Orientation in high-flying migrant insects in relation to flows: mechanisms and strategies

Reynolds, Andy, Reynolds, DonaldORCID logo, Sane, S. P., Hu, Gao and Chapman, Jason (2016) Orientation in high-flying migrant insects in relation to flows: mechanisms and strategies. Philosophical Transactions of the Royal Society B-Biological Sciences, 371 (1704). p. 20150392. 10.1098/rstb.2015.0392
Copy

High-flying insect migrants have been shown to display sophisticated flight orientations that can, for example, maximize distance travelled by exploiting tailwinds, and reduce drift from seasonally optimal directions. Here, we provide a comprehensive overview of the theoretical and empirical evidence for the mechanisms underlying the selection and maintenance of the observed flight headings, and the detection of wind direction and speed, for insects flying hundreds of metres above the ground. Different mechanisms may be used—visual perception of the apparent ground movement or mechanosensory cues maintained by intrinsic features of the wind—depending on circumstances (e.g. day or night migrations). In addition to putative turbulence-induced velocity, acceleration and temperature cues, we present a new mathematical analysis which shows that ‘jerks’ (the time-derivative of accelerations) can provide indicators of wind direction at altitude. The adaptive benefits of the different orientation strategies are briefly discussed, and we place these new findings for insects within a wider context by comparisons with the latest research on other flying and swimming organisms.

This article is part of the themed issue ‘Moving in a moving medium: new perspectives on flight’.


picture_as_pdf
rstb.2015.0392.pdf
subject
Published Version
Available under Creative Commons: Attribution 3.0

View Download

Atom BibTeX OpenURL ContextObject in Span OpenURL ContextObject Dublin Core MPEG-21 DIDL Data Cite XML EndNote HTML Citation METS MODS RIOXX2 XML Reference Manager Refer ASCII Citation
Export

Downloads