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15 Abstract

16 We report the discovery that Bombus terrestris audax (Buff-tailed bumblebee) locomotor trajectories 

17 adhere to a speed-curvature power law relationship which has previously been found in humans, non-

18 human primates and Drosophila larval trajectories. No previous study has reported such a finding in 

19 adult insect locomotion. We used behavioural tracking to study walking Bombus terrestris in an arena 

20 under different training environments. Trajectories analysed from this tracking show the speed-

21 curvature power law holds robustly at the population level, displaying an exponent close to two-thirds. 

22 This exponent corroborates previous findings in human movement patterns, but differs from the 

23 three-quarter exponent reported for Drosophila larval locomotion. There are conflicting hypotheses 

24 for the principal origin of these speed-curvature laws, ranging from the role of central planning to 

25 kinematic and muscular skeletal constraints. Our findings substantiate the latter idea that dynamic 

26 power-law effects are robust, differing only through kinematic constraints due to locomotive method. 

27 Our research supports the notion that these laws are present in a greater range of species than 

28 previously thought, even in the bumblebee. Such power laws may provide optimal behavioural 

29 templates for organisms, delivering a potential analytical tool to study deviations from this template. 

30 Our results suggest that curvature and angular speed are constrained geometrically, and 

31 independently of the muscles and nerves of the performing body. 

32

33
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34 1. Introduction 

35 At any point along a curve there is a unique circle or line which most closely approximates the curve 

36 near that location. The radius of that circle defines the ‘radius of curvature’, R, whilst curvature, C, is 

37 defined to be its reciprocal, 1/R. According to this definition, it can be expected that straight lines will 

38 have zero curvature, and for a given observer at a fixed scale large circles will have small curvature 

39 and small circles will have high curvature. Curvature along with angular speed, A, has been used to 

40 quantify human writing signatures[1]. 

41 Remarkably the human signature, a powerful individual identifier, adheres to a speed-curvature 

42 power law[1]. The speed-curvature, or two-thirds, power law dictates that the instantaneous angular 

43 speed of movements vary proportionally to two-thirds power of their curvature[1]. According to the 

44 law, movements under high curvature tend to slow down, whereas movements under low curvature 

45 speed up[2]. The law is given by 

46 A = kC2/3A =  kC2/3
47 (1)

48 where k is a constant of proportionality.

49

50 Maximally-smooth movements, which minimize rates of change of acceleration (i.e., jerks and jolts), 

51 are generated under the two-thirds power law[3–5], which holds true across a range of voluntary 

52 human movements, including drawing, walking and pursuit eye movements[1,3,6,7]. The law also 

53 holds true across a diverse range of taxa. The law has been observed in the motor cortical control of 

54 Rhesus monkey hand movements whilst drawing [8], and even in the larval movement of the fruit fly 

55 (Drosophila melanogaster)[5] albeit with a marginally different power-law exponent, three quarters 

56 rather than two thirds. 

A = kC2/3 (1)

where k is a constant of proportionality.
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57 The principal origins of this speed-curvature power law are contentious. One hypothesis suggests that 

58 the law results from central planning constraints imposed by the nervous system[8,9]. Another, that 

59 the law arises due to physiological constraints conferred by muscular properties and 

60 kinematics[2,5,10]. A further view, that the law exists to maximize movement smoothness and 

61 minimize jerk[3,9]. Identifying the generative mechanism holds the key to understanding the 

62 statistical law, the occurrence of which is remarkable given that behaviours are shaped by individual 

63 psyches and by complex social and environmental interactions. It’s identification may help to 

64 elucidate how other statistical regularities can occur within the complex movement patterns that arise 

65 in nature[11–16]. Progress towards identifying the underlying mechanism can be made by 

66 determining the pervasiveness of the two-thirds law, and by establishing whether or not it occurs in 

67 other modes of locomotion.

68 Given that the locomotive patterns of Bombus terrestris, and indeed animal organisms, are probably 

69 shaped by their motivational states and by environmental factors, a seemingly natural null hypothesis 

70 would be that individuals have unique locomotive patterns and that statistical regularities are absent 

71 or trivial (for example, a tendency to move forwards with near constant speed). Therefore, to 

72 determine the pervasiveness of the law, we must first determine whether the speed-curvature power 

73 law persists in the walking trajectories of the bumblebee at all and, if it does, whether the law differs 

74 depending on a bee’s environment. We must then determine whether the exponent of the law 

75 adheres closely to the two thirds exponent. Finally, it is necessary to also assess whether the power 

76 law is the best mathematical descriptor of walking bumblebee trajectories or whether an alternative 

77 better describes the relationship.

78 Walking is distinctly different from the crawling movements made by limbless larvae[17]. Therefore, 

79 we might predict that walking bee trajectories would adhere more closely to the two-thirds power law 

80 exponent reported for unconstrained movements such as human drawing and walking[1,6], than the 

81 three-quarters exponent reported for the mechanically constrained movements of larvae[5].
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82  To the best of our knowledge the speed-curvature power law has not been studied in any other 

83 invertebrate other than Drosophila melanogaster larvae[5] and never in the final, adult stage of an 

84 insect. Here, we report that Bombus terrestris audax, a social bumblebee species with a complex 

85 behavioural repertoire, displays a two-thirds speed-curvature power law whilst walking in an arena, 

86 under differing environments. 

87

88

89

90 2.Methods 

91 Bee subjects

92 All subjects were Bombus terrestris audax from research hives obtained from Biobest Belgium NV 

93 (Westerlo, Belgium). Colonies were settled in wooden nest boxes (29 x 21 x 16 cm) and provided with 

94 biogluc (Biobest Belgium NV, Westerlo, Belgium) in two gravity feeders in a Perspex foraging tunnel 

95 (26 ×4×4 cm) connected to the nest box. Pollen was also provided in baskets in the Perspex tunnel. 

96 Gravity feeders and pollen were replenished, as necessary, to ensure a consistent supply of food to 

97 the colony. Newly emerged individuals were marked in colour groups by age cohort with coloured 

98 plastic bee marking tags (EH Thorne Ltd, Market Rasen, UK) superglued to the top of the thorax. This 

99 allows tracking of an individual’s age. All individuals used in a single trial were one-week post-

100 emergence (to allow bees to begin foraging and to be monitored) and of the same age cohort. The 

101 hive was observed each day and foragers of each age cohort were identified in the foraging tube by 

102 their colour and number. From the foragers recorded in each age cohort ten individuals were 

103 randomly selected to be tested per trial. The selected individuals are then randomly allocated to either 

104 the treatment or control groups for each trial. Trials were replicated 3 times; all treatments replicated 

105 3 times across 3 different hives.
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106 The experimental arena

107 Experiments were conducted within a thermal-visual arena (Fig 1 a-d), similar to a platform previously 

108 used for Drosophila tracking[18].  The arena enables the creation of controlled, but naturalistic, 

109 environments. A Peltier array of 64 2.5x2.5 cm individually controllable thermoelectric Peltier 

110 elements, arranged in an 8x8 grid, facilitates control of the arena’s floor temperature. The arena’s 

111 floor is covered in white masking tape to create an inconspicuous, featureless surface which can be 

112 easily cleaned and replaced between trials to prevent the use of scent marks by foragers to locate 

113 arena rewards. In the training trials, visual patterns were adhered to the surface of the arena’s walls 

114 to create a visual landscape consisting of repeating patterns of stars, dots, horizontal and vertical 

115 bars, denoting the four quadrants of the arena’s circumference. Light-emitting diodes (LEDs) (colour 

116 temperature 6500K) around the top edge of the arena were used to light the arena consistently above 

117 the bee flicker fusion frequency [19] (Fig 1 c). The arena was kept in a controlled environment room 

118 at 220 C with a day: night cycle of 16:8 hr. 

119 Training environments

120 The task required forager bees to use visual landscape patterns to locate a reward zone within the 

121 arena, in response to four training environments: 1) control environment with no reward or 

122 punishment, 2) appetitive reward environment (0.1ml 50% sucrose solution in reward zone), 3) 

123 aversive punishment environment (heated arena floor (45°C), cool (25°C) reward zone) and 4) 

124 combined aversive and appetitive environment (heated arena floor (45°C), 0.1ml 50% sucrose 

125 solution in cool (25°C) reward zone). All rewards (cool zone or sucrose) were inconspicuous and not 

126 visually distinguishable from any other tiles on the arena floor.

127 Training regime 

128 None of the test subjects had experience of the thermal-visual arena prior to the training trials. Each 

129 bee was given ten trials in the arena (each trial was of three minutes duration) spaced across three 

130 days. Spaced conditioning, in which temporal spacing exists between successive conditioning trials, 
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131 has been shown to lead to higher memory consolidation in bees, especially at long intervals [20].  

132 When placed into the thermal visual arena, bees were confined under a clear plastic tube for one 

133 minute prior to the trial start, to allow orientation within the arena. The tube was then removed, and 

134 the three-minute trial started. All bees were starved for one hour prior to trial start to motivate 

135 individuals in the appetitive condition and to remove starvation as a confounding variable between 

136 treatments. Bees were confined to individual cages in-between trials to prevent further foraging 

137 experience not in the arena and standardise the amount of foraging experience in the arena each 

138 bee received. Cages were placed next to each other and adjacent to the hive to allow visual and 

139 olfactory communication between hive members.

140 Trajectory tracking

141 To facilitate 2D trajectory tracking, foragers were confined to walking on the test platform by wing 

142 clipping. Selected foragers’ wings were clipped using a queen marking cage and dissection scissors 

143 (EH Thorne Ltd, Market Rasen, UK).

144 Individual bee trajectories were filmed using a camera (FLIR C2 Infrared Camera) attached to a tripod 

145 above the arena (Fig 1 b). Video recording was at four frames per second for ten, three-minute trials 

146 per bee. Video files were tracked using CTRAX: the Caltech Multiple Walking Fly Tracker software[21].  

147 The raw centroid tracking data files outputted by CTRAX were then used for speed-curvature power 

148 law calculation.

149 Speed-curvature power law calculation

150 For the data analysis, the x, y coordinates and corresponding timestamps for whole trajectories, for 

151 individual bees, from the centroid tracking were used to compute angular speed A(t) and curvature 

152 C(t) using standard differential geometry[22].  Velocities were calculated from consecutive, regularly 

153 timed, positional fixes,  and where is the time ( ) ( )
t

txttx
x

∆
−∆+= ( ) ( )

t

tytty
y

∆
−∆+= st 2.0=∆

154 interval between consecutive recordings. Accelerations and were calculated in a directly x y



8

155 analogous way from consecutive velocities. Together these quantities determine the ‘radius of 

156 curvature’36, 

157 (2)( )
xyyx

yx
R 


−

+=
2/322

158 which in turn gives the angular speed,

159 (3)( ) RyxA /
2/122  +=

160  and the curvature,

161 (4)RC /1=

162 Data selection

163 Whole trajectories were analysed, with data selected so that only individual bee tracks which had 

164 greater than 50 data points (n = >50) were used for analyses (for all other tracks n= between 66 and 

165 1047). Excluded bees: n = 14. Bees used for analysis, n = 45.  When we removed all bees with under 

166 100 data points the outcomes of our analyses did not change and therefore we can consider selection 

167 at 50 data points to be robust and there was no need to exclude further bees. Data were not filtered 

168 (smoothed) prior to processing.  Filtering does not affect the outcomes of our analyses (see S2 Figs 

169 A, B and C supporting information).  

170 Statistical analysis

171 The hallmark of a power-law relationship between curvature, C, and angular speed, A, is a straight-

172 line relationship between log(C) and log (A). Taking the logarithm of both sides of the two-thirds 

173 power-law rule gives the linear relationship log A = log K + beta log C, with β=2/3. Here, following 

174 Zago et al.[5] we looked for such relationships by least squares linear regression of log(C ) and log(A). 

175 Using this method, we estimated the exponent, β, and the variance, r2, accounted for by the power-

176 law.  
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177 The power-law scaling demonstrated by our analysis extends over two or more scales of magnitude. 

178 This fulfils Stumpf and Porter’s[23] ‘rule of thumb’; after critically appraising power laws identified in 

179 biological systems, they suggested that a candidate power law probability frequency distribution 

180 should apply over at least two orders of magnitude along both axes and should be explainable by a 

181 viable mechanism. 

182 We then went beyond previous analyses[5,24] by comparing our observations with strongly 

183 competing functions that resemble power-laws but are not underpinned mechanistically. The power-

184 law relationship between curvature and angular speed cannot, of course, extend to arbitrarily large 

185 curvatures and angular speeds because of physiological constraints that place limits on the tightness 

186 of turning and on the speed that can be attained by an individual. Departures from power-law are 

187 expected when the maximum curvatures and speeds are approached by an individual. Here we 

188 examine this by fitting our data to two functions that resemble power-laws over a range of scales, but 

189 which depart from power-laws when curvatures and speeds are sufficiently high. These functions are 

190 stretched exponentials (which include exponentials as a special case),

191 ( )pbCaA exp.=

192 and log-normal like functions,

193  ( )( )2lnlnexp. dCbaA −=

194 where a, b, p and d are free parameters that are determined by fitting the functions to our data. The 

195 relative merits of the power-law, stretched exponential and log-normal functions as representations 

196 of our data were determined using the Akaike information criterion[25].  

197 The stretched exponential and the log-normal like functions can be considered as strongly competing 

198 descriptions of our data that contain three rather than two free parameters. This extra flexibility could 

199 result in better fits to our data. Functions were fitted to individuals’ movement patterns, rather than 

200 to pooled data as we sought to capture an individual’s constraints. We then compared the pooled 

201 data with functions parameterized in terms of the average best fit parameters.



10

202 Stretched exponentials (typically with p~0.007) provided good fits to our data, but better fits are 

203 obtained with power-laws. Even better fits were obtained with the log-normal like functions which is 

204 not surprising given that they are more flexible than simple power-laws (Fig3 a-d). In all cases, the 

205 Akaike weights for the log-normal like functions are 1.00 which indicates that the log-normal like 

206 functions are convincingly favoured over the power-law and stretched exponential functions. 

207 However, as is often the case, the better fit of the complex model (the log-normal like function) trades 

208 off with the elegance and clarity of the simpler model (the power-law function). The log-normal 

209 functions are, however, convex with maxima at lnC=lnd. Such maxima are not evident in our 

210 observations and consequently the estimates for lnd (approximately 35) were much larger than lnCmax 

211 (approximately ten). This implies that the fitted log-normal like functions are effectively fits to power-

212 laws because when lnd are much larger than lnCmax

213
( )( )

βkC

dbCdbaA

=
+−≈ 2)ln()ln(ln2exp.

214 where  and .  ( )( )2lnexp. dbak = ( )db ln2−=β

215 Our mean estimates for the power-law exponents; 0.59 (controls, n = 14, range 0.42 – 0.87), 0.61 

216 (appetitive + aversive, n = 12, range 0.43 – 0.87), 0.60 (aversive, n = 7, range 0.49 – 0.94) and 0.57 

217 (appetitive, n = 12, range 0.44 – 0.8) are broadly consistent with the two-thirds power-law rule. We 

218 have therefore arrived at this law using two different approaches; by fitting our data to power-laws 

219 and by fitting our data to log-normal functions. 

220 Statistically significant differences between the power exponents (β) of treatment groups and 

221 expected exponent values of two thirds (0.66) and three quarters (0.75) were calculated using non-

222 parametric tests (Kruskal-Wallis ANOVA by ranks), as data were not normally distributed (Shapiro-

223 Wilk test, p value = 0.000587518***). Kruskal-Wallis tests were conducted in RStudio (Version 1.0.44 

224 – © 2009-2016 RStudio, Inc.). Summary boxplot, Fig 4 was produced in RStudio using the ‘ggplot’ 

225 package.
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226 3. Results

227 Varying exploratory strategies 

228 To facilitate the creation of different walking trajectories, bees were tested across differing training 

229 environments within a thermal-visual arena (Fig 1). Training environments differed in the reward or 

230 incentive provided to foragers, providing either no reward or punishment (control), an appetitive 

231 sucrose reward, an aversive punishment (heated arena floor) or a combined aversive punishment 

232 and appetitive reward environment. Each bee was given ten training trials, experiencing only one of 

233 the training environments across all ten trials. In each training trial bees were required to use visual 

234 landscape patterns, around the circumference of the arena, to locate the appropriate reward zone 

235 (refer to ‘training environments’ in methods section for further details).

236 Figure 1 (a-d) The thermal-visual arena. (a) Diagrammatic representation of the thermal-visual arena. (b) The arena in-situ in 
237 the lab. (c) A birds-eye view of the arena with an example Bombus terrestris forager completing a training trial. (d) A thermal 
238 camera being used pre-training trial to confirm the location of the inconspicuous cool reward zone within the arena.

239

240 In all environmental conditions, bees traced complex trajectories (Fig 2 panels a, b, c, d). In each case 

241 curvature is seen to occur across a broad range of scales, as evidenced by the presence of nearly 

242 straight-line movements with low curvature and the presence of tight turns with high curvature. 

243 Across differing environments bees appeared to display varying exploratory trajectories. Individuals 

244 tested in the control condition often traced concentric paths, delineating the boundary of the arena 

245 (Fig 2). Individuals in the aversive condition located and remained in the cool reward zone for 

246 extended periods, making directed exploratory trajectories to a section of the arena’s edge (Fig 2b). 

247 Similar trajectories were seen for individuals in the combined aversive and appetitive environment 

248 where both a sucrose and cool zone reward were given in the same location (Fig 2c). In the appetitive 

249 reward environment individual’s trajectories were more varied, not being constrained to particular 

250 routes (Fig 2d). 

Figure 1 (a-d) The thermal-visual arena. (a) Diagrammatic representation of the thermal-visual arena. (b) The 
arena in-situ in the lab. (c) A birds-eye view of the arena with an example Bombus terrestris forager completing a 
training trial. (d) A thermal camera being used pre-training trial to confirm the location of the inconspicuous cool 
reward zone within the arena.
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251 Individual bees’ trajectories may be governed in part by differing motivations in response to differing 

252 training stimuli. When provided with no training stimuli there is no motivation for foragers to complete 

253 any task other than escape, resulting in delineating pathways (control group, Fig 2a). Training appears 

254 to be most effective in the aversive (Fig 2b) and combined aversive and appetitive (Fig 2c) conditions 

255 as foragers are increasingly motivated to take direct paths to and from the reward zone. Nonetheless, 

256 these complex, highly unique pathways all have statistical regularities characterised by a simple 

257 power law, which holds true irrespective of motivational environment or training regime. 

258 Figure 2 (a-d). Trajectories of representative bees from the control (a), aversive (b), appetitive (c) and combined aversive and 

259 appetitive conditions (d). The blue squares indicate the location of the reward zone (specific to condition) in the arena 

260 environment. Bees appear to implement differing exploratory strategies, dependent on the reward or punishment environment 

261 they are in.  In the control condition (a), individuals often trace concentric paths which delineate the arena boundary.  In the 

262 aversive condition (b), with a heated floor, individuals were motivated to locate and remain in the cool reward zone. Therefore, 

263 trajectories often showed directed exploratory paths out from the reward zone to a facet of the arena. Similar directed trajectories 

264 are seen for individuals in the combined aversive and appetitive condition (d). This is not surprising as this is the condition which 

265 should provide foragers with the most motivation to remain in the reward zone, with two rewards (sucrose and cool zone) and a 

266 punishment in the form of the heated arena floor.  Individuals in the appetitive reward environment (c) often tracked more varied 

267 paths, not constrained to set routes or areas of the arena.  

268

269

270 The speed-curvature relationship

271 A power-law relationship between curvature, C, and angular speed, S, (C=aS^b) will manifest itself 

272 as a straight-line (log A = log K + beta log C) on a log-log plot. We tested for such a straight-line 

273 relationship by linearly regressing log C on log S for each bee within each environmental condition 

274 (Fig 3 a, b, c, d). The average (mean) estimates for the power-law exponents are 0.59 (controls, n = 

Figure 2 (a-d). Trajectories of representative bees from the control (a), aversive (b), appetitive (c) and combined 

aversive and appetitive conditions (d). The blue squares indicate the location of the reward zone (specific to condition) 

in the arena environment. Bees appear to implement differing exploratory strategies, dependent on the reward or 

punishment environment they are in.  In the control condition (a), individuals often trace concentric paths which delineate 

the arena boundary.  In the aversive condition (b), with a heated floor, individuals were motivated to locate and remain 

in the cool reward zone. Therefore, trajectories often showed directed exploratory paths out from the reward zone to a 

facet of the arena. Similar directed trajectories are seen for individuals in the combined aversive and appetitive condition 

(d). This is not surprising as this is the condition which should provide foragers with the most motivation to remain in the 

reward zone, with two rewards (sucrose and cool zone) and a punishment in the form of the heated arena floor.  

Individuals in the appetitive reward environment (c) often tracked more varied paths, not constrained to set routes or 

areas of the arena.  
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275 14, range 0.42 – 0.87), 0.61 (appetitive + aversive, n = 12, range 0.43 – 0.87), 0.60 (aversive, n = 7, 

276 range 0.49 – 0.94) and 0.57 (appetitive, n = 12, range 0.44 – 0.8). 

277 The suitability of the power law to describe our data was tested against two competing statistical 

278 relationships; stretched exponentials and log-normal like functions (Fig 3 a, b, c, d) (see ‘statistical 

279 analysis’ methods section for further details). Power laws provide better fits than stretched 

280 exponentials, and although good fits are obtained with log-normal functions, they are consistent with 

281 the two-thirds power law rule, making the simpler, more elegant power law model the best choice. 

282 Figure 3 (a-d). The relationship between angular speed and curvature of path in walking bee trajectories. The two-thirds power 

283 law holds true in walking bees across differing environments (control (a), aversive (b), appetitive (c) and combined aversive+ 

284 appetitive (d). (a) Scatter plot of instantaneous angular speed plotted against local path curvature at a population level on a log-

285 log scale, for all individuals in the control group. All data points (n = 12224) were sampled at equal time intervals along the 

286 trajectories of 14 individual bees. Data was fitted to the power function A(t) = kC(t)2/3 (red line), to stretched exponentials (green 

287 line) and log-normal (blue line) functions.  Stretched exponentials and log-normals can resemble power-laws and are strongly 

288 competing models of the data.  (b) Log-log plot of angular speed versus curvature for 7 bees in the aversive group (n = 1081). 

289 (c) Log-log plot of angular speed versus curvature for 12 bees in the appetitive group (n = 1835). (d) Log-log plot of angular speed 

290 versus curvature for 12 bees in the combined aversive + appetitive group (n = 2309). 

291

292 Adherence to a power law across environments

293 Adherence to the law did not depend on the environment an individual forager was exposed to (see 

294 Fig 3 a-d) and the distribution of power exponents did not differ significantly between treatments 

295 (including controls) (Kruskal-Wallis ANOVA by ranks, chi-squared = 0.62489, df = 3, p-value = 0.8907 

296 (>0.05)). As would be expected, all treatment exponents were significantly different from zero 

297 (Kruskal-Wallis ANOVA by ranks, chi-squared = 32.321, df = 4, p = 1.645e-06**** (<0.00001)). 

298 Two-thirds or three-quarters?

Figure 3 (a-d). The relationship between angular speed and curvature of path in walking bee trajectories. The two-thirds 

power law holds true in walking bees across differing environments (control (a), aversive (b), appetitive (c) and combined 

aversive+ appetitive (d). (a) Scatter plot of instantaneous angular speed plotted against local path curvature at a 

population level on a log-log scale, for all individuals in the control group. All data points (n = 12224) were sampled at 

equal time intervals along the trajectories of 14 individual bees. Data was fitted to the power function A(t) = kC(t)2/3 (red 

line), to stretched exponentials (green line) and log-normal (blue line) functions.  Stretched exponentials and log-normals 

can resemble power-laws and are strongly competing models of the data.  (b) Log-log plot of angular speed versus 

curvature for 7 bees in the aversive group (n = 1081). (c) Log-log plot of angular speed versus curvature for 12 bees in 

the appetitive group (n = 1835). (d) Log-log plot of angular speed versus curvature for 12 bees in the combined aversive 

+ appetitive group (n = 2309). 
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299 To determine whether bees’ trajectories adhered more closely to the two-thirds or the three-quarters 

300 power law exponent, treatments were tested for significance against populations with assumed 

301 power exponents of 0.66 and 0.75.

302 Treatment populations were highly significantly different from the three-quarters power law exponent 

303 (0.75) (Kruskal-Wallis ANOVA by ranks, chi-squared = 17.79, df = 4, p-value = 0.001356** (<0.05)).  

304 However, treatment populations were not found to be significantly different from the two-thirds power 

305 law (0.66) (Kruskal-Wallis ANOVA by ranks, chi-squared = 6.0816, df = 4, p-value = 0.1931 (>0.05)). 

306 However, Fig 4 shows that although treatment groups did not differ significantly from 0.66, the 

307 medians of treatment groups vary around a 0.55 power exponent line. Populations were found to not 

308 significantly differ from this 0.55 power exponent either (Kruskal-Wallis ANOVA by ranks, chi-squared 

309 = 1.7447, df = 4, p-value = 0.7826 (>0.7826). 

310 Figure 4. Summary boxplot statistics for the β-exponent of bees in the four conditions: control (n=14), aversive (n=7), appetitive 

311 (n=12) and aversive + appetitive (n=12 (post data filtering) and individuals from all conditions combined. 99% of all data lies within 

312 the boxplot whiskers (outliers represented as dots). The two-thirds power exponent (0.66) is represented by the red line. The 

313 three-quarters exponent (0.75) by the blue line and a new predicted exponent of 0.55 by the green line. Although treatment 

314 groups did not differ significantly from the two thirds exponent (Kruskal-Wallis analysis), when visualised, it is clear that median 

315 β-exponent values vary around a 0.55 power exponent value, suggesting that an exponent range of 0.5 to 0.66 best describes 

316 the exponents of our walking bees.

317

318 4. Discussion 

319 Locomotive patterns are frequently complex but do, nonetheless, have surprising regularities 

320 (primitives) that may provide insights into the underlying generative mechanisms for movement and 

Figure 4. Summary boxplot statistics for the β-exponent of bees in the four conditions: control (n=14), aversive (n=7), 

appetitive (n=12) and aversive + appetitive (n=12 (post data filtering) and individuals from all conditions combined. 99% of 

all data lies within the boxplot whiskers (outliers represented as dots). The two-thirds power exponent (0.66) is represented 

by the red line. The three-quarters exponent (0.75) by the blue line and a new predicted exponent of 0.55 by the green 

line. Although treatment groups did not differ significantly from the two thirds exponent (Kruskal-Wallis analysis), when 

visualised, it is clear that median β-exponent values vary around a 0.55 power exponent value, suggesting that an exponent 

range of 0.5 to 0.66 best describes the exponents of our walking bees.
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321 into motor planning. These regularities take the form of power-laws that have been shown to 

322 characterise not only curvature[1], but also the duration of movement bouts and pauses[26].

323 Our work in Bombus terrestris supports previous findings in Drosophila larvae[5] that the power laws 

324 which govern voluntary human behaviours[1,3,4,6] also govern the behaviours of less complex 

325 organisms. Remarkably, this law holds, not just across vastly different locomotive methods and 

326 speeds (walking[6], drawing[1], crawling[5]), but also across greatly differing organisms 

327 (human[1,3,4,6] and non-human primates[8], Diptera[5], and now Hymenoptera). 

328 The explanations for these power laws within movement patterns are contentious with contrasting 

329 hypotheses for their existence. Originally ascribed to central motion planning by the nervous 

330 system[8,9] it was thought that the existence of the relationship between speed and curvature could 

331 not be a result of muscular properties and limb dynamics[10]. This is supported by the observation 

332 that the law holds true for human drawing under isometric conditions[27]. Notably, the speed-

333 curvature power law is also corroborated across widely diverse taxa. Evidence that the law originates 

334 as a result of decoding complex cortical processes is apparent in the motor cortical control of Rhesus 

335 monkey hand movements, as population vectors in the motor cortex obey the power law during 

336 drawing[8], adding weight to the central planning origin hypothesis. 

337 Drosophila Larval locomotion power exponents have been recorded to deviate from the two-thirds 

338 exponent reported for human voluntary movements[1,3,4,6], at closer to three-quarters[5]. The 

339 researchers suggest that these findings prove a role for dynamic effects adding on purely kinematic 

340 constraints[5]. In support of this notion, the power exponent recorded for human drawing shifts closer 

341 to this value of three-quarters (0.73) when drawing underwater[28], suggesting that power laws can 

342 indeed be governed by kinematic constraints. Our analyses suggest that, in walking bumblebees, a 

343 power law exponent between 0.55 and 0.66 (two-thirds) better defines movements than the near 

344 0.75 exponents previously reported for Drosophila[5] and constrained human movements[28].  Our 

345 evidence further supports the idea that exponents are forced closer to the three-quarters value when 
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346 kinematic constraints are present, as our constraint-free bees have a generally much lower exponent 

347 at closer to two thirds. 

348 However, other studies take a less definitive approach, suggesting that biomechanical factors and 

349 central planning may interact to constrain kinematic movement aspects, limiting the degrees of 

350 freedom which they can take[29].  An extension of this, the minimum jerk hypothesis[3,9] states that 

351 the law exists to maximize smoothness, selecting for jerk-free, stable, controllable movements. The 

352 occurrence of these laws across organisms could be seen to support a convergent evolution theory 

353 of a jerk-free movement mode which remains behaviourally efficient across organisms of different 

354 size, complexity, and phyla. Maximally smooth movements may seem to be without biological 

355 significance for grounded invertebrates, like crawling Drosophila larvae[5] and walking bumblebees. 

356 However, they could, nonetheless, be adaptive for airborne invertebrates, allowing for downwind 

357 flights in the absence of visual cues for orientation. Such common orientation has been widely 

358 documented since the advent of entomological radar, and allows noctuid fliers to add their flight 

359 speed to the wind speed, so maximizing their dispersal[30]. Our analysis suggests that this ability is 

360 a spandrel that predates flight, lying dormant in terrestrial movements. 

361 Contrarily, the pervasiveness of the law may be an inconsequential by-product of the noise inherent 

362 to central pattern generators (CPGs)[31]. Or more positively, an accidentally advantageous property 

363 of noise, as somewhat paradoxically, noise may result in maximally smooth, controllable movement. 

364 Possibly, the law may stem from simple harmonic motions[32], such as those outputted by CPGs 

365 when combined with muscular viscoelastic properties[2]. However, this hypothesis seems unrealistic 

366 when considering the power law in walking bees as we report here.  

367 Our findings, together with those of Gomez-Marin et al.[5] for Drosophila larvae, are suggestive of 

368 common mechanics of model switching in the locomotion of limbless and legged animals. As first 

369 suggested by Kuroda et al.[33] who noted similarities between leg-density waves of centipedes and 

370 millipedes and the locomotive waves of limbless animals. Our findings hint at a deeper analogy. 

371 Marken & Shaffer[34] have argued that these power laws are artefacts of the calculations themselves. 
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372 However, this seems improbable, as the law is shown to persist regardless of its calculation 

373 methodology[35]. 

374 Any tendency to walk around the perimeter of the circular arena (of radius r=10 cm) either in part or 

375 wholly will be associated with a curvature of radius R = r. Our data for this curvature is consistent with 

376 the overall power-law scaling seen across all radii and is not anomalous. This suggests that the circular 

377 geometry of the arena is not impacting on the speed-curvature power law. This may not be true of 

378 other geometries, such as squares, who’s corners might be associated with high curvatures.

379 In our analyses, individual bee’s tracking data were pooled within each learning environment. This 

380 allowed us to collectively compare each training group to differing statistical models and to examine 

381 a potential training environment impact on power law exponents. We acknowledge that this approach 

382 minimises the role of intra-individual behavioural variation often seen in bees[36]. Although we have 

383 not examined it here, future studies could examine the impact of this intra-individual variation on 

384 power law exponents between bees and across learning experience.

385 The multitude of evidence for varying originating mechanisms suggests that the origins of such power 

386 laws are most likely pluralistic in nature and potentially constraints vary across organisms. 

387 Nonetheless, the pervasiveness of these multiple scaling laws, across both taxa and locomotive mode, 

388 could imply an underlying driver. The notion that scale-free movements are intrinsic[11] suggests 

389 universal scaling laws could present an optimal behavioural template which may then be favoured 

390 by natural selection. 

391 Nonetheless, this might be overemphasizing the role of evolution as the fundamental determinate of 

392 behaviour, and underemphasizing the role of physical laws and mechanical limitations, as exemplified 

393 by the minimum jerk hypothesis[3,9]. As animals, may simply be predisposed to have jerk-free 

394 movements due to physical constraints. The argument for process structuralism[37], in which 

395 mathematical laws supersede natural selection as a “shaping agency”[38] may therefore be more 

396 applicable. This resonates with the occurrence of Levy walks; movement patterns that are 
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397 characterised by power-laws and seen across taxa from single cells to humans. In many cases these 

398 appear to be shaped by physical constraints rather than by natural selection[39].

399 Understanding the basal behavioural templates behind organisms’ locomotive trajectories may 

400 provide a tool for behavioural study. Biological stressors, such as disease, have been shown to cause 

401 deviations from this optimal behavioural template[40]. Power laws may therefore provide a diagnostic 

402 tool for the sub-lethal impact of such stressors at a finer scale.  

403 Our work with Bombus terrestris is one of the few examples of the speed curvature power law outside 

404 human movements. Supporting the notion of an optimal behavioural template which is pervasive 

405 across movement modes and organisms as a result of kinematic constraints. The discovery of this 

406 null template in Bombus terrestris may add a tool to the arsenal of scientists, allowing us to better 

407 study potential sublethal disruptors of optimal behaviour.

408 Data availability

409 The datasets generated and analysed during the current study are available as supporting files [S1 

410 fileTable: Raw centroid tracking data] with this submission. 
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