A two-component high-affinity nitrate uptake system in barley
The analysis of genome databases for many different plants has identified a group of genes that are related to one part of a two-component nitrate transport system found in algae. Earlier work using mutants and heterologous expression has shown that a high-affinity nitrate transport system from the unicellular green algae, Chlamydomonas reinhardtii required two gene products for function. One gene encoded a typical carrier-type structure with 12 putative trans-membrane (TM) domains and the other gene, nar2 encoded a much smaller protein that had only one TM domain. As both gene families occur in plants we investigated whether this transport model has more general relevance among plants. The screening for nitrate transporter activity was greatly helped by a novel assay using (15)N-enriched nitrate uptake into Xenopus oocytes expressing the proteins. This assay enables many oocytes to be rapidly screened for nitrate transport activity. The functional activity of a barley nitrate transporter, HvNRT2.1, in oocytes required co-injection of a second mRNA. Although three very closely related nar2-like genes were cloned from barley, only one of these was able to give functional nitrate transport when co-injected into oocytes. The nitrate transport performed by this two-gene system was inhibited at more acidic external pH and by acidification of the cytoplasm. This specific requirement for two-gene products to give nitrate transport function has important implications for attempts to genetically manipulate this fundamental process in plants.
| Item Type | Article |
|---|---|
| Open Access | Not Open Access |
| Additional information | Crop Performance & Improvement Div, Harpenden AL5 2JQ, Herts, England; Chinese Acad Sci, Inst Genet & Dev Biol, Natl Ctr Plant Gene Res, Beijing 100101, Peoples R China; Rothamsted Res, Biol Chem Div, Harpenden AL5 2JQ, Herts, England |
| Keywords | Plant Sciences |
| Project | 502, 522, 514, The cell biology of nitrogen acquisition and allocation, Project: 4503 |
| Date Deposited | 05 Dec 2025 09:35 |
| Last Modified | 21 Jan 2026 17:18 |

