Antisense reduction of serine hydroxymethyltransferase results in diurnal displacement of NH+4 assimilation in leaves of Solanum tuberosum
Serine hydroxymethyltransferase (SHMT) is part of the mitochondrial enzyme complex catalysing the photorespiratory production of serine, ammonium and CO2 from glycine. Potato plants (Solanum tuberosum cv. Solara) with antisensed SHMT were generated to investigate whether photorespiratory intermediates accumulated during light lead to nocturnal activation of the nitrogen-assimilating enzymes glutamine synthetase (GS) and glutamate synthase (GOGAT). The transformant lines contained 70-90% less SHMT protein, and exhibited a corresponding decrease in mitochondrial SHMT activity. SHMT antisense plants displayed lower photosynthetic capacity and accumulated glycine in light. Glycine was converted to serine in the second half of the light period, while serine, ammonium and glutamine showed an inverse diurnal rhythm and reached highest values in darkness. GS/GOGAT protein levels and activities in the transgenics also reached maximum levels in darkness. The diurnal displacement of NH4+ assimilation was accompanied by a change in the subunit composition of GS(2), but not GS(1). It is concluded that internal accumulation of post-photorespiratory ammonium is leading to nocturnal activation of GS/GOGAT, and that the time shift in ammonia assimilation can constitute part of a strategy to survive photorespiratory impairment.
| Item Type | Article |
|---|---|
| Open Access | Not Open Access |
| Additional information | Royal Vet & Agr Univ, Dept Agr Sci, Plant & Soil Sci Lab, DK-1871 Frederiksberg C, Copenhagen, Denmark; INRA, Unite Nutr Azotee Plantes, F-78026 Versailles, France; Rothamsted Res, Crop Performance & Improvement Div, Harpenden AL5 2JQ, Herts, England; Univ Rostock, Inst Biowissensch, Abt Pflanzenphysiol, D-18051 Rostock, Germany |
| Keywords | Plant Sciences |
| Project | 502, Redox signalling and oxidative-stress-mediated control of plant growth and development |
| Date Deposited | 05 Dec 2025 09:36 |
| Last Modified | 21 Jan 2026 17:18 |

