Ligand binding and homology modelling of insect odorant-binding proteins

Venthur, H., Mutis, A., Zhou, Jing-Jiang and Quiroz, A. (2014) Ligand binding and homology modelling of insect odorant-binding proteins. Physiological Entomology, 39 (3). pp. 183-198. 10.1111/phen.12066
Copy

This review describes the main characteristics of odorant-binding proteins (OBPs) for homology modelling and presents a summary of structure prediction studies on insect OBPs, along with the steps involved and some limitations and improvements. The technique involves a computing approach to model protein structures and is based on a comparison between a target (unknown structure) and one or more templates (experimentally determined structures). As targets for structure prediction, OBPs are considered to play a functional role for recognition, desorption, scavenging, protection and transportation of hydrophobic molecules (odourants) across an aqueous environment (lymph) to olfactory receptor neurones (ORNs) located in sensilla, the main olfactory units of insect antennae. Lepidopteran pheromone-binding proteins, a subgroup of OBPs, are characterized by remarkable structural features, in which high sequence identities (approximately 30%) among these OBPs and a large number of available templates can facilitate the prediction of precise homology models. Approximately 30 studies have been performed on insect OBPs using homology modelling as a tool to predict their structures. Although some of the studies have assessed ligand-binding affinity using structural information and biochemical measurements, few have performed docking and molecular dynamic (MD) simulations as a virtual method to predict best ligands. Docking and MD simulations are discussed in the context of discovery of novel semiochemicals (super-ligands) using homology modelling to conceive further strategies in insect management.


picture_as_pdf
Venthur_et_al-2014-Physiological_Entomology.pdf
subject
Published Version
Available under Creative Commons: Attribution 4.0

View Download

Atom BibTeX OpenURL ContextObject in Span OpenURL ContextObject Dublin Core MPEG-21 DIDL Data Cite XML EndNote HTML Citation METS MODS RIOXX2 XML Reference Manager Refer ASCII Citation
Export

Downloads