Impact of liquid water on oxygen reaction in cathode catalyst layer of proton exchange membrane fuel cell: A simple and physically sound model

Zhang, X. X. and Gao, Y. (2016) Impact of liquid water on oxygen reaction in cathode catalyst layer of proton exchange membrane fuel cell: A simple and physically sound model. Journal Of Power Sources, 318. pp. 251-263. 10.1016/j.jpowsour.2016.04.024
Copy

When cells work at high current density, liquid water accumulates in their catalyst layer (CL) and the gaseous oxygen could dissolve into the water and the ionomer film simultaneously; their associated dissolved concentrations in equilibrium with the gaseous oxygen are also different. Based on a CL acquired using tomography, we present new methods in this paper to derive agglomerate models for partly saturated CL by viewing the movement and reaction of the dissolved oxygen in the two liquids (water and ionomer) and the agglomerate as two independent random processes. Oxygen dissolved in the water moves differently from oxygen dissolved in the ionomer, and to make the analysis tractable, we use an average distribution function to describe the average movement of all dissolved oxygen. A formula is proposed to describe this average distribution function, which, in combination with the exponential distribution assumed in the literature for oxygen reaction, leads to a simple yet physically sound agglomerate model. The model has three parameters which can be directly calculated from CL structure rather than by calibration. We explain how to calculate these parameters under different water contents for a given CL structure, and analyse the impact of liquid water on cell performance. 

visibility_off picture_as_pdf

picture_as_pdf
1-s2.0-S0378775316303652-main.pdf
subject
Published Version
lock
Restricted to Repository staff only
Available under Creative Commons: Attribution 4.0


Atom BibTeX OpenURL ContextObject in Span OpenURL ContextObject Dublin Core MPEG-21 DIDL Data Cite XML EndNote HTML Citation METS MODS RIOXX2 XML Reference Manager Refer ASCII Citation
Export

Downloads