
Resolving the identification of weak-flying insects during flight: a coupling between rigorous data 1 

processing and biology. 2 

Kirsty L. Hassall1*, Alex Dye2, Ilyas Potamitis3 & James R. Bell2 3 

 4 

1 Computational and Analytical Sciences, Rothamsted Research, West Common, Harpenden, AL5 2JQ, 5 

UK. 6 

2 Rothamsted Insect Survey, Rothamsted Research, West Common, Harpenden, AL5 2JQ, UK.  7 

3 Department of Music Technology and Acoustics Engineering, Hellenic Mediterranean University, 8 

Crete 9 

*corresponding author: kirsty.hassall@rothamsted.ac.uk 10 

 11 

Running Title: Identifying weak-flying insects during flight 12 

 13 

Abstract 14 

1. Bioacoustic methods play an increasingly important role for the detection of insects in a range of 15 

surveillance and monitoring programs.  16 

2. Weak-flying insects evade detection because they do not yield sufficient audio information to 17 

capture wingbeat and harmonic frequencies. These inaudible insects often pose a significant 18 

threat to food security as pests of key agricultural crops worldwide. 19 

3. Automatic detection of such insects is crucial to the future of crop protection by providing critical 20 

information to assess the risk to a crop and the need for preventative measures.  21 

4.  We describe an experimental setup designed to derive audio recordings from a range of weak-22 

flying aphids and beetles using an LED array.  23 
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5. A rigorous data processing pipeline was developed to extract meaningful features, linked to 24 

morphological characteristics, from the audio and harmonic series for six aphid and two beetle 25 

species.  26 

6. An ensemble of over 50 bioacoustic parameters was used to achieve species discrimination with 27 

a success rate of 80%. The inclusion of the dominant and fundamental frequencies improved 28 

prediction between beetles and aphids due to large differences in wingbeat frequencies.  29 

7. At the species level, error rates were minimised when harmonic features were supplemented by 30 

features indicative of differences in species’ flight energies.  31 

Keywords 32 

Insect classification; Random forest classification; Wingbeat harmonics; Aphid; Beetle;  33 

Introduction 34 

Over the last 30 years, agriculture has been in the midst of a digital revolution with the increasing 35 

availability of sensor technology and associated collection of ‘big data’ aiming at improving the 36 

sustainability of food production systems. These technologies exist at all levels of the agricultural 37 

system, from defining management zones from yield monitor data (Milne et al., 2012), drones and 38 

augmented reality (Huuskonen and Oksanen, 2018) to pest detection using UAVs (Tetila et al., 2020). 39 

Many of these technologies feed into decision support systems (DSS) further enabling the 40 

implementation of precision agriculture (Cancela et al., 2019, Zhai et al., 2020). Despite this, insect 41 

pests remain a key challenge. Automatic insect pest detection is a long sought-after goal that began 42 

in the 1950s and has still yet to reach maturity (Lowe and Dromgoole, 1958, Cardim Ferreira Lima et 43 

al., 2020). For many years, image recognition systems have been at the forefront but increasingly, 44 

bioacoustic methods are playing an important role for the detection of insects in a diverse range of 45 

surveillance and monitoring programs. Almost exclusively, these programs use sound recordings to 46 

detect species and groups across the audible range of human hearing (Chen et al., 2014).  Typically, 47 

model organisms have included mosquitoes, fruit flies, hawkmoths and crickets using a simple 48 



microphone set up (Montealegre-Z et al., 2011, Potamitis and Rigakis, 2016b, Mukundarajan et al., 49 

2017). Whilst the songs of some cicadas can generate in excess of 100 dB of sound pressure (Sanborn 50 

and Phillips, 1995), there is an important group of small insects that are effectively silent in flight which 51 

pose a much more significant threat. For example, the peach potato aphid, Myzus persicae (Sulzer, 52 

1776) (Hemiptera: Aphididae), compromises worldwide food security through the transmission of 100 53 

different plant viruses, and is consequently one of the world’s top 10 pests (Willis and ed., 2017, CABI, 54 

2020). Yet, these small insects, no more than a couple of millimetres long and of the upmost 55 

agricultural importance, are not the focal interest of bioacoustics monitoring, despite their profound 56 

and lasting impact on food quality and quantity.  57 

Aphid flights are so weak that they fall well below the lowest human hearing range of 40 dB at 100 58 

hertz and are effectively silent, producing a wingbeat frequency that is nearly an order of magnitude 59 

weaker than some mosquitoes (Smith, 1999, Byrne et al., 1988, Moore and Miller, 2002, Potamitis 60 

and Rigakis, 2016b, Tercel et al., 2018). Further, the rate of progress in flight is very weak, and no more 61 

than 0.70 m/sec-1 under laboratory conditions for some well-studied aphids (Thomas et al., 1977).  62 

Recently, opto-acoustic methods have provided a novel way of capturing the flight of these small 63 

insects using phototransistors and infrared light (Ouyang et al., 2015, Potamitis and Rigakis, 2016a, 64 

Potamitis and Rigakis, 2016b). Here, the use of both the extinction of light and backscattered light 65 

principles have been shown to perform better than audio (Potamitis et al., 2015, Potamitis and Rigakis, 66 

2016b). 67 

In parallel to the evolution of sensor technologies has been a rapid development in computational 68 

techniques. Classification problems once thought to be impossible, can be tackled by any number of 69 

different data science techniques. Such techniques have been widely applied to the classification of 70 

species from audio measurements and, in general, the literature approaches this problem in two ways; 71 

the first approach generates a “dictionary” of features for each species through unsupervised learning 72 

methods such as clustering and nearest neighbour classification. A new unknown species is then 73 



allocated to the closest “word”. Such methods have been shown to perform relatively poorly 74 

(Potamitis et al., 2015, Moore and Miller, 2002, Potamitis, 2014). The second, more successful, 75 

approach focusses on species classification through supervised learning algorithms that learn from 76 

labelled data. These include artificial neural networks (Moore, 1991, Moore and Miller, 2002), 77 

Gaussian mixture models (Potamitis, 2014, Ouyang et al., 2015), random forests, support vector 78 

machines and gradient boosting classifiers (Potamitis et al., 2015). Deep learning approaches are 79 

seeing an exponential increase in their usage but as highlighted in (Chen et al., 2014) and (Kiskin et al., 80 

2020), such methods also require formidable sample sizes. Conversely, convolutional neural networks 81 

have been used to good effect in data scarce scenarios (Kiskin et al., 2020).   82 

Not only do classification methods vary in the chosen algorithm but also in the choice of input data. 83 

Chen et al. (2014) attribute the stagnation of insect classification in part to the overreliance on a single 84 

feature of wingbeat frequency; often the fundamental frequency or the rate of wing flap. This was 85 

observed more than 20 years previously (Moore, 1991) where error rates in classification of 86 

mosquitoes increased by 33%  when only using the wingbeat frequency, compared to using the entire 87 

frequency spectra. Later, however, it was found that using the first 17 harmonics was as effective as 88 

using the entire frequency spectra to classify five different aphid species (Moore and Miller, 2002). 89 

Similarly, 12 features from the cepstrum have been used as input to the Gaussian mixture models for 90 

classifying mosquitoes (Ouyang et al., 2015). This contrasts with (Potamitis et al., 2015) and references 91 

therein who argue  that the unprocessed spectra are a better choice than more sophisticated features 92 

coming from individual harmonics. This is taken further in other studies (Chen et al., 2014) where the 93 

frequency spectra are supplemented with additional covariates, such as time of flight and where prior 94 

information on insect behaviour is available for inclusion in the Bayes classifier. A less common 95 

approach is to move away from the frequency domain and to instead use wavelet transformations of 96 

the audio (Kiskin et al., 2020), which arguably loses biological interpretability in relation to insect flight.  97 



Literature shows little consensus on the convergence of a single approach but individual studies 98 

highlight nuances in specific application areas. It is not known whether the performance of algorithms 99 

and associated processing of data differs due to targeted species, experimental conditions, tuning 100 

parameters, or most likely a combination of all three. However, the choice of both algorithm and data 101 

processing should be made in the context of why discrimination is needed. In this paper, we aim to 102 

couple together successful classification along with biological insight and as such, consider both 103 

rigorous data processing to extract morphologically meaningful parameters and machine learning 104 

algorithms to develop classification models. Furthermore, we aim to show that an ensemble of 105 

bioacoustic parameters and indices can be used to distinguish between groups and species of the 106 

agriculturally and economically important, but often overlooked, weak-flying insects.    107 

 108 

Materials and Methods 109 

Flight experiments  110 

Opto-acoustic recorders capture the variation of light when an insect passes through a light beam.  111 

Both the main body and the wings cast a shadow in the emitter’s light beam, known as the extinction 112 

of light principle, and this shadow is subsequently detected by a receiver photodiode array (Potamitis 113 

and Rigakis, 2016a). The Wingbeat Recorder® (Insectronics, Chania, Crete, Greece) was set-up on a 114 

work surface in a laboratory, with white dividers either side of the set-up preventing other equipment, 115 

lasers and light to interfere with the recording. During experimental conditions, the sensor was placed 116 

underneath a 15,000 ml heavy-walled glass beaker (Duran™) which provided sufficient space for 117 

insects to behave as normal.  118 

For each species studied, insects were either collected from the field or from insectary reared cultures 119 

and placed within the up-turned beaker in which the sensor was enclosed (Figure S1).  Over a period 120 

of two days, insects were free to disperse in and around the sensor. Flights were automatically 121 



triggered when an insect entered the field of view of the LED array, generating a recording lasting 0.6 122 

seconds. All flights were saved as an audio file on an SD card within the sensor along with average 123 

temperature and humidity covariates. Approximately 30 insects were used per experiment run, 124 

generating on average 50 recordings (ranging from 0 to more than 500) recordings per run. 125 

 126 

Audio pre-processing and feature extraction 127 

 128 

A depiction of the audio processing steps is shown in Figure 1. Amplitude of the audio (volume) was 129 

scaled according to the bit rate, b, (divided by 0.5 x 2b) to be expressed in arbitrary amplitude units 130 

(AAU). This allows a direct comparison between the amplitude across recordings sampled with 131 

different bit rates. Audio recordings were trimmed to remove the “silence” at either end of the 132 

recording. A threshold of 0.0061 AAU was identified at which sound can be considered background 133 

noise. However, background noise exhibits stochasticity, and the first sound above this threshold does 134 

not necessarily indicate it is an insect flight. Thus, to determine the first and last true sound and 135 

therefore flight, any index for which the sound was above the threshold and identified as an outlier 136 

(on the temporal scale), defined as more than 3 times the interquartile range (IQR) away from the 137 

upper or lower quartiles, was considered stochastic variation above the threshold and not true sound 138 

(Figure S2). Trimmed audio recordings consisting of fewer than 128 time points (a total of 0.01 139 

seconds) were removed.  140 

A filtering to remove background variation through a short-time Fourier transform with Hanning 141 

window was applied to the trimmed audio recordings. Summary statistics (maximum amplitude, 142 

amplitude range, amplitude interquartile range, see Table 1) and measures of energy (crest factor, 143 

energy, power and root mean square (RMS), see Table 1) were obtained from the filtered trimmed 144 

audio [Feature extraction box 1 in Figure 1]. Additional summary statistics (amplitude index and 145 

temporal entropy, see Table 1) were obtained from zero padded trimmed audio [Feature extraction 146 

box 2 in Figure 1]. 147 



The frequency spectrum was calculated with a window length of 128 time points using a short time 148 

Fourier transform and applied to the trimmed audio, padded with zeroes to make a total recording of 149 

length 8192 (213) time points. The dominant frequency was identified as the largest harmonic above 150 

0.05 kHz. Harmonics were extracted in order of frequency peak height and the top 10, with no lower 151 

frequency limit, were recorded. Spectral summaries (bioacoustic indices at four different frequency 152 

ranges; 0-1000 Hz, 50-1000 Hz, 50-300 Hz, 200-3000 Hz, spectral entropy and the acoustic entropy, 153 

see Table 1) were calculated [Feature extraction box 3 in Figure 1]. 154 

A long term trend, often consisting of a single peak and trough, was evident in the majority of 155 

recordings. It is thought that this long term trend relates to insect flight movement (e.g. a banking 156 

behaviour) rather than to wingbeat frequencies alone. As such, the frequency spectra extracted as 157 

above, may have limited interpretability of the resulting harmonics which, in particular, prohibits the 158 

estimation of the fundamental frequency. Thus, a second set of features are calculated after removal 159 

of this long term trend through smoothing, estimated via a generalized additive model (GAM). The 160 

GAM was fitting using thin plate regression splines and a maximum basis dimension of 1/50th of the 161 

length of the trimmed audio or of dimension 10, whichever was bigger. Summary statistics (maximum 162 

amplitude, amplitude range and amplitude interquartile range, see Table 1) and measures of energy 163 

(crest factor, energy, power and root mean square (RMS), see Table 1) and also the maximum 164 

amplitude of the estimated GAM were obtained from the filtered trimmed audio [Feature extraction 165 

box 4 in Figure 1]. Additional summary statistics (amplitude index and temporal entropy) were 166 

obtained from zero padded trimmed audio [Feature extraction box 5 in Figure 1]. Harmonic features 167 

(dominant frequency, top 10 harmonic peaks, bioacoustic indices at four different frequency ranges; 168 

0-1000 Hz, 50-1000 Hz, 50-300 Hz, 200-3000 Hz, spectral entropy and the acoustic entropy) were 169 

extracted from the frequency spectrum calculated on the zero-padded, trend-removed, trimmed 170 

audio [Feature extraction box 6 in Figure 1].  171 



To calculate the fundamental frequency, peaks were identified in the modulus of the autocorrelation 172 

function of the detrended audio, ensuring peaks were no closer than 10 time points (0.001 seconds) 173 

apart. The fundamental frequency was then calculated as the inverse of the time of the first peak 174 

[Feature extraction box 7 in Figure 1].  175 

Audio processing was done in the statistical software package, R, using packages seewave (Sueur et 176 

al., 2008a) for the Fourier transform, calculation of the harmonics and the calculation of temporal, 177 

spectral and acoustic entropies. The package soundecology (Villanueva-Rivera and Pijanowski, 2018) 178 

was used to calculate the bioacoustics index and the mgcv package (Wood, 2011) was used for the 179 

GAM estimation.  180 

 181 

Data 182 

A total of 5026 audio recordings were available. 98 of these did not exceed the required minimum 183 

audio length of 0.016 seconds, potentially because individuals did not fly through the whole sensor or 184 

were flying vertically through the sensor, and no features were extracted. Of the remaining 4928 185 

observations, for which up to 52 features (as listed in Table 1) were calculated, 70% were randomly 186 

allocated to the training set and 30% to the validation set. Four aphid species (Aphis fabae, Sitobion 187 

avenae, Myzus persicae and Rhopalosiphum padi) were studied because they are global pests and 188 

reported on weekly on by the Rothamsted Insect Survey (RIS) to growers 189 

(https://insectsurvey.com/aphid-bulletin). Drepanosiphum platanoidis and Periphyllus testudinaceus 190 

are two additional aphid species that are included in our analyses and whilst neither is a crop pest, 191 

they are likely to be sampled by a sensor deployed in the field, particularly near sycamores and maples 192 

close to field margins. Psylliodes chrysocephala and Brassicogethes aeneus pose a serious threat to 193 

oilseed rape (Brassica napus) and other brassicas and are featured weekly in RIS' non-aphid 194 

commentary (https://insectsurvey.com/ris-remarks). Due to the small number of recordings for M. 195 

persicae and R. padi, these species were excluded from the random forest analysis, but are included 196 



in the basic analyses of flight. The number of observations for each species within each dataset is given 197 

in Table 2. 198 

A total of 52 features were calculated for each audio recording. Seven different feature sets were 199 

considered and are shown in Table S1. The first set considers all 52 features. The second considers the 200 

25 features calculated without detrending, whilst the third feature set considers the 27 features 201 

calculated on the detrended audio. Feature set 4 considers only the frequencies of the harmonic 202 

peaks, calculated both before and after signal detrending. Feature set 5 extends set 4 to also include 203 

the frequency indices such as the bioacoustics index, spectral entropy and dominant and fundamental 204 

frequencies. Feature sets 6, 7 and 8 consist of the representative features from a hierarchical cluster 205 

analysis with complete linkage on the correlation matrix of standardised features with 3, 5 and 14 206 

clusters (Figure S3). Representative features were defined to be the feature closest to the cluster 207 

centroid. 208 

 209 

Statistical analysis 210 

A linear model was fitted to each feature including covariates; humidity and temperature and an 211 

explanatory variable indicative of species. A Type II ANOVA table was produced showing the effect of 212 

dropping each term whilst retaining all others in the model. Where necessary, variables were 213 

transformed to ensure homogeneity of variance as listed in Table 1. 214 

Random forests (Breiman, 2001) were used to classify observations. Given the high levels of data 215 

imbalance across species, balanced random forests were implemented.  Balanced random forests 216 

resample the data according to a set of defined class-specific sample sizes. Considerable tuning of 217 

these class sample sizes is required and our criteria for tuning was to balance the class specific error 218 

rates. The chosen set of sample sizes for A. fabae, P. chrysocephala, S. avenae, P. testudinaceus, B. 219 

aeneus, D. platanoidis were 75, 75, 120, 50, 120, 300 for datasets including observations with missing 220 



values and 60, 60, 96, 40, 96, 240 for datasets excluding observations with missing values, respectively. 221 

Hyperparameters were tuned through an assessment of both the out-of-bag error rate and predictive 222 

accuracy. Selected hyperparameters were to grow 1000 trees trying 10 randomly selected variables 223 

at each split. Missing values were handled through the inbuilt option na.roughfix which imputes 224 

missing values by the variable median. To compute the accuracy on validation data, missing values 225 

were replaced by the median of each feature as computed from the training data. 226 

Performance measures for classification include the true positive rate (TPR), true negative rate (TNR), 227 

weighted accuracy (wAcc) and the class error (clErr) as defined in the supplementary information. 228 

The importance of each feature was estimated as the mean decrease in accuracy associated with 229 

dropping that variable from the model. This can be calculated for each class separately, the average 230 

of which forms the mean decrease accuracy overall. The Gini index is the mean decrease in Gini score 231 

associated with dropping the variable from the model, thus the Gini score provides a measure of how 232 

well classes are separated.  233 

Feature importance was investigated both for the full classification defined in Table 2, but also for 234 

separate sub-classifications: Hemiptera (aphids) vs Coleoptera (beetles); within Hemiptera species; 235 

within Coleoptera species separately. For the latter two classifications, new training and validation 236 

datasets, satisfying the 70:30 split in each case, were defined.  237 

Random forest models derived from different feature sets (Table S1) were compared by the out-of-238 

bag error estimates and the predictive accuracy, calculated as the average proportion of correctly 239 

classified observations.  240 

To simulate the process of identifying previously unidentified species, the random forest model was 241 

calibrated on all data excluding all observations of a single nominate species. This excluded species 242 

was then used as the validation dataset to form predictions. To investigate this process, the proportion 243 



of allocations to each species classification was extracted along with the maximal class probability. 244 

This process was repeated for each species in turn.     245 

Random forests were fitted using the R package randomForest (Liaw and Wiener, 2002) 246 

 247 

Results 248 

The average flight duration was 0.17 seconds across all taxa, translating to a speed of 0.41 m/sec-1. 249 

Substantial variation in the flight duration was observed with interquartile range of 0.065 – 0.237 250 

seconds and could be due to both the speed and direction of flight. Longer flights may involve spiralling 251 

as well as turning behaviour. Flight duration differed between species (F5, 4773 =19.52, p < 0.001), with 252 

M. persicae (0.04 seconds; 1.75 m/sec-1) and P. chrysocephala (0.076 seconds; 1.0 m/sec-1) exhibiting 253 

shorter than average flight durations and thus higher speeds.  254 

For each recording, up to 52 features were extracted (Table 1) and all show significant differences 255 

between species, on average (Table 3). Furthermore, with the exception of the amplitude index (of 256 

the raw audio), all features showed a greater variability between species than with either of the 257 

environmental covariates (largest F-statistic is associated with species differences, Table 2). However, 258 

there is considerable variability within each feature reducing the chance that any one feature could in 259 

isolation discriminate between species without inclusion of additional features (Table S2).  260 

 261 

Species classification 262 

Classification to species level has varying levels of success with random forest models. An overall out-263 

of-bag error rate of 20.62% (17.88%) on the training set and an error rate of 21.19% (17.75%) on the 264 

validation set including (excluding) observations with missing values suggest reasonable success in 265 

identifying individual species. A summary of the class specific error rates is given in the supplementary 266 

information. Random forest classification is better viewed in the ensemble framework within which 267 



it’s derived. Figure 2 shows the distribution of the maximal class probability with an indication of 268 

whether the maximal probability coincided with the true underlying species. For those species with 269 

low misclassification rates (D. platanoidis, B. aeneus, P. chrysocephala), a direct correspondence is 270 

seen with high maximal class probability (a median of 0.69, 0.62, 0.80, respectively). Furthermore, for 271 

those observations of these species that are misclassified, the maximal class probability is lower (a 272 

median of 0.42, 0.46, 0.40) indicating greater uncertainty in the final classification. Although the 273 

certainty in the correct classification of A. fabae is lower (median of 0.51), there is still a pronounced 274 

increase in uncertainty when the classification is wrong (median of 0.39). In contrast, the certainty of 275 

classification for S. avenae and P. testudinaceus does not change depending upon whether the 276 

classification is correct or not (a median of 0.50, 0.51 for correct classifications and a median of 0.48, 277 

0.43 for incorrect classifications).  278 

 279 

Features for classification 280 

Figure 3 and Figure S5 illustrates the relative importance of the different features in the classification 281 

model. The dominant frequency comes out top in both the accuracy (a measure of how well the 282 

prediction improves) and the Gini index (a measure of how well class separation improves) when the 283 

variable is included in the models. The fundamental frequency is a close second in terms of accuracy. 284 

It is clear that the higher order harmonics contribute little in terms of feature importance. In contrast, 285 

a number of summary indices of both the frequency and time domain are highlighted as important. 286 

These include the spectral and acoustic entropy, Bioacoustic Index (3) over 50-300 Hz, the RMS and 287 

power. Figure 3C) shows that the importance of these features differs by species with the acoustic 288 

entropy important for identifying P. chrysocephala and the fundamental frequency important for B. 289 

aeneus and the dominant frequency for A. fabae.  290 

 291 



Harmonics alone are not enough. 292 

A comparison of out-of-bag error rates shows that classification improves when using all features of 293 

both the frequency and time domain compared to using specific subsets of feature variables (Figure 294 

S6A). Specifically, the best out-of-bag accuracy rates on the validation set, where missing values are 295 

imputed, are seen when using all 52 features (78.9%) and when using the 27 features extracted after 296 

detrending (79.4%). A lower accuracy is seen when using the 25 features extracted before detrending 297 

(76.8%) and when using only the 20 harmonic features (76.8%). Marginal improvements are seen 298 

when supplementing the harmonic features with the additional frequency spectra indices (77.6%). 299 

Although the minimal feature sets of 3 and 5 chosen features result in lower accuracy (60.0% and 300 

68.5%), the minimal set of chosen 14 features performs relatively well (75.6%). It can be seen that 301 

when imputation methods are used, the error rates tend to increase by about 2.5-4%. 302 

Further investigation of the class specific error rates (Figure S6B), shows that the high error rates of 303 

the minimal feature sets of 3 and 5 chosen features corresponds with poor prediction of pollen beetles 304 

in particular. The predictive performance of black bean aphids increases in the feature sets restricted 305 

to the harmonics only, 75.0% class specific error rate compared to 44.2% in the full 52 feature set. 306 

 307 

Features for within order classification differ to between order classification 308 

Features important in classifying between Hemiptera and Coleoptera align very closely with those 309 

identified in the full model (Figure 4). However, when data are restricted to a single order, differing 310 

patterns of feature importance are revealed. When focussed on aphid species only, the prominent 311 

features are the maximum amplitude, the amplitude range and the power or RMS (accuracy decrease) 312 

indicating a preference for features of the audio rather than the harmonics. The highly influential 313 

features of the full classification reduce to a mid or low level of importance in the within order 314 

classification. Similarly, focussing only on classifying between beetle species (albeit on a much smaller 315 



dataset), the key features of importance identified are the spectral and acoustic entropy and to a 316 

lesser extent, the bioacoustic index (at 50-300 Hz), the frequency of the most prominent harmonic 317 

and the temporal entropy, thus indicating a preference for features of the frequency spectra. Thus, 318 

harmonics such as the dominant frequency and fundamental frequency appear to be key in identifying 319 

between orders, but alternative features of the audio and spectrum are required to identify to a 320 

species level. 321 

 322 

Classifying unknown species results in less certain predictions 323 

In general, the class probability for a misclassified observation is lower than that for a correctly 324 

classified observation (Figure 5A). Unobserved species are most commonly classified as sycamore 325 

aphids or pollen beetles, likely due to the larger number of observations in these two classes (Figure 326 

5B). Lower predictive certainty generally persists when investigating the model performance on 327 

predictions of a previously unobserved class (Figure 5B). It is noticeable that when either cabbage 328 

stem flea beetles or English grain aphids are excluded from the training set, the class predictions 329 

remain relatively high resulting in reasonable certainty that these species are in fact sycamore aphids 330 

or pollen beetles respectively. When sycamore aphids are excluded from the training set, they are 331 

mostly allocated to the English grain aphid (62.3%) with some to the pollen beetle class (20.9%).  332 

 333 

Discussion 334 

There is now a wealth of studies having developed classification models of insect flight (Moore, 1991, 335 

Chen et al., 2014, Potamitis, 2014, Potamitis et al., 2015, Ouyang et al., 2015, Kiskin et al., 2020),  but 336 

relatively few have focussed on weak-flying aphids and beetles (Moore and Miller, 2002). None that 337 

we know of have attempted to link morphological characteristics to acoustic properties with the 338 

exception of (Rajabi et al., 2016) who showed that the corrugated pattern of dragonfly wings explained 339 



differences between damsel and dragonfly wingbeat frequencies. The aim of this study has been to 340 

provide proof-of-concept for automatic detection methods of aphid and beetle pests via opto-acoustic 341 

methods whilst also providing key insight into the drivers that will further this area of science. At first 342 

look, the error rates in misclassification in this study appear high at 18-20% and yet, these insect pests 343 

are not only inaudible but their wingbeat rate is eight times smaller than the typical model species 344 

such as Anopheles mosquitoes (≈100 Hz v ≈800  Hz) and have a much weaker flight speed (0.41 m/sec-345 

1 vs ≈ 1 m/sec-1) too (Potamitis et al., 2015). As sensors improve and more species observed, it seems 346 

inevitable that the overall error rates will improve and yet, we also anticipate specific species 347 

comparisons to remain a challenge. This is because of the close species similarity between aphid body 348 

plans, their small size (2–5 mm; body mass 1-13 mg) and their simple wings that do not affect the 349 

biomechanics of flight profoundly (cf dragonflies (Rajabi et al., 2016)). Successful classification to 350 

species level should not be the final endpoint though. Rather the highly polyphagous nature of aphids 351 

and the differential risk such forms pose make it desirable to classify beyond species. Indeed, (Hardie 352 

and Powell, 2002) show substantial variation in flight behaviour though video tracking technology 353 

between different forms of A. fabae. Although sensor technologies will undoubtedly improve, it is the 354 

view of the authors that black-box classification of empirical data will always be limited in its scalability 355 

if not coupled with knowledge of morphology and if deployed in-field, phenology. 356 

At the highest taxonomic resolution, an ensemble of bioacoustics parameters and indices were used 357 

to distinguish between beetle and aphid species. Our models indicate that within a small selection of 358 

the Aphididae, measures of flight energy, particularly the maximum amplitude and the amplitude 359 

range, are more important than higher order harmonics even though stroke amplitude varies during 360 

flight (Tercel et al., 2018). Harmonics alone were shown to perform less well than conjectured by 361 

(Moore and Miller, 2002) wherein they proved useful with neural networks. A lack of utility for 362 

harmonics in our study is perhaps surprising given that wingbeat frequency and the harmonics are 363 

functions of the physical size, shape, stiffness and mass of the wing as well as the wing muscles and 364 

stroke amplitude (Tercel et al., 2018, Byrne et al., 1988). However, because of their small size, aphids 365 



will likely incur greater relative drag and as a result of their small wings relative to body size will beat 366 

their wings comparatively faster than other insects and this appears to be an important discriminator 367 

(Tercel et al., 2018, Byrne et al., 1988). Such strengthening phenomena,  discussed at length by 368 

(Wootton, 1981) and shown to be the cause of variation in insect wing deformation between species, 369 

are also observed in birds, where higher wing loadings demand a more substantial humerus (Sullivan 370 

et al., 2019). 371 

To further improve misclassification rates, a mechanistic understanding of wing acoustics is needed, 372 

and whilst a detailed investigation is beyond the scope of this study, some general observations are 373 

already profoundly clear; even with major differences in wing and flight apparatus, species are still 374 

misclassified between major groups, reducing overall model precision and accuracy; higher order wing 375 

beat harmonics do not play a major role in species discrimination, instead fundamental and dominant 376 

frequencies as well as audio are more high ranking.   377 

Specifically concerning the first point, the forewings of beetles are hardened to form the elytra, such 378 

that the hindwing provides the energy and propulsion for flight and are not coupled to the elytra. 379 

Instead, both the elytra and hind wing beat in phase during flight, although the former have a smaller 380 

stroke angle (Brackenbury and Wang, 1995). Beetle wing venation is also modified to allow folding 381 

under the elytra when not in flight.  Indeed, for both species of beetle studied here, individuals have 382 

poorly developed venation and therefore less stiffness (Kukalová-Peck and Lawrence, 1993, Kukalová-383 

Peck and Lawrence, 2004, Suzuki, 1994). It can be clearly seen how flexible the chyrosomelid beetle 384 

Crepidodera aurata’s wing is without a rigid structure along the complete length of the hind wing 385 

(Nadein and Betz, 2016). Compare this flight apparatus with aphids that have coupled fore- and hind-386 

wings, no hardened wing casing and do not fold their wings on landing (Franielczyk-Pietyra and 387 

Wegierek, 2017). Aphids, in contrast, have a thickened membrane on the forewing beyond the 388 

anterior costal margin, the pterostigma, that increases wing flap performance due to a stiffer leading 389 

edge that drives speed (Franielczyk-Pietyra and Wegierek, 2017). Yet, aphid wings still retain a flexible 390 



wing membrane due to sparse venation and this flexibility provides greater lift than a completely stiff 391 

wing (Mountcastle and Daniel, 2010). We therefore conjecture, ahead of any detailed study of wing 392 

bioacoustics, that differences in wing venation and morphology must play a minor role in generating 393 

unique wing harmonics for this group (or instead that if present, such differences cannot be detected 394 

in the current sensor through the exclusion of light principle), and, our models support this, stressing 395 

both the dominant and fundamental frequencies for splitting beetles and aphids, rather than higher 396 

harmonics or more complex indices relating to energy or mechanics.  It is also possible one source of 397 

increased variability in higher order harmonics is the fact that wing movements may not be “clean”, 398 

for example, wings can touch each other or other parts of the body producing stridulations with 399 

ultrasonics or other harmonics, which would modulate the production of wing harmonics. 400 

Our study shows that predicted mean (median) wingbeat frequencies for aphids at average 401 

temperature and humidity vary between species (Table S2; the exponentiated fundamental 402 

frequencies for 6 aphid species: A. fabae = 134 Hz (119 Hz); D. platanoidis = 104 Hz (95 Hz); M. persicae 403 

= 130 Hz (130 Hz); P. testudinaceus = 113 Hz (101 Hz); R. padi = 119 Hz (118 Hz); S. avenae = 106 Hz 404 

(99 Hz)) but fall within an expected range for hemipterans (90-152 Hz) (Tercel et al., 2018). The 405 

wingbeat frequencies of the cabbage stem flea beetle and pollen beetle are not known in the 406 

literature, but our values are not remarkably different to other confamilial species recorded by (Tercel 407 

et al., 2018) and (Brackenbury and Wang, 1995) (Table S2; the exponentiated fundamental 408 

frequencies for P. chrysocephala = 121 Hz (119 Hz) cf Oulema melanopus 123 Hz Tercel et al. (2018) 409 

and Chalcoides aurata 118 Hz (Brackenbury and Wang, 1995).  B. aeneus = 139 Hz (136 Hz)). These 410 

means are skewed somewhat when compared to the median, suggesting an increase in variation 411 

according to temperature. Previous studies have shown temperature to be positively correlated with 412 

the fundamental frequency,  for example, female Aedes aegypti (L.) mosquitoes with a fundamental 413 

wingbeat frequency of ≈ 450-550 Hz, increase their flap rate ≈ 8–13 Hz per unit change in degree 414 

centigrade as the air becomes less dense, representing a rate of increase of 1.5-2.9% (Villarreal et al., 415 

2017). ‘Frozen flight’ is another source of variation that can impact fundamental frequency estimates 416 



when the wingbeat is effectively zero (Thomas et al., 1977). Wing muscle autolysis in some of the 417 

aphids studied (i.e. A. fabae, M. persicae and R. padi), during which flight muscle breakdown removes 418 

the ability to fly, is yet another source of variation (Johnson, 1953, Leather et al., 1983). Wing muscle 419 

autolysis was particularly notable with R. padi that were largely grounded once in the flight arena. 420 

Despite these covariates, fundamental frequency remains key to discrimination, having a predictable 421 

relationship with wing area and to a lesser extent, body mass (Byrne et al., 1988, Tercel et al., 2018).  422 

In putting the emphasis of the data processing pipeline on feature extraction, we have been able to 423 

link indices of both the temporal and frequency domain to morphological characteristics. Thus, 424 

allowing us to gain understanding into the mechanisms contributing to differences in species flight 425 

behaviour. Such insight is unavailable in the convolutional neural net approach of inputting frequency 426 

spectra only. Furthermore, through our processing, we identified the importance of the flight 427 

movement (estimated via smoothing splines). Although this has previously been identified (Potamitis 428 

et al., 2015), to our knowledge it has not directly been incorporated into any classification algorithm. 429 

We have shown that relatively simple summaries of the temporal domain, such as the power indicative 430 

of the energy of a flight, contain important information for classification purposes, and perhaps 431 

explains why convolutional neural networks on wavelet transforms perform well (Kiskin et al., 2020) 432 

as wavelet transforms will account for both the time and frequency domain. This conceivably indicates 433 

that it is not only the short-term flight behaviour such as wing-flaps that are important for species 434 

identification but also the longer-term trends in an insect flight. Future studies will investigate this 435 

further in the context of these weak-flying agricultural pests. 436 

Study design is one of the most important factors in any data collection activity. As with any study, 437 

there have been a number of limiting factors not least the high imbalance in observation numbers for 438 

each individual species. This does not appear to be uncommon in the literature as (Moore and Miller, 439 

2002) also had similarly imbalanced sample sizes ranging from 340 to 3325. Using balanced random 440 

forest approaches to account for the data imbalance, class specific error rates can be reduced albeit 441 



at the cost of higher out-of-bag error rates. Tuning these algorithms requires a trade-off between false 442 

positive and false negative detections balanced across species. The optimal balance will depend on 443 

individual study aims, for instance in-field monitoring of pests would require a minimisation of false 444 

negative detections of key agricultural pests whilst for population monitoring it is preferable not to 445 

bias false detections to any one species. In this study, we have opted for the latter approach and to 446 

tune the algorithms aiming to balance class specific error rates. It remains the long-term aim to deploy 447 

this technology in-field enabling automatic insect pest-detection at local spatial scales, however, 448 

further work is needed in the collation of robust labelled data. Furthermore, we envisage algorithmic 449 

development through the incorporation of prior knowledge, such as aphid migration patterns, as an 450 

essential component to obtain good accuracy in-field. 451 
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 585 

Figure Legends 586 

Figure 1 Data processing pipeline, indicating where features are extracted. Aphid illustration released 587 

under the Creative Commons Licence https://commons.wikimedia.org/wiki/File:Aphid_(PSF).png 588 

Figure 2 Species classification error rates. Box and whisker plots of the maximum class probability 589 

predicted for each observation in the validation dataset and split according to whether the 590 

classification was correct or not  591 

Figure 3 Species classification. a) and b) give the mean decrease in accuracy and Gini index respectively 592 

for the top 10 feature variables considered in the model (a complete set is shown in Figure S5) and c) 593 



presents the within species importance of each feature variable. Feature variables denoted by [g] are 594 

derived after a detrending step (see Figure 1) 595 

Figure 4 Comparison of class sets. The mean decrease in accuracy due to dropping each feature in turn 596 

from a model (using the complete feature set) classifying between all species, between aphids vs 597 

beetles, between aphid species and between beetle species  598 

Figure 5 Identifying an unknown species. a) Boxplots of the maximum class probability of the 599 

validation set for the full species model, separating between observations correctly and incorrectly 600 

classified. b) Confusion matrix of each single species exclusion model showing the proportion of 601 

allocations to each of the known species. Boxplots of the maximum class probability are shown for 602 

each associated model  603 

 604 

Additional Files 605 

Additional file 1: Supplementary Information.pdf 606 

Supplementary information provides further details on the selection of features and the performance 607 

of the classification algorithms. Also included in this file are:  608 

Table S1, detailing the chosen features for each random forest model 609 

Table S2, containing the summary statistics of each extracted feature calculated per species.  610 

 611 

Additional file 2: Figure S1.pdf 612 

Figure S1: Photograph of the experimental setup where the opto-acoustic sensor is contained within 613 

a large jar allowing aphids to fly freely through the sensor. Photographs of illustrative wings from R. 614 

padi, D. platanoidis, B. aenus and P. chrysocephala. Each tick mark on the scale bar is 0.1mm. 615 

 616 



Additional file 3: Figure S2.pdf 617 

Figure S2: Data processing. Figure illustrates how each recording is trimmed to remove periods of 618 

silence at the start or end of a recording. Lower panel is the audio recording, red lines are the threshold 619 

of ±0.0061 arbitrary amplitude units, above and below which sound is considered silence. The upper 620 

panel shows a box plot of the temporal indices exceeding this threshold. Audio is then trimmed to the 621 

whiskers of the boxplot defined as the largest (smallest) temporal index not exceeding 3 times the 622 

interquartile range away from the upper (lower) quartile, shown by the blue lines. 623 

 624 

Additional file 4: Figure S3.pdf 625 

Figure S3: Identification of a minimal feature set. A) The correlation matrix between features 626 

calculated after standardisation. B) Dendrogram of a hierarchical cluster analysis using complete 627 

linkage on 1 – r, where r is the correlation matrix of the standardised feature set. Features are coloured 628 

according to cutting the dendrogram into i) 3 groups, ii) 5 groups iii) 14 groups. Features deemed most 629 

representative of each group are indicated by the box. 630 

 631 

Additional file 5: Figure S4.pdf 632 

Figure S4. Species classification error rates. A) shows the class specific error rates where clErr is the 633 

class error rate (or 1 – true positive rate per class), TNR is the class specific true negative rate, TPR is 634 

the class specific true positive rate and wAcc is the weighted accuracy (wAcc=0.5 x TNR + 0.5 x TPR). 635 

B) shows the confusion matrices of classification predictions on the validation dataset, presented as a 636 

proportion per species.  637 

 638 

Additional file 6: Figure S5.pdf 639 



Figure S5. Species classification. A) and B) give the mean decrease in accuracy and Gini index 640 

respectively for each feature variable considered in the model and C) presents the within species 641 

importance of each feature variable. Feature variables denoted by [g] are derived after a detrending 642 

step (see Figure 1) 643 

 644 

Additional file 7: Figure S6.pdf 645 

Figure S6. Comparison of feature sets. A)  The mean accuracy rate on the out-of-bag predictions from 646 

the training set and on the validation set for both omitting and imputing observations with missing 647 

values. B) the class specific error rates for each feature set for both omitting and imputing 648 

observations with missing values. Each model corresponds to a different subset of feature variables 649 

as detailed in Table 3. 650 

 651 

Additional file 8: code.zip 652 

Folder containing R scripts for running the random forest models and producing the presented 653 

analyses. Files included are: 654 

• randomForest_tuning.R: script containing the tuning process of a) the balanced 655 

random forest and b) the tuning parameters of the random forest algorithm. 656 

• randomForest_speciesModel.R: script containing the random forest model for all 657 

species and associated analytics. 658 

• randomForest_dataSlice.R: script containing the random forest models for different 659 

data subsets (features and species). 660 

 661 



Table 1. A summary of the features extracted from the audio recordings along with their definition. Let a(t) denote the amplitude of the trimmed audio at time t and a*(t) 662 

denote the Hilbert amplitude envelope at time t (22). Let f(ξ) denote the spectrum of a(t) at frequency ξ Hz. Let f(̅ξ) denote the mean spectrum. Let g(t) denote the GAM 663 

estimate of the long term trend and ã and f̃ be the amplitude and frequency of the GAM adjusted audio. Transformations are applied to the formulae listed. All log 664 

transformations are the natural logarithm. [g] indicates feature has been calculated after removal of the long-term trend. Indicated in the table is the stage at which the 665 

feature was extracted, corresponding to the labelled boxes in Figure 1. The final column provides a description of the biological interpretation of each feature. 666 

Extraction 
Stage 

Feature Transformation Feature Type Mathematical Description Description Biological category 

1 Maximum amplitude logarithm audio max
𝑡

|𝑎(𝑡)|   Maximum amplitude of a half cycle 
wingbeat centred at 0.  

Flight energy 

1 Amplitude range logarithm audio max
t

𝑎(𝑡) − min
t

𝑎(𝑡)  
The difference between the maximum 
peak and the minimum trough of a 
wingbeat recording.  

Flight energy 

1 Amplitude IQR logarithm audio 
𝑞3(𝑎(𝑡)) − 𝑞1(𝑎(𝑡)), where 

𝑞1and 𝑞3 denote the first and 
third quartile. 

The difference between recorded 
amplitude at the 3rd and 1st quartiles. A 
dampened measure of flight energy 
ignoring extreme values. 

Flight energy 

1 Power logarithm audio 

1

𝑛
∑ [𝑎(𝑡)]2

𝑡 , where 𝑛 is the 

number of time points in the 
recording. 

The average squared amplitude.  Flight energy 

1 Root Mean Square (RMS) logarithm audio √
1

𝑛
∑ [𝑎(𝑡)]2

𝑡   

The average squared amplitude, 
downweighted by a square root 
transformation, dampening influence of 
loud sounds. 

Flight energy 

1 Crest factor logarithm audio max
𝑡

|𝑎(𝑡)| √
1

𝑛
∑ [𝑎(𝑡)]2

𝑡⁄   

The ratio between the peak value 
relative to the RMS of the wingbeat cycle 
in the series.  

Speed of wing transition 
relative to overall flight 
energy 

2 Amplitude index logarithm audio 
𝑞2(𝑎∗(𝑡)), where 𝑞2denotes 

the median. 

The median value of the amplitude over 
time.  

Flight energy 

2 Temporal entropy  audio 
− 1

log 𝑛
∑ 𝑎∗(𝑡) log 𝑎∗(𝑡)𝑡   

A function of Shannon evenness, the 
index estimates the variability in 
amplitude (loudness) over time.  

Consistency of flight energy 

3 Bioacoustics index (1)  frequency ∑  𝑓̅(𝜉)1000
𝜉=0   

The area under the curve of the 
frequency spectra between 0-1000 Hz. 

Harmonic information 
including body oscillations 



This may include lower frequency body 
oscillations of the insect between 0-50 
Hz. 

3 Bioacoustics index (2)  frequency ∑  𝑓̅(𝜉)1000
𝜉=50   

The area under the curve of the 
frequency spectra between 0-1000 Hz. 
This will exclude lower frequency body 
oscillations of the insect between 0-50 
Hz. 

Harmonic information 
excluding body oscillations 

3 Bioacoustics index (3)  frequency ∑  𝑓̅(𝜉)300
𝜉=50   

The area under the curve of the 
frequency spectra between 50-300 Hz. 
This will only include low order 
frequencies including the fundamental 
frequency. 

Harmonic information at low 
frequencies 

3 Bioacoustics index (4)  frequency ∑  𝑓̅(𝜉)3000
𝜉=200   

The area under the curve of the 
frequency spectra between 200-3000 Hz. 
This will only include higher order 
frequencies. 

Harmonic information at high 
frequencies 

3 Spectral entropy  frequency  
− 1

log 𝑛
∑ 𝑓̅(𝜉) log 𝑓̅(𝜉)𝜉  

A function of Shannon evenness, the 
index estimates the variability in the 
frequency spectrum. 

Smoothness of the harmonic 
series 

3 Acoustic entropy  
audio-
frequency 

− 1

log 𝑛
∑ 𝑎∗(𝑡) log 𝑎∗(𝑡)𝑡  ×

 
− 1

log 𝑛
∑ 𝑓̅(𝜉) log 𝑓̅(𝜉)𝜉   

An index lying between 0 and 1, with 0 
indicating a pure tone and 1 indicating 
random noise. (Sueur et al., 2008b). 

Clarity of the recorded sound 

3 Dominant frequency square root frequency 𝑓−1 (max
𝜉>50

𝑓(𝜉))  

The "loudest" frequency, i.e. the 
frequency corresponding to the largest 
changes in amplitude such that the 
frequency exceeds body oscillations of at 
least 50 Hz. 

(Inverse) Length of the 
largest oscillations 

3 1st harmonic  harmonics ℎ1 =  𝑓−1 (max
𝜉

𝑓(𝜉))  

The "loudest" frequency, i.e. the 
frequency corresponding to the largest 
changes in amplitude. This will coincide 
with the dominant frequency where the 
largest frequency is over 50 Hz. 

(Inverse) Length of the 
largest oscillations 

3 2nd harmonic  harmonics ℎ2 =  𝑓−1 ( max
𝜉,𝜉≠ℎ1

𝑓(𝜉))  

The second to tenth loudest frequency. 
Higher harmonics may be multiples of 
lower harmonics, where a repeating 
oscillation is detected. 

(Inverse) Length of the higher 
order oscillations. 

3 3rd harmonic  harmonics ℎ3 =  𝑓−1 ( max
𝜉,𝜉≠ℎ1,ℎ2

𝑓(𝜉))  

3 4th harmonic  harmonics ℎ4 =  𝑓−1 ( max
𝜉,𝜉≠ℎ1,ℎ2,ℎ3

𝑓(𝜉))  

3 5th harmonic  harmonics ℎ5 =  𝑓−1 ( max
𝜉,𝜉≠ℎ1…ℎ4

𝑓(𝜉))  



3 6th harmonic  harmonics ℎ6 =  𝑓−1 ( max
𝜉,𝜉≠ℎ1…ℎ5

𝑓(𝜉))  

3 7th harmonic  harmonics ℎ7 =  𝑓−1 ( max
𝜉,𝜉≠ℎ1…ℎ6

𝑓(𝜉))  

3 8th harmonic  harmonics ℎ8 =  𝑓−1 ( max
𝜉,𝜉≠ℎ1…ℎ7

𝑓(𝜉))  

3 9th harmonic  harmonics ℎ9 =  𝑓−1 ( max
𝜉,𝜉≠ℎ1…ℎ8

𝑓(𝜉))  

3 10th harmonic  harmonics ℎ10 =  𝑓−1 ( max
𝜉,𝜉≠ℎ1…ℎ9

𝑓(𝜉))  

4 GAM amplitude range  logarithm audio max
t

𝑔(𝑡) − min
t

𝑔(𝑡)  The difference between the peak and the 
trough of a GAM smoothed signal.  

Flight behaviour 

4 Maximum amplitude [g] logarithm audio max
𝑡

|𝑎(𝑡)|   

As above but applied to the detrended 
audio signal 

As above but applied to the 
detrended audio signal 

4 Amplitude range [g] logarithm audio max
t

𝑎(𝑡) − min
t

𝑎(𝑡)  

4 Amplitude IQR [g] logarithm audio 
𝑞3(𝑎(𝑡)) − 𝑞1(𝑎(𝑡)), where 

𝑞1and 𝑞3 denote the first and 
third quartile. 

4 Power [g] logarithm audio 

1

𝑛
∑ [𝑎(𝑡)]2

𝑡 , where 𝑛 is the 

number of time points in the 
recording. 

4 RMS [g] logarithm audio √
1

𝑛
∑ [𝑎(𝑡)]2

𝑡   

4 Crest factor [g] logarithm audio max
𝑡

|𝑎(𝑡)| √
1

𝑛
∑ [𝑎(𝑡)]2

𝑡⁄   

5 Amplitude index [g] logarithm audio 𝑞2( �̃�∗ (𝑡))  

5 Temporal entropy [g]  audio 
− 1

log 𝑛
∑ �̃�∗(𝑡) log �̃�∗(𝑡)𝑡   

6 Bioacoustics index (1) [g]  frequency ∑  𝑓̅(𝜉)1000
𝜉=0   

6 Bioacoustics index (2) [g]  frequency ∑  𝑓̅(𝜉)1000
𝜉=50   

6 Bioacoustics index (3) [g]  frequency ∑  𝑓̅(𝜉)300
𝜉=50   

6 Bioacoustics index (4) [g]  frequency ∑  𝑓̅(𝜉)3000
𝜉=200   

6 Spectral entropy [g]  frequency  
− 1

log 𝑛
∑ 𝑓̅(𝜉) log 𝑓̅(𝜉)𝜉  

6 Acoustic entropy [g]  
audio-
frequency 

− 1

log 𝑛
∑ �̃�∗(𝑡) log �̃�∗(𝑡)𝑡  ×

 
− 1

log 𝑛
∑ 𝑓̅(𝜉) log 𝑓̅(𝜉)𝜉   

6 Dominant frequency [g] square root frequency 𝑓−1 (max
𝜉>50

𝑓(𝜉))  



6 1st harmonic [g]  harmonics ℎ̃1 =  𝑓−1 (max
𝜉

𝑓(𝜉))  

6 2nd harmonic [g]  harmonics ℎ̃2 =  𝑓−1 ( max
𝜉,𝜉≠ℎ̃1

𝑓(𝜉))  

6 3rd harmonic [g]  harmonics ℎ̃3 =  𝑓−1 ( max
𝜉,𝜉≠ℎ̃1,ℎ̃2

𝑓(𝜉))  

6 4th harmonic [g]  harmonics ℎ̃4 =  𝑓−1 ( max
𝜉,𝜉≠ℎ̃1,ℎ̃2,ℎ̃3

𝑓(𝜉))  

6 5th harmonic [g]  harmonics ℎ̃5 =  𝑓−1 ( max
𝜉,𝜉≠ℎ̃1…ℎ̃4

𝑓(𝜉))  

6 6th harmonic [g]  harmonics ℎ̃6 =  𝑓−1 ( max
𝜉,𝜉≠ℎ̃1…ℎ̃5

𝑓(𝜉))  

6 7th harmonic [g]  harmonics ℎ̃7 =  𝑓−1 ( max
𝜉,𝜉≠ℎ̃1…ℎ̃6

𝑓(𝜉))  

6 8th harmonic [g]  harmonics ℎ̃8 =  𝑓−1 ( max
𝜉,𝜉≠ℎ̃1…ℎ̃7

𝑓(𝜉))  

6 9th harmonic [g]  harmonics ℎ̃9 =  𝑓−1 ( max
𝜉,𝜉≠ℎ̃1…ℎ̃8

𝑓(𝜉))  

6 10th harmonic [g]  harmonics ℎ̃10 =  𝑓−1 ( max
𝜉,𝜉≠ℎ̃1…ℎ̃9

𝑓(𝜉))  

7 Fundamental frequency [g] logarithm harmonics 
1 𝑇⁄ , where 𝑇 is the period of 
the autocorrelation function. 

A repeating and consistent frequency 
that relates to the wingbeat frequency 
(i.e. number of wingflaps per sec) 

Wingbeat frequency 
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Table 2 Number of audio recordings with feature information listed by species in the complete, 668 

training and validation datasets. Illustration of wing venation for each species. 669 

Insect 

order 

Species 
Number of 

observations 
Training Validation Wing 

Common Latin     

Hemiptera Sycamore 

aphid 

Drepanosiphum 

platanoidis 
3323 2351 972 

 

Hemiptera English grain 

aphid 
Sitobion avenae 274 193 81 

 

Hemiptera 

Maple aphid 
Periphyllus 

testudinaceus 
113 76 37 

 

Hemiptera Black bean 

aphid 
Aphis fabae 161 120 41 

 

Hemiptera Peach-potato 

aphid 
Myzus persicae 15   

 

Hemiptera Bird cherry-

oat aphid 

Rhopalosiphum 

padi 
8   

 

Coleoptera 

Pollen beetle 
Brassicogethes 

aeneus 
848 566 282 

 

Coleoptera Cabbage stem 

flea beetle 

Psylliodes 

chrysocephala 
186 127 59 

 

 Total  4928 3433 1472  

 670 

  671 



Table 3 ANOVA results testing for differences between species for each individual feature. To adjust 672 

for confounding, the covariates humidity and temperature were included in the model. Significant 673 

terms are highlighted in green. F statistics reported are of type II. Features are ordered by the size of 674 

the F statistic associated with dropping species from the model (from largest to smallest). Where 675 

necessary, variables were transformed as listed in Table 1. 676 

 F statistic P- value 

Feature Humidity Temperature Species Humidity Temperature Species 

Maximum amplitude [g] 7.85 4.69 187.17 5.11E-03 3.04E-02 4.55E-242 

Bioacoustics index (3) [g] 1.17 1.08 177.00 2.80E-01 2.99E-01 2.95E-230 

Spectral entropy [g] 76.92 8.86 161.96 2.55E-18 2.93E-03 1.62E-212 

Power [g] 16.16 8.34 138.45 5.93E-05 3.90E-03 4.49E-184 

RMS [g] 16.16 8.34 138.45 5.93E-05 3.90E-03 4.49E-184 

Amplitude range [g] 10.57 12.60 135.16 1.16E-03 3.89E-04 4.98E-180 

Bioacoustics index (1) 12.06 11.07 108.73 5.20E-04 8.84E-04 2.62E-148 

Bioacoustics index (2) 8.31 13.05 107.72 3.95E-03 3.07E-04 5.48E-147 

GAM amplitude range [g] 2.60 3.32 99.90 1.07E-01 6.87E-02 1.72E-135 

Fundamental frequency [g] 0.29 0.07 85.55 5.93E-01 7.89E-01 1.97E-116 

Power 4.27 3.38 80.75 3.89E-02 6.61E-02 3.11E-111 

RMS 4.27 3.38 80.75 3.89E-02 6.61E-02 3.11E-111 

Bioacoustics index (4) 17.53 1.48 77.48 2.88E-05 2.23E-01 7.97E-107 

Maximum amplitude 2.42 5.44 76.99 1.20E-01 1.98E-02 3.64E-106 

Amplitude range 2.23 5.83 72.70 1.35E-01 1.58E-02 2.44E-100 

Dominant frequency [g] 0.05 0.22 71.86 8.15E-01 6.39E-01 1.61E-98 

Bioacoustics index (4) [g] 21.64 0.85 69.51 3.40E-06 3.57E-01 2.36E-95 

Spectral entropy 18.51 1.30 68.59 1.72E-05 2.54E-01 9.72E-95 

Acoustic entropy [g] 0.68 0.05 66.45 4.09E-01 8.17E-01 3.19E-91 

Dominant frequency 0.01 0.16 58.95 9.43E-01 6.93E-01 1.85E-81 

Temporal entropy [g] 0.01 0.00 57.53 9.16E-01 9.68E-01 4.43E-79 

Bioacoustics index (1) [g] 17.79 11.94 48.82 2.53E-05 5.55E-04 4.36E-67 

1st harmonic [g] 0.15 0.01 46.58 6.96E-01 9.36E-01 5.60E-64 

Bioacoustics index (2) [g] 13.96 13.43 44.70 1.89E-04 2.51E-04 2.34E-61 

9th harmonic 2.19 5.68 43.14 1.39E-01 1.72E-02 1.93E-59 

6th harmonic 3.39 2.22 42.04 6.55E-02 1.36E-01 6.77E-58 

5th harmonic 2.65 3.75 40.60 1.03E-01 5.29E-02 7.25E-56 

Acoustic entropy 3.07 0.49 37.73 7.98E-02 4.85E-01 8.21E-52 

7th harmonic 2.53 3.28 36.92 1.11E-01 7.01E-02 1.14E-50 

8th harmonic 9.80 2.18 35.30 1.76E-03 1.40E-01 2.23E-48 

Amplitude IQR [g] 21.25 4.38 32.40 4.15E-06 3.65E-02 3.99E-44 

Temporal entropy 5.46 0.36 32.30 1.95E-02 5.48E-01 4.03E-44 

10th harmonic 2.34 0.41 31.77 1.26E-01 5.21E-01 2.26E-43 

4th harmonic 2.51 2.50 31.19 1.13E-01 1.14E-01 1.48E-42 



Bioacoustics index (3) 0.35 4.15 31.08 5.55E-01 4.16E-02 2.14E-42 

3rd harmonic 1.05 0.91 30.59 3.07E-01 3.41E-01 1.06E-41 

Amplitude IQR 7.01 0.47 29.96 8.13E-03 4.95E-01 8.35E-41 

2nd harmonic 0.00 0.30 28.42 9.68E-01 5.87E-01 1.30E-38 

10th harmonic [g] 0.70 2.44 19.82 4.03E-01 1.18E-01 2.64E-26 

8th harmonic [g] 1.56 1.31 18.88 2.12E-01 2.52E-01 5.63E-25 

Crest factor [g] 0.53 4.51 18.35 4.65E-01 3.38E-02 3.20E-24 

4th harmonic [g] 0.05 0.15 18.15 8.26E-01 6.99E-01 6.29E-24 

3rd harmonic [g] 0.94 0.04 15.59 3.33E-01 8.38E-01 2.65E-20 

9th harmonic [g] 6.11 4.39 15.22 1.35E-02 3.62E-02 8.76E-20 

2nd harmonic [g] 0.80 0.23 14.70 3.72E-01 6.31E-01 4.80E-19 

7th harmonic [g] 2.24 4.66 14.01 1.34E-01 3.10E-02 4.54E-18 

Crest factor 1.54 1.92 13.06 2.14E-01 1.66E-01 9.20E-17 

5th harmonic [g] 0.82 1.90 12.71 3.66E-01 1.68E-01 3.08E-16 

6th harmonic [g] 2.23 0.80 12.44 1.36E-01 3.72E-01 7.40E-16 

Amplitude index 11.28 0.04 10.86 7.89E-04 8.50E-01 1.17E-13 

1st harmonic 0.10 5.97 8.58 7.54E-01 1.46E-02 1.70E-10 

Amplitude index [g] 0.12 0.02 4.96 7.25E-01 8.98E-01 1.34E-05 
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