Dry matter losses and methane emissions during wood chip storage: the impact on full life cycle greenhouse gas savings of short rotation coppice willow for heat

Whittaker, Carly, Macalpine, WilliamORCID logo, Yates, Nicola and Shield, Ian (2016) Dry matter losses and methane emissions during wood chip storage: the impact on full life cycle greenhouse gas savings of short rotation coppice willow for heat. BioEnergy Research, 9 (3). pp. 820-835. 10.1007/s12155-016-9728-0
Copy

A life cycle assessment (LCA) approach was used to examine the greenhouse gas (GHG) emissions and energy balance of short rotation coppice (SRC) willow for heat production. The modelled supply chain includes cutting multiplication, site establishment, maintenance, harvesting, storage, transport and combustion. The relative impacts of dry matter losses and methane emissions from chip storage were examined from a LCA perspective, comparing the GHG emissions from the SRC supply chain with those of natural gas for heat generation. The results show that SRC generally provides very high GHG emission savings of over 90 %. The LCA model estimates that a 1, 10 and 20 % loss of dry matter during storage causes a 1, 6 and 11 % increase in GHG emissions per MWh. The GHG emission results are extremely sensitive to emissions of methane from the wood chip stack: If 1 % of the carbon within the stack undergoes anaerobic decomposition to methane, then the GHG emissions per MWh are tripled. There are some uncertainties in the LCA results, regarding the true formation of methane in wood chip stacks, non-CO2 emissions from combustion, N2O emissions from leaf fall and the extent of carbon sequestered under the crop, and these all contribute a large proportion of the life cycle GHG emissions from cultivation of the crop


picture_as_pdf
Whittaker2016_Article_DryMatterLossesAndMethaneEmiss.pdf
subject
Published Version
Available under Creative Commons: Attribution 3.0

View Download

Atom BibTeX OpenURL ContextObject in Span OpenURL ContextObject Dublin Core MPEG-21 DIDL Data Cite XML EndNote HTML Citation METS MODS RIOXX2 XML Reference Manager Refer ASCII Citation
Export

Downloads