulation and
the grain yield of winter wheat indirectly via other processes. Here DBD, MRL, DPL,
and AIF are all important parameters for yield and aboveground biomass simulation
(where DBD, MRL, and DPL also influence water dynamics in the soil, as discussed above).
Unarguably, soil water content itself plays an important role in yield and aboveground
dry matter accumulation under non-irrigation conditions [49,50]. It regulates N cycling
and its availability to crops is important, as this in turn, affects crop growth and yield
formation [51–53]. AIF that can be immobilised when the immobilisation process occurs,
impacts crop growth and yield through changing mineralisation, and in sequence, the
status of soil N and C content [1,54].

4.3. Sensitive Parameters for Losses from Soil

The drainage parameters DPL and DBD also had significant influence on C and N
losses through surface runoff and leaching from soils. In addition, SFD (fertiliser dissolution
rate), LLF (loss of litter), and RLF (loss of residue) that are each related to external nutrient
inputs also played a critical role in the simulations of surface runoff losses. Results showed
that SFD was an influential parameter for the simulations of NHL (NH4 leach); LLF
was influential for the simulations of NDR and CDR (dissolved N and C loss); and RLF
was influential for the simulations of NRR and CRR (residue N and C loss). External
nutrient inputs can increase soil nutrient pools, and in turn, nutrient losses when surface
runoff occurs.

Clearly, parameters related to nitrification and denitrification processes have a great
influence on nitrogenous gas emissions. A higher nitrification rate increases N availability
for the denitrification process that is enhanced by Q1D (Q10 temperature coefficient for
denitrification). Specification of MAN (maximum autotrophic nitrification rate) had the
biggest influence on NOE (NO emission rate), and both PFF-NO (NO production fraction
from nitrification) and Q1D influenced NOE, N2O (N2O emission rate), and N2E (N2
emission rate). Conversely, simulations for soil CO2 release were sensitive to a different
set of parameters that control nutrient cycling. Here, the specification for Q1M (Q10
temperature coefficient for mineralization), CWF (coefficient in the water function for
decomposition), and ASF (assimilation factor) all had a significant influence on DRE
(dissolved release), FLR (fresh litter release), HRE (humus release), and MRE (microbial
release) (i.e., outputs variables that generate from decomposition from various soil C
pools). Our results are supported by previous studies [55–57]. The soil organic matter
decomposition rate depends on substrates [58,59], a potential decomposition rate and other
abiotic and biotic factors including soil temperature (related to Q1M), soil moisture (i.e.,
CWF), and microbial activities (i.e., ASF) [60].
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5. Conclusions

The local sensitivity analysis for the SPACSYS model using data from a winter wheat
field experiment found that parameters related to drainage not only affected drainage
fluxes but also grain yield and aboveground dry matter accumulation of winter wheat, and
losses of water, C and N from soil under given weather and soil conditions. In addition,
parameters related to mineralization and immobilisation processes influenced crop yield
and biomass accumulation significantly. Further, parameters that control the nitrification
and denitrification processes had a great influence on nitrogenous gas emissions. All
results were found to be largely insensitive to different climatic and soil conditions, where
identified parameter sensitivity remained relatively the same.

Overall, this study has provided evidence of which parameters require the most care
in their specification and in turn, which parameters need to be determined accurately.
This evidence can lead to efficient and cost-effective sampling and lab analyses for such
parameters. Results provide a reference for model users on which parameters are key for
different simulation goals. However, although this study has provided some important
advances in model understanding and use, we have only considered the influence of
single parameter change at a time on the model outputs. Interaction effects through a
global sensitivity analysis were not assessed, and as such, are a focus of current and
complementary research.
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Appendix A

Table A1. List of the parameters chosen for the sensitivity analysis, together with their maximum and minimum
units specified.

No. Abbreviations Variable Description Unit Min Max

1 SFD Specific fertiliser dissolution rate 1/day 0.0001 0.5
2 Q1N Coenzyme Q10 temperature coefficient for nitrification - 0.1 5
3 Q1M Coenzyme Q10 temperature coefficient for mineralization - 0.1 5
4 Q1D Coenzyme Q10 temperature coefficient for denitrification - 0.1 5
5 PFF-NO NO production fraction from nitrification - 0.00001 0.1
6 PFF-N2O N2O production fraction from nitrification - 0.000001 0.01
7 MHC Minimum hydraulic conductivity mm/day 0 10
8 MMR Microbial maintenance respiration rate 1/day 0.01 2
9 MDG-NO3 Maximum NO3 denitrifier growth rate 1/day 1 40

10 MDG-N2O Maximum N2O denitrifier growth rate 1/day 1 20
11 MDG-NO2 Maximum NO2 denitrifier growth rate 1/day 1 40
12 MDG-NO Maximum NO denitrifier growth rate 1/day 1 20
13 MNG Maximum nitrifier growth rate 1/day 0.1 15
14 MND Maximum nitrifier death rate 1/day 0.01 5
15 MGY- NO3 Maximum growth yield on NO3 gC/gN 0.01 1
16 MGY- NO2 Maximum growth yield on NO2 gC/gN 0.01 1
17 MGY- NO Maximum growth yield on NO gC/gN 0.01 3
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Table A1. Cont.

No. Abbreviations Variable Description Unit Min Max

18 MGY- N2O Maximum growth yield on N2O gC/gN 0.01 4
19 MAN Maximum autotrophic nitrification rate 1/day 0.001 0.1
20 MCC Maintenance coefficient on carbon in denitrification 1/day 0.0001 0.02
21 HPD Humus potential decomposition rate 1/day 0.0000001 0.001

22 HFL Partitioning fraction to humus from decomposed fresh
litter - 0 1

23 HFD Partitioning fraction to humus from decomposed
dissolved organic matter - 0 1

24 HDC Michaelis constant on dissolved organic carbon
concentration g/m3 1 40

25 HAC Michaelis constant on ammonium concentration gN/m3 1 30
26 HNO Michaelis constant on NOx concentration gN/m3 50 200
27 FLD Fresh litter potential decomposition rate 1/day 0.0001 0.1
28 DBD distance between drainpipes m 2 100
29 DPR Potential decomposition rate of dissolved organic matter 1/day 0.0001 0.1
30 UCD Unsaturated conductivity decrease - 0 10
31 SCF Soil cover fraction to prevent infiltration - 0 1
32 RFO Runoff first order rate coefficient 1/day 0.01 1
33 MRL Minimum roughness length m 0.001 1
34 MSS Maximum surface storage (no runoff) mm 0.01 10
35 HSG Half saturation global radiation intensity J/m2/day 0 10,000,000
36 ESP Empirical scale in pore shape - 0.01 10
37 DPL Drain pipe level, negative downwards m -10 0
38 DPD Drain pipe diameter m 1 10

39 CAC Corresponding water amount that the ground is fully
covered mm 1 200

40 RAP Relative activity at porosity - 0 1
41 WCI Water content interval to unity vol% 1 15

42 OAW Optimal water content at which there is no adverse effect
from soil moisture vol% 3 40

43 CWF Coefficient in the water function for decomposition - 0 100
44 ASF Assimilation factor - 0 1
45 LLF Unit loss fraction of litter with surface runoff - 0 1
46 RLF Unit loss fraction of residue with surface runoff - 0 1

47 BTM Reference temperature at which the reaction function is
unity for mineralization

◦C 0 35

48 RLT A transferring fraction of residue to the litter pool 1/day 0 0.5

49 DFH A transferring fraction of decomposed humus pool to
dissolved organic matter - 0 1

50 DFF A transferring fraction of decomposed fresh litter to
dissolved organic matter - 0 1

51 DFL A transferring fraction of litter to dissolved organic matter - 0 1
52 HNC Michaelis constant on nitrate concentration gN/m3 5 15

53 BTN Reference temperature at which the reaction function is
unity for nitrification

◦C 0 35

54 BTD Reference temperature at which the reaction function is
unity for denitrification

◦C 0 35

55 WCA Water content interval activity vol% 0 100
56 FWD- NH4 NH4 fraction in wet deposition - 0 1
57 FDD- NH4 NH4 fraction in dry deposition - 0 1

58 AFI Fraction of ammonium that cannot move freely with
water - 0 1

59 MCN C:N ratio in microbial biomass - 5 15

60 AIF A fraction of ammonium that can be used for
immobilisation - 0 1

61 HCV Vapour pressure deficit at which leaf stomata half closed
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Table A2. List of simulated output variables from the SPACSYS model.

No. Abbreviations Output Unit

1 GWF Groundwater water flux mm/year
2 WSC Soil water content change in the soil profile %
3 GDM Grain dry matter gDM/m2

4 LDM Leaf dry matter gDM/m2

5 SDM Stem dry matter gDM/m2

6 NOR NO3 loss with surface runoff gN/m2/year
7 NDR Dissolved N loss with surface runoff gN/m2/year
8 NRR Residue N loss with surface runoff gN/m2/year
9 CDR Dissolved C loss with surface runoff gC/m2/year

10 CRR Residue C loss with surface runoff gC/m2/year
11 SRO Surface runoff Mm/year
12 NHL NH4 leaching gN/m2/year
13 NOL NO3 leaching gN/m2/year
14 NDL N dissolved leach gN/m2/year
15 CDL C dissolved leach gN/m2/year
16 NOE NO emission rate gN/m2/year
17 N2O N2O emission rate gN/m2/year
18 N2E N2 emission rate gN/m2/year
19 DRE Dissolved release gC/m2/year
20 FLR Fresh litter release gC/m2/year
21 HRE Humus release gC/m2/year
22 MRE Microbial release gC/m2/year
23 NHP N in humus gN/m2

24 NDP Dissolved N gN/m2

25 NMR Mineralization rate gN/m2/year
26 CDP Dissolved C gC/m2

27 CHP C in humus gC/m2
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Figure A1. The relationships between ground water flow (GWF), water content change (WSC) and surface runoff (SRO)
with changes in parameters with NRMSE > 1% (minimum hydraulic conductivity (MHC), ammonium immobilised fraction
(AIF), specific fertiliser dissolution rate (SFD) and maximum autotrophic nitrification rate (MAN)).
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Figure A2. Response of grains (GDM), leaves (LDM) and stems (SDM) dry matter to the parameters—distance between
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All with NRMSD > 1% over the simulation period.
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Figure A3. Relationships between simulated leached losses of N and C to their most influential parameters (by NRMSD). 
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Figure A3. Relationships between simulated leached losses of N and C to their most influential parameters (by NRMSD).
Simulated variables: NHL: NH4 leach; NOL: NO3 leach; NDL: N dissolve leach; CDL: C dissolve leach. Model parameters:
DBD: distance between drainpipes; MRL: minimum roughness length; DPL: drain pipe level; AIF: ammonium immobilised
fraction; MHC: minimum hydraulic conductivity; and ESP: empirical scale in pore shape.
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Figure A4. The relationships between leached losses of N and C and the parameters with NRMSEs higher than 1% (CDL: 
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Figure A4. The relationships between leached losses of N and C and the parameters with NRMSEs higher than 1% (CDL:
C dissolve leach; NDL: N dissolve leach; DFF: dissolved fraction from fresh litter; DFL: dissolved fraction in litter; CWF:
coefficient in water function in the process of organic matter decomposition; DPR: potential decomposition rate of dissolved
organic matter; LLF: litter unit loss fraction; RLF: residue unit loss fraction).
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Figure A5. The relationships between NOE and sensitive parameters (DBD: distance between drainpipes; MRL: minimum
roughness length; DPL: drain pipe level; AIF: ammonium immobilised fraction; MAN: maximum autotrophic nitrification
rate; SCF: soil cover fraction prevent infiltration; CWF: coefficient in water function in the process of organic matter
decomposition; BTD: base temp to unity denitrification; BTN: base temp to unity nitrification).
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Figure A6. The relationships between carbon dissolved release (DRE) and sensitive parameters (DBD: distance between
drainpipes; MRL: minimum roughness length; DPL: drain pipe level; MHC: minimum hydraulic conductivity; HPD: humus
potential decomposition rate; LLF: litter unit loss fraction; OAW: optimal available water content; HFD: humus fraction from
fresh litter; DFF: dissolved fraction from fresh litter; DFL: dissolved fraction in litter; RLT: residue to litter transfer fraction;
FLD: fresh litter potential decomposition rate; RLF: residue unit loss fraction; DPR: dissolved potential decomposition rate;
BTM: base temp to unity mineralization).
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Figure A7. The relationships between fresh litter release (FLR) and sensitive parameters (MRL: minimum roughness length;
DPL: drain pipe level; MHC: minimum hydraulic conductivity; LLF: litter unit loss fraction; OAW: optimal available water
content; RLT: residue to litter transfer fraction; FLD: potential decomposition rate of fresh litter; RLF: residue unit loss
fraction; BTM: base temp to unity mineralization; DFL: dissolved fraction in litter; DFF: dissolved fraction from fresh litter;
HFL: partitioning fraction to humus from decomposed fresh litter).
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Figure A8. The relationships between microbial release (MRE) and sensitive parameters (DBD: distance between drainpipes;
MRL: minimum roughness length; DPL: drain pipe level; MHC: minimum hydraulic conductivity; HPD: humus potential
decomposition rate; HFL: partitioning fraction to humus from decomposed fresh litter; LLF: litter unit loss fraction; OAW:
optimal available water content; HFD: partitioning fraction to humus from decomposed dissolved organic matter; DFF:
dissolved fraction from fresh litter; DFL: dissolved fraction in litter; RLT: residue to litter transfer fraction; FLD: potential
decomposition rate of fresh litter; RLF: Residue unit loss fraction; DPR: potential decomposition rate of dissolved organic
matter; BTM: base temp to unity mineralization; MMR: microbial maintenance respiration rate).
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length; DPL: drain pipe level; MHC: minimum hydraulic conductivity; HPD: humus potential decomposition rate; Q1M:
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DFF: dissolved fraction from fresh litter; FLD: potential decomposition rate of fresh litter; RLF: residue unit loss fraction;
DPR: potential decomposition rate of dissolved organic matter; BTM: base temp to unity mineralization).
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