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Abstract
Purpose The peri-urban region to the south east of Madrid
contains a mixture of housing, manufacturing industry and
farming, some of which disperse metals, in particular cadmi-
um, copper, lead, and zinc, into the soil. We have mapped the
concentrations of these elements and identified the major
influences on their distributions.
Material and methods We sampled the topsoil at 125 sites
across 1,050 km2 of peri-urban land to the south east of the
city on two grids, one nested inside the other. At each site, we
measured the current contents of the four trace elements in the
soil. We used robust geostatistical methods to model the
complex spatial distributions of the data as mixtures of fixed
and random effects. The empirical best linear unbiased pre-
dictor was used to map the elements. Site descriptors (lithol-
ogy, land cover, cultivation, relief, erosion, and stoniness)
were then included as covariates to identify significant effects
on trace element concentrations.
Results and discussion The complex spatial distributions of
the elements seem to arise from several sources. The concen-
trations generally increase from southeast to northwest, i.e.,
with increasing proximity to Madrid itself, the main potential
source of pollution. This pattern is clear for lead and similar
for copper and zinc, though with “hot spots” at or near

industrial sites. The spatial pattern of cadmium is more com-
plex and depends on varied lithology, industry, and land use
such as irrigation and cultivation. In general, the concentra-
tions of the four elements appear to decrease with increases in
stoniness and erosion, and to be largest on the valley floors.
Conclusions Robust geostatistical methods enabled us to an-
alyze and map the complex patterns of spatial variation of
trace elements in a peri-urban region of Madrid. They show
that distance to the city center, lithology, manufacturing in-
dustry, and cultivation all play their parts in loading the soil
with lead, copper, zinc, and cadmium. In the event, none of the
metals has yet exceeded the legislative thresholds, but some
concentrations are already substantially greater than would
arise from natural sources, especially closest to Madrid itself.

Keywords Peri-urban . Robust geostatistics . Soil
contamination . Tracemetals

1 Introduction

Many big cities are expanding into their peri-urban surround-
ings to accommodate more and more people. The soil of these
peri-urban regions is, in many instances, already polluted with
potentially toxic heavy metals from city waste, industrial
effluent, smoke, and even manures and fertilizers used in
agriculture. Urbanization risks adding to the load and expos-
ing a larger population to the pollution. It is important there-
fore to know what the current load is and to map its distribu-
tion so that (a) the risk to human health can be assessed and, if
necessary, remedial action can be taken to protect people and
(b) the sources of pollution can be identified and perhaps
eliminated.

Numerous sources of contamination by heavy metals have
been identified in peri-urban regions, and these sources act
over disparate spatial scales. Point sources are factories, gas
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works, waste deposits, and applications of compost. Cities
produce large amounts of sewage, much of which contains
heavy metals. The sewage is often concentrated into sludge or
is composted and spread on the land nearby to minimize the
cost of transport. Businelli et al. (2009), for example, found
enhanced concentrations of copper (Cu), lead (Pb), and zinc
(Zn) in composts added to commercial vegetable plots close to
cities. Alloway (2004) reported that contamination of soil by
cadmium (Cd) has been caused by the use of phosphate
fertilizer containing the metal and by the disposal of ash from
the combustion of coal. Copper salts are used as fungicides in
vineyards, and they contribute to the large concentrations of
Cu in the soil (e.g. Pietrzak and McPhail 2004; Martín et al.
2007; Saby et al. 2011). More diffuse atmospheric pollution
can be attributed to traffic, industrial emissions, street dust,
and the burning of fossil fuels (de Miguel et al. 1999). Nev-
ertheless, it still tends to be local. Heavy metals from natural
sources tend to vary in concentration over coarser scales
according to the geological parent material. The various
sources combine to form complex patterns of variation.

Cadmium, Cu, Pb, and Zn are the most widespread pollutant
metals in soil. For example, Wei and Yang (2010) found that
these four elements had the largest ratios of urban-to-rural con-
centrations in Chinese soils. El Khalil et al. 2008 found that the
gradient from urban-to-suburban occupation matched the gradi-
ents in the contents of Cu and Zn in soil surroundingMarrakech.
Zinc is essential for both plant and human nutrition, and Spain
(BOE 1990) and some European countries (European
Commission 1986) set fairly large legislative thresholds of 450
and 300 mg kg−1, respectively. Although Cu is also an essential
nutrient, the legislative thresholds are less (Spain 210 mg kg−1;
European countries 140 mg kg−1) because an excess can induce
deficiencies of other trace elements in livestock (Rawlins et al.
2012). Lead is biologically non-essential and toxic, but the
threshold of 300 mg kg−1 in Spain and other European countries
probably reflects the ubiquitous presence of Pb contamination,
particularly in urban areas. Cadmium is highly toxic to both
humans and livestock, and the two legislative limits are set at
3 mg kg−1. We might note that Switzerland has a much smaller
guide value of 0.8 mg kg−1 (FOEFL 1987).

We have been concerned by potentially toxic contamination
of the peri-urban region to the south east of Madrid, Spain, an
area of 1,050 km2 into which population is spreading. A survey
of the region aroundMadrid by de Miguel et al. (2002) found it
to be the most polluted. De Miguel et al. (1999) suggested that
emissions from traffic were a major source of Cu, Pb, and Zn
and that construction and erosion of building materials were
major sources of Cd and Zn. De Miguel et al. (1998) had also
observed that the widespread use of composted sewage as
fertilizer in parks and the atmospheric fallout of urban particu-
late material has substantially increased the concentrations of
several trace elements in the urban soils of Madrid. They found
that concentrations of Cu, Pb, and Zn in “undisturbed” urban

soil exceeded local natural background concentrations by fac-
tors of 2.3 to 4.0, while “compost modified” soils contained 5.3
to 8.3 times more. In the south east region, the mean concen-
trations were found to be 0.10 mg kg−1 for Cd, 9.48 for Cu,
17.55 for Pb, and 38.53 for Zn (de Miguel et al. 2002).

We have re-sampled this south east peri-urban region to
provide a more detailed picture of the pollution (a) to map the
underlying distribution of the same four metals in the soil and
(b) to identify the sources of the metals.We had, in addition, the
hypothesis that metal concentrations increase with decreasing
distance from the city center mainly because of denser traffic
and industrial activities. We analyzed the data geostatistically
using recently developed robust methods (Marchant et al. 2011)
to quantify the spatial covariance structure and then to predict
and map the concentrations of each metal across the region.
These methods allow us to estimate the underlying structure
largely free of the distortion that isolated hot spots of some
metals from point sources might cause. We also attempt to
identify attributes of the survey sites, namely lithology, land
cover, erosion, stoniness, relief, and cultivation that might
explain the observed variation. This has required the estimation
of more than 100 linear mixedmodels (LMMs) by the unbiased
residual maximum likelihood (REML) estimator. Such a pro-
cedure would have been impracticable until recent enhance-
ments in computer processing power (Lark 2000).

2 Material and methods

2.1 Study region, sampling design, and analytical procedure

The region studied is a rectangle 30×35 km (1,050 km2) in the
south east of the metropolitan area of Madrid. Its cover ranges
from residential and industrial in the northwest to predomi-
nantly cultivated and natural vegetation in the south east.
Figure 1 shows its limits within the Community of Madrid
and the locations of the 125 sampled sites.

A non-preferential survey was made between during 2010
and 2011. The sampling design was based on two nested grids
aligned with the Universal Transverse Mercator (UTM) pro-
jection system. The first was a 5×5 km grid. Forty eight of the
56 nodes of the grid were sampled. The second was a 1×1 km
grid. Seventy four of the nodes of this grid were selected at
random and sampled. On seven occasions, the selected node
coincided with the 5×5 km grid, and on each occasion, the
observation was made 1 km to the east. Three of the 122
observations made at grid nodes were selected at random, and
for each, an additional observation was made 200 m away.

Each observation site was classified according to lithology,
land cover, erosion, stoniness, relief, and cultivation. The class
names and the number of elements within each class are listed
in Table 1. The expected lithology and land cover were
determined from a map prior to the sampling. The lithologic
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information was based on the Instituto Geológico Minero de
España (IGME) lithologic map (IGME 2012). The land cover
information was derived from the CORINE Land Cover Eu-
ropean project (NATLAN 2000) and aggregated into three
classes (background of Fig. 1).

The surveyor sought to sample sites with the expected
lithology and land cover attributes at the exact location of
the grid node. If access to a site was denied or the site clearly
did not possess the attributes expected, then an alternative
location was chosen within 200 m of the specified location.
If this was not possible, the location was discarded.

Soil samples were taken under homogeneous land cover.
Locations were recorded with a GPS with typically less than
3 m of error. Field characteristics such as the actual litholog-
ical substrate, the land cover, the slope, and the aspect were
recorded at each location. Other variables recorded were the
physiographic characteristics of the location and evidence of
changes in the soil horizons. Finally, each sampled location
was assigned to a qualitative scale of erosion and of stoniness.

At each location, we took a composite sample of five
subsamples of topsoil (0–15 cm): one in the center of the plot
and the others 5 m away in the four cardinal directions. The
mass of each composite sample was around 2.5 kg. This soil
was air dried and later sieved to pass 2 mm. A subsample was
sent to the Eurofins Analytico laboratories for the determina-
tion of the concentrations of the four metals, Cd, Cu, Pb, and
Zn. The samples were subject to a full destruction with a pre-
treatment based in aqua regia and microwave digestion before
the analysis by inductively coupled plasmamass spectrometry
and the protocol NEN-EN-ISO 17294–2. These tests are
accredited by the “Dutch Accreditation Council (RvA)”.

2.2 Statistical analyses

2.2.1 Spatial prediction of trace element concentrations

The variation of the concentration of each element across the
region was represented by a LMM. A LMM splits the
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is based in the UTM projection (zone 30)



variation of a property of interest into fixed effects and a
spatially correlated random effect. The fixed effects are linear
relationships between recorded covariates and the property.
The LMM is written as

z ¼ Mβ þ u;

where z is a vector of n observations of the property of
interest, M is a design matrix of size n × q which contains
values of the q covariates at the observation sites, β is a vector
of q -fixed effects coefficients, and u is realization of a second-
order stationary spatially correlated random function U at the
n observation sites. The random function U has zero mean
and covariance matrix C . It is often assumed to have a
Gaussian distribution, though this assumption is not essential.
The elements of the covariance matrix were determined from
authorized (Webster and Oliver 2007) parametric functions
C(h ) of the separation in distance and direction between pairs
of observations (the lag denoted h ) where the parameter
values were estimated from the available data. It is common
in the geostatistical literature for the spatial covariance of a
random function to be expressed in terms of the variogram

γ hð Þ ¼ 1

2
E U xð Þ−U xþ hð Þf g2
h i

;

where x = (x , y ) is the location with easting x and northing y.
For a second order stationary random variable

C hð Þ ¼ C 0ð Þ−γ hð Þ:

We had too few data to identify and estimate any anisotro-
py, and so we treated the lag as a separation in distance only,
i.e., h = |h |. Once each LMM had been determined, it was
used to predict the element z , at unsampled locations by

universal kriging (Webster and Oliver 2007). Universal

kriging yields a prediction denoted bZ x0ð Þ and a corresponding

prediction variance bσ2 x0ð Þ .
The observations of elements included outliers close to

local sources of pollution. These can distort the estimation of
model parameters and hence, the predictions. Therefore, be-
fore estimating a LMM, we used robust geostatistical methods
to identify and censor outliers. For each element, provisional
LMMs were estimated by Matheron’s method of moments
(Webster and Oliver 2007) and also by the robust estimators
suggested by Cressie and Hawkins (1980), Dowd (1984), and
Genton (1998). The distributions of all the elements were
highly skewed, and the observations were transformed to their
natural logarithms before these models were estimated. The
fixed effects consisted of a constant and a nested nugget-plus-
exponential covariance function (Webster and Oliver 2007)
was assumed for the random term. Leave-one-out cross vali-
dation was done for each fitted LMM, and the squared stan-
dardized prediction error (SSPE),

θi ¼
bZ xið Þ−z xið Þ

h i2

bσ2
xið Þ

;

was calculated at each observation site xi ,i =1,2…,n . If the
observed data were a realization of the fitted LMM, then the θ i
would be realizations of a X2 distribution with 1 ° of freedom.
The mean of this distribution is equal to 1, and the median is
equal to 0.455. The mean of the θ i is greatly influenced by
outliers, but the median is much more robust (Lark 2002).
Therefore, the LMM for which the median eθ was closest to
0.455 was assumed to be the best representation of the under-
lying variation. Any observation with θ i >9 for this LMMwas
assumed to be an outlier, and its magnitude was reduced such

Table 1 Names and number of
elements, n , of classes for each
site description category

Lithology n Land cover n Cultivation n

Limestone 62 Forest 6 Undisturbed 46

Conglomerate 11 Shrubland 38 Cultivated 60

Urban debris 9 Grassland 8 Urban debris 13

Gravel and sand 22 Olive trees 17 Abandoned cult. 6

Gypsum 21 Cult. Irrigated 5

Cult. Dryland 35

Urban 7

Vineyards 9

Relief n Erosion n Stoniness n

Flat 10 None 32 None 8

Valley bottom 23 Low 65 Low 41

Alluvial terrace 4 Medium 20 Medium 35

Slope 83 Abundant 8 Abundant 25

Top 5 Very abundant 16
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that θ i=9. An observation near to an outlier might itself be
falsely classified as an outlier because of the large discrepancy
between its value and that of its neighbor. Therefore, where a
pair of outliers were identified within 250 m of each other, the
cross-validation procedure was repeated with both potential
outliers removed from the dataset (Table 2). If the recalculated
θ i at either of the two sites was less than 9, then that observa-
tion was returned to the dataset. The final LMM was fitted to
these censored observations.

Various candidates for the final LMM were considered.
The fixed effects were either (1) a constant, (2) linear relation-
ships with the eastings x and northings y, or (3) a quadratic
trend (i.e., linear relationships with x ,y,x2,xy and y2). The
covariance model was either pure nugget (i.e., no spatial
correlation) or a nested nugget and Matérn model (Matérn
1960). This model is written:

cðhÞ ¼
c0 þ c1 if h ¼ 0

c1
1

2v−1Γ vð Þ
h

a

� �v

Kv
h

a

� �� �
otherwise;

8<
:

where h is the distance separating two observations, c0 is the
nugget variance, c1 is the sill variance of the spatially corre-
lated component, a is a distance parameter, v is a smoothness
parameter which yields flexibility in how the covariance func-
tion behaves for small h , Γ (v ) is the Gamma function and Kv

is a modified Bessel function of the second kind of order v
(Abramowitz and Stegun 1972). If v =0.5 then the Matérn
model is equivalent to the exponential model (Webster and
Oliver 2007). We transformed the observed values by the
Box–Coxmethod (Diggle and Ribeiro 2007) so that they were
consistent with the assumed Gaussian random effects of the
LMM. The Box–Cox transform is

z� ¼
zλ−1
� �
λ

if λ≠0
ln zð Þ if λ ¼ 0

8<
:

where λ is a parameter.
The parameters of the LMM, α = (c0, c1,a , v, β , λ ), were

estimated by the maximum likelihood (ML) estimator de-
scribed by Diggle and Ribeiro (2007). This selects the model
parameters that maximize the likelihood that the data arose
from the model. The different fitted candidate models were
compared by calculation of the Akaike Information Criterion
(AIC; Akaike 1973):

ALC ¼ −2L bα zj
� 	

þ 2p;

where p is the number of parameters in the LMM and L bα zjð Þ
is the log likelihood that the observed data arose from the
LMM with estimated parameters bα . The model with the

smallest AIC strikes the best balance between complexity
(number of parameters) and closeness of fit to the data
(likelihood). There is a small bias in the ML parameter esti-
mates of a LMM when the fixed effects are not constant.
Therefore, once the model with the smallest AIC had been
found, it was re-fitted by the REML estimator (Diggle and
Ribeiro 2007) which minimizes this bias. Then, this model
was used to predict the concentration across the region by
universal trans-Gaussian kriging (Diggle and Ribeiro 2007).

2.2.2 Identification of major influences on trace element
concentrations

A stepwise regression algorithm incorporating likelihood ratio
tests was used to determine site descriptor classes that had
significant effects on concentrations. We note that these de-
scriptors could not be used to predict the concentrations across
the region because they were known only at the sampling sites.
The 33 classes of the six location classifications (see Table 1)
were treated as indicator variables which described the presence
or absence of the class at each site. The eastings and northings,
x and y formed two further potential covariates. Some of these
potential covariates are strongly correlated. This means that the
order in which covariates are added to the LMM can influence
whether or not a particular covariate is included because a
correlated fixed effect might already be included. Therefore,
an automated iterative algorithm was implemented.

Initially, a LMMwith constant mean and nested nugget and
Matérn covariance structure was fitted to the element being
investigated. Further models were then fitted where the fixed
effects contained an additional covariate. Each of the potential
covariates was considered in turn. The covariate that increased
the likelihood by the largest amount was added to the fixed
effects if the likelihood ratio test showed that the increase was
significant at the p =0.15 level. This process was the forward
selection step. The addition of a covariate to a model might
have meant that one of the covariates already included in the
fixed effects was no longer required. Therefore a backward
elimination step was then applied. In this step, the model was
re-fitted with one covariate removed from the fixed effects.
This was repeated for all of the covariates in the fixed effects,
and the covariate removal that led to the smallest reduction in
the likelihood was found. If this reduction in the likelihood
was not significant at the p =0.15 level, then the covariate was
removed from the model and a further backward elimination
step was made. Otherwise, a further forward selection step
was made. The algorithm continued until neither a forward
selection nor a backward elimination step led to a change in
the fixed effects.

Such a stepwise procedure does not necessarily determine
the best covariates to include in the fixed effects of a model.
Other fixed effects might have performed similarly, and when
the aim of a study is to determine the best model for predictive
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purposes, it is important that one takes into account one’s
knowledge of the covariates. However, the procedure did
indicate some covariates that influence concentrations in an
objective manner.

3 Results

Table 2 summarizes the statistics for the observed concentra-
tions. The frequency distributions of all elements are positive-
ly skewed: they have skewness coefficients greater than 1.
This skew is reduced by a log transform (Fig. 2). In the case of
cadmium, the log transform produced a strong negative skew.

However, the histogram of log Cd suggests that this
negative skew might be the result of three unusually
small measurements. When the variograms fitted to the
concentrations of Cd, Cu, and Pb by Matheron’s esti-

mator were cross-validated, the median SSPEs ðeθÞ were
less than 0.3. This indicates that outliers are present
amongst the observations of these properties. When
robust variogram estimators were used, the median
SSPEs were between 0.4 and 0.5. Different robust
variogram estimators performed best on each of these
three properties. The median SSPE for the Matheron
variogram of Zn was 0.39, and this model fitted the
data better than those estimated by robust methods.

Table 2 Summary and cross-
validation statistics

*Cressie-Hawkins

Cd Cu Pb Zn

Mean/mg kg−1 0.14 12.95 27.95 42.75

Median/mg kg−1 0.11 9.50 17.00 40.00

Std dev.mg kg−1 0.08 21.33 98.73 22.04

Min/mg kg−1 0.01 3.03 5.60 13.00

Max/mg kg−1 0.48 240.00 1100.00 180.00

Skew 1.71 9.80 10.43 2.91

Skew of ln(z) −1.11 1.93 3.72 0.38

Matheron eθ 0.25 0.25 0.20 0.39

Best estimator C–H* Dowd Genton Matheron

Robust eθ 0.42 0.49 0.41 0.39

Large outliers 1 1 3 1

Small outliers 2 1 1 0

λ −0.02 −0.26 −0.08 −0.07

Fig. 2 Histograms of log
transformed observations of trace
elements within study region
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Six large outliers (one of Cd, one of Cu, three of Pb, and
one of Zn) were identified and censored. They are all in the
urban northwest corner of the region (Fig. 3). A further four
unusually small outliers were identified. We considered these
to be less relevant than the large outliers because they required
only small censoring adjustment in the untransformed units
(mg kg−1).

The calculated AIC values (Table 3) showed that the best
fitting LMMs for each of the four censored elements included
a linear trend in the eastings and northings. Themodels for Cd,
Cu, and Zn included a Matérn term in the random effect,
whereas there was no evidence of spatial correlation in the
model for Pb. The REML-estimated variograms for the ran-
dom effects of these models are shown in Fig. 4. The
variograms for Cu and Zn are very similar and have a smaller
nugget-to-sill ratio and smaller range than the model for Cd.

The predictions (see the maps in Fig. 5) of Cu, Pb, and Zn,
decrease in concentrations from the urban northwest corner to

the rural south east corner. For Cd, the trend is more from the
west to east. The patterns of variation for Cu and Zn are fairly
similar with several fairly small areas of contamination. The
variation of Cd is smoother. The absence of spatial correlation
in the LMM of Pb means that the spatial trend is the only
cause of variation.

Table 3 AIC for models fitted by maximum likelihood. The smallest
AIC value for each metal is shown in bold

Trend Variogram Cd Cu Pb Zn

Constant Matérn −160.57 −180.91 −148.63 −178.76

Linear Matérn −166.54 −194.03 −154.57 −194.20
Quadratic Matérn −164.55 −191.58 −149.71 −190.99

Constant Nugget −157.67 −169.79 −149.64 −159.16

Linear Nugget −164.55 −191.31 −155.86 −192.63

Quadratic Nugget −164.76 −190.18 −150.87 −189.50

84 J Soils Sediments (2014) 14:78–88
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km grid is based in the UTM projection (zone 30)



The most effective indicators to include in the fixed effects
are listed in Table 4. Membership of some of the classes has a
similar effect on the concentration of all four trace elements.

For example, concentrations appear to decrease with increases
in stoniness and erosion, and valley floors have large concen-
trations. Copper, Pb, and Zn all have small concentrations on

Fig. 4 Estimated variograms for
best fitting models

Fig. 5 Spatial prediction of metal
concentrations (in milligrams per
kilogram) across the study region
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gravel and sand. Land cover classes feature fewer times. This
might be an artifact caused by the large number of these
classes. There are some differences between the four elements.
More lithology classes are included in the model for Cd than
for the others, and gypsum is the first class to be included for
it. Stoniness appears to be important for Zn.

4 Discussion and conclusions

There are some similarities in the spatial patterns of the four
trace elements we have studied. The concentrations of all are
generally largest in the northwest of the region. This result is
likely to be caused by the fallout of airborne particles origi-
nating in urban Madrid further to the northwest and from road
traffic on the highways across this part of the region (de
Miguel et al. 1999; Manta et al. 2002; Li et al. 2004). The
concentrations of all four elements appear to decrease with
increases in stoniness and erosion, and to be largest in the fine
sediments on the valley floors. This accords with general
knowledge: trace metals tend to be adsorbed predominantly
on clays (Sillanpää 1972), and the fine fraction of soil mobi-
lized by erosion accumulates with adsorbed metals on valley
floors.

The spatial patterns of Cu and Zn, in particular, are similar.
Other authors (Adachi and Tainosho 2004; Li et al. 2004;
Yang et al. 2011) have described how these metals in car
components and lubricants can be emitted into the atmosphere
as small particles and then be deposited on the ground. Such
emissions are probably the major source of contamination in
the northwest of the region. Hot spots of Cu and Zn are
evident further from Madrid. These coincide with industrial
sites such as a large urban waste incineration plant, a sepiolite
mining installation, and other construction treatment plants.
Morton-Bermea et al. (2009) observed a similar pattern of Cu
and Zn contamination in Mexico City. There, the underlying
pattern was attributed to emissions from motor traffic with
local hot spots close to industrial sites.

The first factor in the best-fitting LMM of Cu (see Table 4)
was undisturbed (non-cultivated) soils, which suggest that the
concentrations on cultivated soils are larger than elsewhere.
This might be because Cu salts have been used as fungicides,
as other investigators have found (Brun et al. 1998; Micó et al.
2007).

The map of lead shows only a decreasing trend from the
northwest. Lead used to be added to petrol (the practice ceased
in 1999; Xia et al. 2011), and emissions in exhaust are likely to
have been the main source of lead in the region. No other
features can be seen in the map because the random effects
were not spatially correlated.

The variation of Cd across the region seems to depend on
several factors. Table 4 indicates the importance of lithology.
Previous studies (e.g. Atteia et al. 1995; Marchant et al. 2010)

have also found that Cd in the parent material of the soil
contributes substantially to that in the soil itself. In the region
of our study, Cd is most concentrated in the two main areas of
gypsum. The Cd concentrations are also largely close to the
urban center which includes river valleys where intensive and
irrigated agriculture is practiced. Other authors have found a
close relation between Cd concentrations and intensive agri-
culture caused by the use of phosphate fertilizers and irrigation
water contaminated by urban or industrial effluents (Hu et al.
2006; Chen et al. 2009; Acosta et al. 2011). Cadmium
hotspots are also evidently close to the plant for incinerating
urban waste.

The four elements vary over disparate spatial scales, and
we presume they are affected by several factors. Local sources
of contamination such as industrial emissions, construction
materials, and uncontrolled waste deposits produced outliers.
The natural variation seems to be related largely to lithology
(Adriano 1986; Kabata-Pendias and Pendias 2001). There is

Table 4 Site descriptor classes included in the best-fitting LMM for each
metal and effect of membership of class upon metal concentration

Cd Cu

Category Class Effect Category Class Effect

Lithology Gypsum + Cultivation Undisturbed −

Relief Bottom + Stoniness None +

Erosion Medium − Spatial Northing +

Spatial Easting − Relief Top −

Lithology Conglomerate − Lithology Gravel and
sand

−

Relief Alluvial
terrace

− Land cover Irrigated cult +

Lithology Limestone − Spatial Easting −

Spatial Northing + Relief Slope −

Land cover Shrub land + Cultivation Cultivated −

Cultivation Cultivated − Land cover Grassland −

Erosion None + Relief Alluvial
terrace

−

Pb Zn

Category Class Effect Category Class Effect

Spatial Easting − Stoniness None +

Erosion None + Stoniness Low +

Land cover Unirrigated
cult

− Spatial Northing +

Stoniness Abundant − Relief Flat +

Relief Alluvial
terrace

− Spatial Easting −

Cultivation Abandoned + Lithology Gravel and
sand

−

Land cover Irrigated cult + Relief Valley bottom +

Lithology Gravel/sand − Relief Slope +

Stoniness Medium − Erosion Medium −

Spatial Northing + Cultivation Abandoned +

Erosion Abundant −

86 J Soils Sediments (2014) 14:78–88



great lithological diversity in the sedimentary rocks and evap-
orites. It is for this reason that standard linear geostatistical
models were not suitable for analyzing the data and that robust
methods were required to identify outliers and reduce their
influence. Similarly, the determination of the factors control-
ling the variation was far from trivial. We iteratively built up a
LMM for each element using an automated stepwise algo-
rithm. The results of such an approach should be interpreted
with caution. The site descriptors considered were highly
correlated, and therefore the inclusion of one factor within
the model might mask the effect of another. In contrast to
previous studies, there was little evidence that composts were
a substantial source of the metals. Indeed, when cultivation
does appear in the LMMs in Table 4, it has a negative effect.
This might be only relative to soil containing urban debris.
Despite these concerns, some general causes of variation can
be discerned from the fitted LMMs such as the effects of
erosion, relief, and stoniness discussed above.

The concentrations of the four elements were generally less
than the legal limits established for agriculture by the Euro-
pean Commission (1986) and Spain (BOE 1990). Only one
observation of Pb and one of Cu exceeded these limits. The
mean values of all four metals were less than those reported in
other peri-urban areas in towns with longer industrial histories
(Kelly et al. 1996; Frangi and Richard 1997; Manta et al.
2002; Imperato et al. 2003). The contamination in Madrid
has occurred relatively recently and therefore, the enrichment
in metals of the soil is more similar to that found in towns of
developing countries with more recent industrialization (Hu
et al. 2006; Yang et al. 2009; Xia et al. 2011). Note that de
Miguel et al. (1998) found larger concentrations in the centre
of Madrid. Nevertheless, the concentrations in this peri-urban
region exceed the natural concentrations, and we should be-
ware of further contamination which might lead to toxic
quantities entering the food chain and eventually causing ill
health.
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