Multi-model uncertainty analysis in predicting grain N for crop rotations in Europe
Realistic estimation of grain nitrogen (N; N in grain yield) is crucial for assessing N management in crop rotations, but there is little information on the performance of commonly used crop models for simulating grain N. Therefore, the objectives of the study were to (1) test if continuous simulation (multi-year) performs better than single year simulation, (2) assess if calibration improves model performance at different calibration levels, and (3) investigate if a multi-model ensemble can substantially reduce uncertainty in reproducing grain N. For this purpose, 12 models were applied simulating different treatments (catch crops, CO2concentrations, irrigation, N application, residues and tillage) in four multi-year rotation experiments in Europe to assess modelling accuracy. Seven grain and seed crops in four rotation systems in Europe were included in the study, namely winter wheat, winter barley, spring barley, spring oat, winter rye, pea and winter oilseed rape. Our results indicate that the higher level of calibration significantly increased the quality of the simulation for grain N. In addition, models performed better in predicting grain N of winter wheat, winter barley and spring barley compared to spring oat, winter rye, pea and winter oilseed rape. For each crop, the use of the ensemble mean significantly reduced the mean absolute percentage error (MAPE) between simulations and observations to less than 15%, thus a multi–model ensemble can more precisely predict grain N than a random single model. Models correctly simulated the effects of enhanced N input on grain N of winter wheat and winter barley, whereas effects of tillage and irrigation were less well estimated. However, the use of continuous simulation did not improve the simulations as compared to single year simulation based on the multi-year performance, which suggests needs for further model improvements of crop rotation effects.
| Item Type | Article |
|---|---|
| Open Access | Not Open Access |
| Additional information | Funders : FACCE MACSUR project (2812ERA147), funded by the German Federal Ministry of Food and Agriculture (BMEL). CMAH, NB, IGCA, FL, ML, DRW, FR were funded from the FACCE MACSUR project by INRA ACCAF Metaprogramme. CN received additional support by BMBF via the CARBIOCIAL research project (01LL0902M). TC acknowledges financial support from the FACCE MACSUR project (031A103B), funded by the German Federal Ministry of Education and Research (BMBF). CM acknowledges financial support from the KULUNDA project (01LL0905L), funded by the BMBF. TP and RPR were supported by the NORFASYS project, funded by the Academy of Finland (decision nos. 268277 and 292944) and FACCE-MACSUR, funded by the Finnish Ministry of Agriculture and Forestry. FE, HH and TG acknowledge financial support from the FACCE MACSUR project (2851ERA01), funded by the German Federal Ministry of Food and Agriculture (BMEL) through the Federal Office for Agriculture and Food(BLE). RM and HJW acknowledge financial support by BMEL. MB, MC, RF, LG, MM and DV acknowledge financial support from the FACCE MACSUR project funded by the Italian Ministry for Agricultural, Food and Forestry Policies (D.M. 24064/7303/15 of 16/Nov/2015). PH and MT acknowledge support from the Ministry of Education, Youth and Sports ofthe Czech Republic within the National Sustainability Program I (NPU I LO1415) and by the National Agency for Agricultural Research project no. QJ1310123. |
| Keywords | Continuous simulation; Grain N; Model calibration; Model ensemble; Model inter-comparison; Single year simulation |
| Project | 2812ERA147 |
| Date Deposited | 05 Dec 2025 09:10 |
| Last Modified | 19 Dec 2025 14:10 |
Explore Further
-
picture_as_pdf - 1-s2.0-S1161030116302532-main.pdf
-
subject - Published Version
-
lock - Restricted to Repository staff only
-
- Available under Creative Commons: Attribution 4.0

