Host propagation permits extreme local adaptation in a social parasite of ants

Schonrogge, K., Gardner, M. G., Elmes, G. W., Napper, E. K. V., Simcox, D. J., Wardlaw, J. C., Breen, J., Barr, B., Knapp, J. J., Pickett, John and +1 more...Thomas, J. A. (2006) Host propagation permits extreme local adaptation in a social parasite of ants. Ecology Letters, 9 (9). pp. 1032-1040. 10.1111/j.1461-0248.2006.00957.x
Copy

The Red Data Book hoverfly species Microdon mutabilis is an extreme specialist that parasitises ant societies. The flies are locally adapted to a single host, Formica lemani, more intimately than was thought possible in host-parasite systems. Microdon egg survival plummeted in F. lemani colonies > 3 km away from the natal nest, from c. 96% to 0% to < 50%, depending on the hoverfly population. This is reflected in the life-time dispersal of females, measured at < 2 m, resulting in oviposition back into the same ant nests for generation after generation. To counter destabilizing effects on the host, Microdon manipulates the social dynamics of F. lemani by feeding selectively on ant eggs and small larvae, which causes surviving larvae to switch development into queens. Infested colonies rear double the number of new queens, thus propagating the vulnerable local genotype and compensating for damage to the host colonies. The consequences of such extreme host specificity for insect conservation are discussed.

visibility_off picture_as_pdf

picture_as_pdf
Schonrogge-2006-Host-propagation-permits-extreme-lo.pdf
subject
Published Version
lock
Restricted to Repository staff only
Available under Creative Commons: Attribution 4.0


Atom BibTeX OpenURL ContextObject in Span OpenURL ContextObject Dublin Core MPEG-21 DIDL Data Cite XML EndNote HTML Citation METS MODS RIOXX2 XML Reference Manager Refer ASCII Citation
Export

Downloads