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SUMMARY

The controversy concerning the fundamental principles of statistics still remains
unresolved. It is suggested that one key to resolving the conflict lies in recognizing
that inferential probability derived from observational data is inherently noncoherent,
in the sense that their inferential implications cannot be represented by a single
probability distribution on the parameter space (except in the Objective Bayesian
case). More precisely, for a parameter space R, the class of all functions of the para-
meter comprise equivalence classes of invertibly related functions, and to each such
class a logically distinct inferential probability distribution pertains. (There is an
additional cross-coherence requirement for simultaneous inference.) The non-
coherence of these distributions flows from the nonequivalence of the relevant com-
ponents of the data for each.

Noncoherence is mathematically inherent in confidence and fiducial theory, and
provides a basis for reconciling the Fisherian and Neyman—Pearsonian viewpoints.
A unified theory of confidence-based inferential probability is presented, and the
fundamental incompatibility of this with Subjective Bayesian theory is discussed.
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FIDUCIAL THEORY, FISHER, INFERENTIAL PROBABILITY; LIKELIHOOD PRINCIPLE;
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1. INTRODUCTION

A few preliminaries first. The discussion of statistical inference is restricted here to the
parametric context of inference about one or more parameters of an otherwise known sampling
distribution for the observational data. (The word “known” here signifies a precisely or
approximately known property of the real world, in contradistinction to “specified” or
“given” which can refer more widely to theoretical or mathematical postulates.) The omission
of significance tests and nonparametric or robust inference is for reasons of space rather than
of principle. Decision theory is also omitted from consideration. Its objectives differ formally
from those of statistical inference and there are mathematical conflicts between the relevant
principles of each. See Barnard (1949), Fisher (1956a), Cox (1958), Tukey (1960), Blyth (1970)
and Barnett (1973).

1.1. The Nature of the Controversy
The controversy concerning the fundamental principles of statistical inference is still
unresolved. Barnett (1973) gives a comparative discussion. See also Hacking (1965),
Plackett (1966), Fraser (1972, 1974) and Edwards (1976). The principal disagreements are
between Bayesian (or non-Bayesian likelihood) and frequentist theories of inference; and
among the latter, of course, the long-standing disagreement between the Fisherian and
Neyman-Pearsonian points of view. It must be emphasized that the substance of the

t Present address: Mathematics Research Centre, Madison, Wisconsin (from September, 1977).
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controversy, and of this paper, concerns inference from finite (and relatively small) amounts
of data. All theories have some form of asymptotic validity, in that actual numerical differences
disappear asymptotically as the amounts of data become large; only the formal differences of
expression remain.

I think that the continuing controversy has had, overall, a debilitating effect on Statistics,
particularly if one considers the forward impetus that a unified theory of inference would
produce. Much of the published literature would become irrelevant, teaching would be
enhanced and simplified, and even if much of the practice of Statistics continued as before,
there would be changes in the research on and published justifications for practical methods.

Contrary to Barnett’s (1973) pessimistic view, I believe that a unified theory of inference
does exist. The main thrust of this paper will be to demonstrate that a reconciliation of the
frequentist viewpoints is possible, and hence to throw into a new and sharper focus the funda-
mental incompatibility of the frequentist and Bayesian viewpoints. One or other must be
untenable as formulated, and the conflict can only be resolved by considering the necessary
empirical properties that a theory of inference must encompass.

1.2. Empirical Principles of Statistical Inference

In considering why the controversy has continued for so long, one notices first a peculiar
difficulty in invalidating a possibly erroneous theory of uncertain inference. Scientific theories
about Nature ultimately stand or fall on the basis of clear observational disproof (or otherwise)
of predicted properties of Nature. In the case of uncertain inference, however, the very
uncertainty of uncertain predictions renders the question of their proof or disproof almost
meaningless. Invalidation of an inference theory therefore depends on the discovery of
extreme examples from which the derived statements of uncertainty are quite clearly incorrect
from an intuitive or empirical point of view. Pathological freak examples are insufficient for
this purpose. An element of continuity between the extreme and more practical cases is
needed, to argue properly that the detected form of incorrectness must be present to some
degree in nearly all such cases.

Thus Cox (1958) gives an example which throws into sharp relief the inferential conflict
between Fisher’s (1956a) Conditioning principle and the Neyman-Pearsonian principle of
optimizing power or its equivalent in Confidence theory; and from which it is clear that the
latter principles are in some respects inferentially unsound. This led Cox to suggest that a
conditional confidence theory is needed. Certainly the Conditioning principle enjoys wide
empirical acceptance, and I know of no sound counter-examples against it.

Secondly, one may question whether mathematical reasoning is being used correctly in
statistical inference about the real world. Fisher (1956a) has discussed the peculiar features of
uncertain inference, and his views may be summarized as:

Relevance Principle

Valid uncertain inference requires that all relevant information be properly utilized
in, and all irrelevant or spurious information be excluded from, the reasoning of it.

This may be considered the fundamental principle of uncertain inference. Something like it
has been understood for centuries as a fundamental tenet in Law (or at least in British-based
Law). Though its general import is clear, application of it requires definition of the terms
relevant and properly. Resolution of this question of definition is not simply a matter of logic
but ultimately one of empirical verification. Statistical inference in this respect is as funda-
mentally empirical as the sciences in which it is applied. In the unified theory to be outlined,
Fisher’s Conditioning principle provides the operational means of separating relevant and
irrelevant information.

Rigorous application of the Relevance principle does exclude some approaches to inference
as fundamentally invalid, for instance Bayesian theories invoking artificial priors (invariant,
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conjugate etc.). Nor is it right to argue that introducing such artificial information is valid
because the resulting conclusions are almost independent of it. One would have to argue that
the same conclusions could be reached without introducing the false information, and this
may not follow in general. One might also argue that parametric inference itself is funda-
mentally unsound, because it cannot be known with certainty that the sampling distribution
of the data belongs to the family assumed. But here at least one can argue that such a family
may be sufficiently representative of the undoubtedly larger class of possible distributions to
validate the inference.

Thirdly, one may ask, is there some fundamental property of statistical inference that has
been overlooked? I believe there is, and this is really the crux of the paper. I shall argue that
the following principle describes an inherent and empirically recognizable property of finite
observational data:

Noncoherence Principle

The inferential implications of observational data alone (with sampling distribution
known in parametric form) are noncoherent, in that they cannot be represented by a
single inferential probability distribution on the parameter space.

A detailed explanation of noncoherence will be given in Section 3, but I draw attention here
to the radical implication that inferential probability does not conform in general to the
classical Kolmogoroff axioms of mathematical probability.

1.3. A Confidence-based Theory of Inferential Probability

There are two forms of inferential probability that have an objective frequency inter-
pretation. The first, Objective Bayesian probability, is a special form rarely applicable in
practice since the additional knowledge of a prior frequency distribution is needed. The other
is the fiducial form discovered by Fisher (1930). This has (in simpler cases) the familiar
confidence interpretation which Neyman (1934) subsequently exploited in his theory of
confidence intervals.

Bayesian probability is coherent, but fiducial probability is not. This Fisher apparently did
not perceive. The noncoherence, however, is deducible from confidence theory. Recognition
of it leads to a resolution of all the known difficulties with fiducial theory, and hence to a
mathematically consistent calculus of confidence-based inferential probability that will be
outlined in Section 4. The fundamental conflict between this and Subjective Bayesian theory
will be examined in Section 6. Structural distributions (Fraser, 1968) are a special form of
fiducial distribution (Section 4.9). (Added in proof:: Fraser disagrees, see Discussion and Reply.)

2. NOTATION

Actual observations will be distinguished from mathematical variables with a subscript a
as in x,. An actual but unknown parameter will be similarly distinguished, e.g. 6,, but
representation of the uncertainty about the value of 8, in the form of a probability distribution
will require that 6, be formally regarded as a random variable in inferential statements. The
subscript a will sometimes be omitted when no ambiguity arises. To avoid confusion the term
probability will be used only in its inferential sense (Section 3). Sampling distributions will be
described with the term frequency. The same distinction will apply in the notations used: p, P
for probability and £, F for frequency. The notation P(proposition) will denote the probability
that the proposition is true. However, the particular form P(8 < 6,) may be condensed to the
usual form P9(,) for a distribution function or to P(#) when no mathematical variable 6,
need be specified. Similarly for frequency, F.

The only sample and parameter spaces considered are the real line (RY) or, more generally
R?; with their associated Borel algebras. Distributions will be represented by a differential
notation, for example, dP(8,,), dF(x); or more fully dP(8,; x,), dF(x; 6) to indicate functional
dependence on x, and 8 respectively.
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Functions (transformations) are restricted to be essentially continuous (e.c.), with at most
a countable number of discontinuities, so that Borel structure is preserved under transforma-
tion. Invertibility will be indicated by the operator symbol = as in g(6) = 6 orin g(6,, 6,) = 6,,
where the invertibility is with respect to 6, given #,. Monotone relations are specified with the
operators 1, |, 1 (meaning 1 or |). Compound symbols x,|x, or 6,] 6, are used with the
meaning ““x, given x;”, etc. When applicable, the phrase “for all (values of other variables)”
will usually be omitted and should be taken as understood in the absence of other qualifications.

3. INFERENTIAL PROBABILITY AND NONCOHERENCE

I take it as fundamental that inferential probability is a measure of belief attaching to
propositions about the real world, like “it will rain here tomorrow” or “2.1 < p<5.3”, which
are quite definitely true or false, but whose truth value is currently unknown. The probability
is an estimate of the truth value. This use of the term probability is logically distinct from its
other use as a synonym for theoretical frequency, in describing factual properties of random
variables. The distinction is so important here that I shall not use the word probability at all
in the latter sense, referring instead to frequency. See Shafer (1976).

3.1. Basic Definitions

Inferential probability may be determined objectively in two ways, Bayesian and Fiducial,
which we now consider. The common feature of both is that the particular proposition under
consideration is identified as one of a relevant conceptual class of similar propositions in which
the relative frequency of true propositions is known. The required probability is then equated
(in magnitude only, not logically) to that relative frequency.

We are concerned here only with nontrivial inference from observational data, and consider
the simplest case of an observation x,, the observed value of a random variable x, with dis-
tribution function F(x; 6) known in terms of a mathematical variable 6 representing an
unknown parameter which actually is ¢,. The sample and parameter spaces are the real line.

Since any nontrivial expression of uncertainty will be functionally dependent on the
observed value x,, we are led to consider propositions about 6, of the form 8, < 8,(x,), for
which the assigned probability p will be functionally independent of x,:

(i) The Objective Bayesian case. If it is known additionally that 8, is itself the unknown but
realized value of a physcial random variable § with known frequency distribution function
F(0), then the pair (6, x) has a known bivariate frequency distribution from which the con-
ditional frequency distribution function F(6|x,) is immediately deducible. The inferential
probability of 8, < 0,,(x,) is then defined as

P(8,<0,(xp) = FO=)(§ < 0,(x,) = p, 3.1n

with 0,(x,) identified as the pth percentile value of 8 given x,.

(ii) The Fiducial case. If nothing is known about 8, other than inherent in x, and its sampling
distribution, no Bayesian conditional frequency distribution exists. However, if there is a
well-defined simple ordering relation between x and 6, in that for every p, 0 <p < 1, the equation
F(x; 0) = p defines a monotone relation between x and 6, then an inferential probability dis-
tribution for 6, is determined by the definition

P(8,<0,(x,)) = F@9(0< 6,(x)) =p, (3.2)

where now 6;1(0) is identified as the pth percentile value of x given 6 if F(x; 6)1 6, or of —x
if F(x; 6) | 6. Note there is an additional requirement that the ordering relation be irreducible
(see Section 4.1), and also that fiducial distributions may be incomplete, with some probability
unassigned (see Section 3.4).
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Let me emphasize again the similarity of the two definitions above, the principal difference
being in conceptual class of propositions relevant to each case:

Proposition Bayesian class Fiducial class (3.3)
0,<y(x)  {0<8,(x)}  {0<0,(x)}
(0 variable) (0, x variable)

Fiducial probability has a confidence interpretation. The 2-dimensional class of propositions
{6 < 0,(x)} comprises 1-dimensional subclasses {(6 < 6,(x)); 0 given} for every one of which
the associated confidence frequency (frequency of true propositions) is p. Fiducial probability
may also be interpreted geometrically as projected frequency (see Section 3.3).

An important operational concept in fiducial theory is that of a pivotal variate u(x, 6)
monotone in both x and 8 and with known frequency distribution dF(x) independent of 6.
(I have substituted “variate’ for “quantity” in Fisher’s terminology to emphasize that there is
an associated frequency distribution.) The distribution function F(x; ), if monotone in 8, is
itself a pivotal variate, but simpler transforms of it often exist. For instance, if x~ N(6,1),
x— 0 is a pivotal variate. With u, = u(x,, 8,,) the proposition 8, < 6,,(x,) is logically equivalent
to the proposition u,<u, if F(x; 6)} 6, of which the subject is the unknown but realized
value u, of the variate u.

For the Normal example above, if z denotes a Standard Normal variate, the projection of
frequency as a measure of inferential probability in (3.2) may be represented symbolically by
the implicational expression

x=0+250, =x,~z. (.4

The qualifier inf is inserted to emphasize that the implication is an inference, not a deduc-
tion; 6, = x,—z is not a statement of fact, but formally confers on the unknown 6, the
inferential status of random variable.

In conformity with Fisher’s terminology, I shall also refer to a simple ordering relation as
a pivotal relation, and the component monotone relations as percentile relations.

3.2. The Noncoherence of Fiducial Probability

The definitional equivalence in (3.1) and (3.2) of inferential probability and frequency
determines an isomorphism between them that defines the relevant calculus of probability.
More precisely the isomorphism is between corresponding classes of probability and frequency
distributions, respectively, generated by a class of transformations g on the relevant spaces,
such that definitional equivalence is preserved.

In the Objective Bayesian case it is clear that definitional equivalence is preserved under
any 1-1 or many-1 transformation g, with 8,->g(8,), 8 g(0) respectively. Hence the calculus
of probability and of frequency is the same in this case. We shall say that Objective Bayesian
probability measure is coherent for all e.c. functions g(6).

However, in the fiducial case, definitional equivalence is preserved only under invertible
transformations g, with 8,=g(8,), 8= g(0) and x=g(x), since it is easily shown that non-
invertible transformations as above alter the associated confidence frequencies. Thus a
fiducial probability measure dP(6) is coherent only for invertible functions g(6)= 6. This, of
course, has radical implications for the calculus of fiducial probability.

Invertible transformations form a group which defines, as cosets in the class of e.c. trans-
formations, equivalence classes of invertibly related transformations, and to each equivalence
class a logically distinct probability distribution pertains. Fiducial probability distributions
(if they exist) for noninvertibly related functions of 6 are noncoherent, and each needs to be
deduced directly from the relevant components of the observational data and the pivotal

920z A1eniged z| uo Jasn NOWINOO LSIM HOYVYISIY AVALSINVYHLOY Ad 21G220./61 L/2/6€/0101LE/gsssIl/wod dno-olwapede//:sdiy Wwoij papeojumo(



124 WILKINSON — Resolving the Controversy in Statistical Inference [No. 2,

relations which they imply. Noncoherence flows essentially from the mathematical non-
equivalence of the relevant ordering relations. There is an additional cross-coherence require-
ment for a simultaneous probability distribution, described in Section 4.

Empirical evidence for noncoherence as an inherent property of (finite) observational data
will be considered in Section 3.5, and other logical implications of it discussed in Section 3.6.
See also Sections 4.6 and 5.

3.3. Geometrical Interpretation of Fiducial Probability
Mathematically the definition (3.2) may be considered a definition of probability measure
by set-intersection (A. T. James, personal communication, 1962) or, as I shall term it here,
[requency projection, in contradistinction to frequency conditioning as in (3.1). A geometrical
representation is given in Fig. 1. All the known data are indicated in the figure. The known
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F1G. 1. Frequency measures in the (x, 8) plane.

family of frequency distributions dF(x; 0) assigns a frequency measure on all (horizontal)
x-lines. This has been indicated by drawing the corresponding x-intervals (say with frequency
measure 5 per cent) defined by two of the monotone percentile relations between x and 6.
The observed value x, is represented by the (vertical) f-line x = x,, on which an inferential
probability measure is to be determined.

No bivariate frequency distribution exists on the (x, 6) plane, and hence no conditional
frequency distribution on any 6-line. However, the union of the corresponding x-intervals
shown generates a 2-dimensional strip which in a well-defined sense constitutes 5 per cent of
the (x, 0) plane. In this way a frequency measure can be established for the special o-algebra of
2-dimensional sets generated from percentile-defined strips.

A projected frequency measure can now be assigned to the §-line x = x,, by assigning the
frequency associated with each percentile strip to its interval-intersection with x = x,. The
projected distribution for 8, is invariant with respect to prior monotone transformation of the
sample space {x}, and more generally with respect also to any nonmonotone but invertible e.c.
transformation of {x},} though in the latter case the discontinuities induce a reordering of
frequency elements in the projection process, since the simple ordering relation between x and
0 is not preserved.}

1 Added in proof: provided that the corresponding transforms of the monotone percentile relations are
used for projection. I am grateful to Pedersen (see Discussion) for detecting the fault in wording here.

1 Note that the unique ordering of points on the real line is essential to the definition given of a pivotal
relation. On the circle, for instance, there are no fixed special points analogous to +oo, and the existence
of a uniquely relevant pivotal relation depends on the particular form of sampling distribution assumed.
Invariance under rotation of either the entire distributional form or else of symmetry about a diameter
appears to be necessary.
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3.4. Incomplete Fiducial Distributions

A pivotal relation between x and 6 is termed complete if all the monotone percentile
relations span the whole space {x}; otherwise it is incomplete. An incomplete pivotal relation
produces an incomplete inferential probability distribution, with some probability unassigned.

An incomplete distribution for # usually arises when there is some specified restriction on
the range of possible values for 6, say to a semi-infinite or finite interval, as illustrated in
Fig. 2, in which upper and lower amounts of frequency Py, P; remain unassigned by the

projection process, and are considered as unassigned probability.

Py

D -

PL

) /]

.
weel /// !
L 7 // P

Xa Xa

X —-

FiG. 2. Anincomplete fiducial distribution produced by a range restriction. Unassigned probability is shown
as condensations P, Py at 8 = 8, 8, respectively.

Py

It is formally convenient to represent the unassigned probability as finite probability
condensations superimposed on (but not logically identified with) the endpoints 8, 6, of the
range of 6. This representation is mathematically consistent with upper and lower truncation
of the distribution function for 6, and also with the fact that, in considering the confidence
frequency interpretation, truncation (to the limits 8, 6;) of conceptual confidence intervals
extending beyond the specified range does not affect the confidence frequency.

From the inferential viewpoint, however, the unassigned probability corresponds to
unassigned belief and the resulting inferential distribution is more aptly regarded as partly
indeterminate. The incomplete distribution assigns an objective lower bound (with confidence
interpretation) to belief in any propositional f-interval, and an upper bound is obtained by
adding the amounts Py, Py, to the lower bound. That the data themselves provide no additional
information on how to distribute the unassigned belief is intuitively clear. To distribute it in
proportion to that already distributed (that is by conditioning the assigned probability to add
to one) would be an unwarranted assumption or an exaggeration of the evidence. For consider
a limiting case where the specified range of 6 is so small, relative to the standard deviation of x,
that nearly all the probability is unassigned. Considering how uninformative is an observation
X, in such a case, I suggest that the almost completely indeterminate distribution is a far more
plausible expression of inference than the precisely determined, complete and almost uniform
inferential distribution produced by conditioning as above. The latter is tantamount to
assuming Bayes’ Axiom.

An interpretation of unassigned probability sometimes applicable (though not in the case
described above) ties in with significance tests of the mathematical specification of distribution.
An unassigned probability is often the complement of the significance probability produced by
such a test, and thus a statistical measure of the degree of incompatibility (significant or other-
wise) between the data and the mathematical specification. An example is given in Section 3.5.

Another possible interpretation is when there is a priori a finite (nonzero) chance, under the
relevant scientific theory, that the unknown parameter lies exactly at a point of condensation.
The associated probability may then be regarded as an estimated upper bound (a posteriori) for
belief in such a possibility.
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3.5. Empirical Evidence for Noncoherence as an Intrinsic Property of Observational Data

Stein (1959), referring to remarks made by Fisher, was led to produce an extreme example
in which a derived fiducial distribution was clearly absurd if judged by its confidence pro-
perties. This example, reinterpreted in the present context, provides the clearest empirical
evidence for noncoherence of which I am aware, and we consider it now. Other illustrations of
noncoherence will occur elsewhere in the paper.

Taking some knowledge of fiducial theory for granted, we consider # independent random
variables x; ~ N(u;, 1), with observed values x;,, i = 1,2, ...,n, and let X, X, i denote the corre-
sponding vectors in R”. We assume there is no prior knowledge about any ;. The confidence-
based fiducial distribution for any g, is formally specified by p;~ N(x;,, 1), and similarly for
any specified contrast AT by ATw = N(ATx,,ATA). The totality of such distributions is
formally specified by assigning . a Spherical Normal distribution,

e~ N, L), 35

Now consider inference about the length || of g, or equivalently the invertibly related
function pTp =|p|2. Note immediately that real interest in such a function logically contra-
dicts our previous statement of no prior information about any p;, for clearly the origin 0 is
now designated a priori to be a special point in the space {}.

In view of the mathematical noncoherence of fiducial probability deduced above we would
not expect the marginal distribution of p.T w derived from (3.5) and specified by

wT o~ ¥, xTx,) (3.6)

to be inferentially valid, since the confidence properties of (3.5) would be destroyed by the
marginal transformation. This is precisely what Stein demonstrated.

A correct, confidence-based fiducial distribution for T . must derive from a fully relevant
pivotal relation between some component function of x, and g™ . The relevant component
is clearly xT x,, which has a noncentral x> distribution,

xTx~ y(n, l"T W), (3.7)

depending only on the relevant parameter pTw. The other component of observational
information, namely the angular orientation of x,, is clearly irrelevant to inference about p.T
because of the spherical symmetry of the problem (see Section 4.5). Fiducial inversion of (3.7)
leads to an inferential distribution for Ty with the requisite confidence property. The
inferential distribution function is

P(pTp) = 1 —F&™(x7 x,; nT )
= F{x*(n, pT p)>x7 X4}. (€X)

Note this distribution is incomplete, with a condensation at zero of unassigned probability,
Po=F(x2>xTx,). A high value of p, would indicate significant evidence that the observed
point X, is too close to 0 to be statistically compatible with the assumed covariance matrix I,,
of x or else with the Normal form of distribution.

Stein showed that in the limit, with n increasing, the actual confidence frequencies associated
with the (incorrect) fiducial distribution (3.6) tend to zero. The following calculations (for
which I am indebted to W. N. Venables) show how extreme the difference between (3.6) and
(3.8) can be, even for moderate n. With n = 50 and xT x, = 100, the central 95 per cent
fiducial intervals produced are (to nearest integral values)

Incorrect, from (3.6): 109 <pT <196,
Correct, from (3.8): 21<pTp<89, 3.9)
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the latter interval consistent with the fact that E(xT x) = pT p.+ 50, which suggests a central
value 10050 = 50 for p.T .

Since the spherical distribution (3.5) produces entirely plausible inferential distributions
for any p; or specified contrast AT p, and at the same time produces an intuitively absurd
distribution for T, the real force of Stein’s example is to demonstrate empirically that
noncoherence is no mere mathematical artifact but an intrinsic property inherent in the
observation themselves, and flowing from the nonequivalence of the relevant information for
each kind of inference. For the fundamental ingredient of a confidence-based inferential
distribution is a simple ordering relation between a relevant statistic and a parameter, and
even a single observational variable implies a multiplicity of inferentially nonequivalent
relations.

3.6. More about Noncoherence

Consider again the set of all e.c. functions g(f), 6 R.. Each equivalence class C of
invertibly related functions g corresponds to a unique o-algebra on {6} which is the inverse
image of the o-algebra on the range {g(8)} to which the full Borel algebra on {6} is mapped by
the transformation 6-—g(6). Invertibly related functions determine the same inverse o-
algebra, which is either the full Borel algebra on {6}, corresponding to invertible functions, or
else a subalgebra of it, for instance, the subalgebra generated from intervals symmetric about
zero in the case of 62 (and functions invertibly related to it). Thus the restricted coherence of
fiducial probability implies that a logically distinct probability measure pertains to each such
o-algebra.

Noncoherence goes deeper than this, however. As indicated in Stein’s example we must
distinguish between different parametric or topological representations of the parameter
space on a priori grounds. Consider the simple case x~N(6,1). If the relevant scientific
context indicates that any value 8 € R! is possible for 8,, none being especially indicated, then
logically our inferential interest is confined to invertible functions of 6. If, however, the
scientific context indicates O as a special value (corresponding to a special form of the theory)
then the logically appropriate representation of the parameter space {8} is as the product space
{| 8] }® {sign(0)}, and inferential interest is directed to the components |f] and sign(f).
Though the details are omitted here, the latter representation leads to a fiducial distribution
for 6, expressed in the form | 6}sign (), which is noncoherent with the distribution 8§~ N(x,, 1),
exhibiting relative to the latter a shrinkage towards the value 0 and a condensation of proba-
bility at 0 equal to P(x2> x2). It thus appears that noncoherence provides the logical rationale
for inference based on shrinkage estimators as in ridge-regression, without invoking arbitrary
optimization principles. Noncoherence also accounts for the inadmissibility (Stein, 1956) of
the mean of a multivariate Normal sample with respect to a quadratic loss function, since the
decision-theoretic formulation directs attention to this one function on the parameter (and
sample) space.

Logicians may note that the probability of a particular proposition depends (in general)
not only on that proposition but on the inferentially relevant Boolean algebra of propositions
over which belief is to be distributed. Thus the proposition >0 might be regarded as em-
bedded in the algebra of propositions generated from {(6>c); ce R*} or in the algebra com-
prising only >0, 6 <0 and their union; depending on whether 8 or sign () is the variable of
inferential interest. Likewise a proposition of the generic form 62<c¢ (or —c< < ¢) would be
referred not to dP(6) but to dP(6?), the latter being appropriate to the subalgebra generated
from symmetric intervals.

4. CONFIDENCE-BASED THEORY OF INFERENTIAL PROBABILITY
Because of space restrictions only a brief outline of the theory will be given here, with
detailed proofs omitted. Some topics discussed in an earlier and longer version of the paper
will be briefly mentioned in Section 4.9.
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The first point to note is that a uniquely relevant simple ordering relation exists only in a
2-dimensional statistic-parameter product space. Application of the frequency projection
concept to higher-dimensional product spaces therefore depends on a factorization being
found of the simultaneous frequency distribution of the observational variables, to identify
2-dimensional product subspaces in which relevant ordering relations exist. In other words,
the joint information must be completely separated into relevant and irrelevant components
for each kind of inference, and for this Fisher’s Conditioning principle provides the necessary
operational tool.

For the present we continue with the case of one observation, one parameter as in Section 3.
The basic definition (3.2) of fiducial probability for this case will also apply to more general
situations with appropriate notational identification.

4.1. Irreducible Pivotal Relations

The existence of a pivotal relation between x and 6 may not ensure that it is fully relevant
for inference about 6§, though this will almost always be so. One mathematical possibility to
be excluded is that there exists an interval I for which the conditional distribution dF(x|x eI)
is functionally independent of 6. For then, given the information x, €1, the further knowledge
of the actual value x, is clearly irrelevant and ought therefore to be excluded in defining a fully
relevant pivotal relation, according to the Relevance principle. If such an interval I did exist,
the pivotal relation could be reduced to fully relevant form by contracting the sample space {x},
replacing I by a single representative point x;. This would induce vertical steps in the per-
centile relations at xj, so that, if x, €, a partly indeterminate probability distribution for 6
would result, each vertical step defining an upper and lower bound for the corresponding
percentile point 6,,. Probability distributions for ¢ at other values of x, would be unaffected.

A second possibility to be excluded is the existence of an ancillary statistic g(x), defining a
more relevant subset {x; g(x) = g(x,)} of {x} on which inference should be conditioned.
(Cf. Buehler, 1959.) Robinson (1975) gives an important though unusual example of this.

A pivotal relation will be termed irreducible if neither of the above possibilities exists.
The first possibility is excluded by reduction to minimal sufficiency, and the second if x is
boundedly complete.4 (We need not consider subsets of measure zero here.)

4.2. Extension of Fiducial Probability to Functions ¢(0, x)

This extension and the related expectation theory (Section 4.3) is crucial to fiducial theory
for two or more parameters (Section 4.5).

As noted in Section 3.1, if a pivotal variate u(x, ) exists with known frequency distribution
independent of 6, then, considering the case u(x, §) 1 6, the proposition 8,< 6,(x,) can be
re-expressed as u, <u,, in which the subject of the proposition, u, = u(x,, 8,), is the realized
(but unknown) value of the random variable ». Thus it can be seen that classical probability
theory, which is directly applicable to propositions whose subject is the value of a physical
random variable, constitutes a sub-theory of the more general theory of noncoherent probability
outlined in this paper.

In summary, since the equations 6 = 8,(x) and u(x, 6) = u,, are functionally equivalent
for given p, 0<p < 1, both defining the same percentile relation between x and 8, we shall say

that 0 is pivotally equivalent to u(x, ) or, more briefly, 6% u(x, §), and hence that dP(8,) is
pivotally equivalent (equivalent under projection) to dF(u), that is, dP(6, )2 dF(u). We also
have ¢(0)2 u(x, 6), dP(¢,) 2 dF(u) for any invertible function $(8) of 6.

In the special case of the function u(x, 6) there is a direct equivalence, dP(u,)~dF(u), in
the sense that P®a)(y)= F(u), and likewise dP(h(u,)) ~ dF(h(u)) for any e.c. function h. More
generally there is a pivotal equivalence,

dP($(x4, 0)) 2 dF(h(u)) .1

t This weaker condition replaces the conjectured monotone likelihood ratio condition in the read version.
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for any function ¢(x, #) such that

é(x, 0) = $(x, 0,(x))<=h(w) = h(u,), O<p<l, 4.2)

for some e.c. function 4, that is, both equations in (4.2) define the same transformed percentile
relation between x and §. Expressing this in words, a proposition about the value ¢, of such a
function is equivalent to a proposition about /(x,) and hence about u,, so that dF(ux) deter-
mines the inferential probability distribution for ¢,. Examples of pivotally equivalent func-
tions for the case x~ N(60,1), u = 0—x are (in terms of u rather than x) 6+u?, u2e?, u2— 62;
Ou is not.

Since all such functions ¢ are pivotally equivalent to each other (including 6 itself) we

shall find it convenient to describe any such ¢ with the notation ¢(x, §)2 6, omitting explicit
reference to a pivotal variate u except when necessary.

Referring to Fig. 1 it can be seen that the foregoing extension of fiducial probability
corresponds geometrically to projection of frequency not on the family of vertical lines x = x,,
but onto some family of loci which, jointly with the loci u = u,, determines a coordinate
system in the (x, #) plane. The change of coordinate system for projection induces the change
of variable ¢ = ¢(x, f) to which the projected distributions relate. Noting that frequency
projection is unaffected by invertible transformation of the percentile relations (Section 3.3),
and that relations u = u, may be mapped onto themselves with any e.c. transformation u - h(u),
the most general form of transformation appears to be

(0, 1) > (g(0, w), h(w)), (4.3)
where g(0,u)= 6 for all u.

4.3. Fiducial Expectations
In view of the multiplicity of inferential distributions that derive from the given data, it is
logically essential that the inferential expectation E(¢,) of a function ¢(x,, 6,) be determined
with respect to its own inferential distribution, that is,

EGD) = [$.4P4). )
Re-expressed in the form of a restriction on the applicability of dP(6,),
E(by) = f $.dP(0,) onlyif $(x,B)20. @.5)

In the special case ¢ = ¢(6), the condition reduces to $(f)= 9.

4.4. Fiducial Theory for Several Observations, One Parameter

Given a vector of n observations x, relating to one parameter 6, the necessary and
sufficient condition for a fiducial distribution dP(8,) to exist (with the direct confidence
interpretation implied by (3.2)) is that there exist an invertible transformation of the observa-
tional variable x to a scalar ye R! and a vector ze R*~! for which the joint sampling distribu-
tion factorizes in the form

dF(y,z; 8) = dF(y|z; 6)dF(z) 4.6)
with the properties
(i) dF(z) is independent of 8;t
(ii) dF(y|z) defines an irreducible pivotal relation between y|z and 6.

1 It is also necessary that z be a proper ancillary: Define an ancillary statistic z to be (i), fully relevant
if a function of the minimal sufficient statistic for 8, (ii), canonically irrelevant if independent of the minimal
sufficient statistic, (iii), proper if a function only of fully relevant and/or canonically irrelevant ancillaries,
(iv), improper otherwise. A counter-example of Dawid (see Discussion and Reply) shows that conditioning
with respect to improper ancillaries causes a loss of relevant information.
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The fiducial distribution dP(8,) is then determined by frequency projection from the pivotal
relation between y|z and 6.

This important extension of fiducial theory is implicit in Fisher (1934), and is discussed and
illustrated in Fisher (1956a). I shall term a factorization of the form (4.6) with the properties
above a fully relevant factorization. Fisher termed z an ancillary (vector) statistic and y|z may
be termed a conditionally sufficient statistic. Note that z in (4.6) is uniquely determined,
modulo invertible transformation,t but that the informative statistic y is arbitrary, subject to it
being pivotally related to 8. Nevertheless y|z leads to a uniquely determined distribution for
#; a remarkable property of Fisher’s solution. As he expressed it, conditioning with respect
to the ancillary statistic recovers the information about § not inherent in the marginal dis-
tribution of y. For instance if x;~N(6, 1), i = 1,2, the conditional distribution dF(x,|x; — x5)
is equivalent to that of the sufficient statistic %, differing from dF(%) only by a displacement
(x,—x5)/2.

As noted earlier the inferential distribution dP(8,) is coherent only for invertible functions
é(6) or more generally for pivotally equivalent functions ¢(x, §)% 6. Inference about non-
invertible functions ¢(6) and other related functions involves mapping to a different repre-
sentation of the parameter space,

0 = (¢1(0), ¢2(0)’ . ')a (4-7)

and thus formally belongs in the domain of simultaneous inference (see below).

When no factorization (4.6) exists, no distribution dP(0,) exists with a direct confidence
interpretation. However, the theory is applicable to a much wider class of cases, in that
derived conditional distributions for 8, may exist, see Section 4.8.

4.5. Fiducial Theory for Several Parameters

As in Section 4.4. the existence of a simultaneous inferential distribution depends on there
being a fully relevant factorization of the sampling distribution of the data. To simplify
notation I shall restrict attention to a vector 8 € R? comprising two parameters 6, and §,. The
first requirement of a fully relevant factorization is that there exist a factorization of the form
(4.6)f with y € R? and ze R*—2. This separates out the inferentially irrelevant component dF(z).
Next we consider the necessary factorization of dF(y|z; 6), namely (with conditioning with
respect to the ancillary statistic z taken for granted),

dF(y; 0) = dF(yy; 6)).dF(yy| 1 O, 6). (4.8)

This factorization, if fully relevant§, will uniquely determine a simultaneous inferential
distribution dP(6,,, 6,,) in the factorized form

AP(614, 050) = dP(6,,).dP(0z,] 61,)- (4.9)

Sufficient conditions for full relevance are as follows:

(i) dF(y,) defines an irreducible pivotal relation between y, and ;. This determines dP(6,,)
as a function of yy,,.

(ii) dF(p,|yy) defines a complete irreducible pivotal relation between y,|y, and ;| 6;. This
determines dP(0,,| 6,,) as a function of 8,,, y,, and y,,.

t Added in proof: and modulo trivial measure-preserving transformations. (See Discussion (Pedersen)
and Reply.)

1 Inference is similarly possible from an alternative form of factorization dF(y, | ,; 6,).dF(ys; 64, 0).
(See Discussion (Sprott) and Reply.)

§ It is important that the parameters be range-independent, since otherwise the factorization cannot
represent a complete separation of information. (See Discussion (Dawid) and Reply.)
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(iii) The distribution function P(,,] 6,,), considered as a function of 6, ,, y,,, must be pivotally
related to 6,,, that is,

P(8,| 6% 6,. 4.10)

The first two conditions are interlocking, each ensuring that the pivotal relation of the
other is fully relevant for inference about the corresponding parameter (6; or 6,|6,). In
particular, marginal inference about 6, from y, alone is justified only if the information about
6, in dF(ys|yy) is completely aliased with that about 6, and thus unusable unless 6, is known.
Condition (ii) ensures this is so. See Sprott (1975) for somewhat similar conditions.

The additional requirement of completeness in (ii) may not always be necessary, but there
are cases where an incomplete distribution of belief in dP(6,|6;) does indicate recoverable
information about ¢, which would invalidate inference about 8, from y, alone. With con-
ditions (i) and (ii) as above, y, is termed marginally sufficient for 6, and y,|y, conditionally
sufficient for 6,]6,. Likewise y, is termed an ancillary statistic for inference about 6,, even
if dF(y,|y,) depends only on 6, and not on y,, since it supplies the necessary information
about 0.

Condition (iii), which may be termed the cross-coherence condition, is extremely important
since it eliminates, in conjunction with other coherence considerations, all of the alleged
paradoxes in fiducial theory (Creasy (1954), Mauldon (1955), Tukey (1957), Brillinger (1962),
Bennett and Cornish (1963), Dempster (1963a, b), Geisser and Cornfield (1963)). For the
simultaneous distribution (4.9) can be considered logically as specifying a 8,-distribution of
distributions for 6,|6; from which an expected fiducial distribution function for 6, may be
derived as

P6) = Ey{P(Gy 6} = [P(Cu| 6 dP(B). @.11)

Thus (4.10) is a logical requirement flowing from inferential expectation theory (Section 4.3).

Note that the pivotal equivalence of P(6,] 6;) to 6, does not imply pivotal equivalence of
P{(a< 6,<b)| 6} to 6, for all a,b. In the case of dP(i|o) derived from a Normal sample (see
below), P{(a<p<b)|o} is pivotally equivalent to o only if the interval (a,b) includes the
central point ¢ = X,, at which P{(u<c)|o} is independent of o. This is the point where the
relation of P(u]o) to o changes from monotone increasing to monotone decreasing.

The coherence properties and confidence interpretations of (4.9) and (4.11) are discussed
in Section 4.7. Extension to 3 or more parameters is straightforward.

4.6. Examples

(i) Location and scale. Given a set of n independent and identically distributed (i.i.d.) observa-
tions x;,, i = 1,2, ...,n with sampling density function o~ f{(x—u)/s}, f known, the simul-
taneous fiducial distribution for p and o is, with a constant of integration c,

dP(,0) = ¢ [T [ fl(xia= )/}l dudofo. (4.12)

See Fisher (1948, 1956a) for derivation.

(ii) Normal sample. A special case of the above, in which the sample mean % and variance 52
are jointly sufficient for u and o2 If z denotes a standard normal variate the relevant pivotal
relations are

(1—1)s*=0?y2 5, %=p+(o/\n)z, 4.13)

fiducial inversion of which gives the inferential relations

o2=(n—-1)s2y 2, pg==%Xs— (aa/\/n) z. 4.14)
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These specify dP(u,, o,) in the factorized form dP(c,).dP(u,|0,). Note that P(u|c) is mono-

tone in ¢ and independent of s, so that P(p]cr)£ o, as required. Substituting for o, in the
expression for u, in (4.14) determines the expected fiducial distribution dP(u,), for p,, specified

by the relation
Ha = ia_(sa/\/n) ty1- (415)

This derivation was given by Fisher (1939) and Yates (1939). Fisher’s first derivation (1935)
of (4.15) was directly from the pivotal variate #,_, = (¥—pu)4/n/s which defines, in the present
context, a marginal pivotal relation independent of o between %/s and the function u/s. An
alternative factorization of dF(X, s) determines a marginal pivotal relation between the variables
r = x/s and p = p/o, specified by a noncentral z-distribution,

r=tn-1,p). (4.16)

Inversion of this determines a distribution for p, dP(p), which can also be derived from, and
is thus coherent with, dP(u, o). See Section 4.7.

(iii) Behrens—Fisher problem. Two independent samples (n,,n,) from two normal populations
with distinct unknown variances. It is notationally convenient to let 6%, o} denote the sampling
variances of %,, X, respectively, and s2, s2 the usual y? sample estimates of them. Clearly there
is a simultaneous distribution dP(,, us, 01, 05), represented by two pairs of inferential relations
of the form (4.14), which may be used to derive inferential distributions for pivotally equivalent
functions on the parameter space (see Section 4.7). Fisher (1935) derived a fiducial distribution
for u,—p, directly from two relations of the form (4.15), obtaining the inferential relation
(reversing one sign since ¢ has a symmetric distribution)

(M1a— B2g) = (F1q— Xo0) + 51411+ Saa la. 4.17)
This specifies an expected distribution for p, — p, with distribution function
P = [ [Pl v, 0 dP(@r) (. @“.18)
Dividing (4.17) by s, = J(s§a+s§a), one obtains the Behrens—Fisher statistic (Behrens, 1929;
Fisher, 1935),
{(F’la - l"2a) - (xla - fza)}/sa = (sla/Sa) t1 + (s2a/sa) tza (4 19)

from which it is clear that s, ,/s,, is an important ancillary statistic. The confidence property of
dP(u,— 1) is discussed in Section 4.7.

Added in proof: As mentioned at the meeting, I have subsequently discovered that the
Behrens-Fisher distribution does not satisfy the cross-coherence requirement. In the factorized
distribution dP(u; — uy| 0).dP(a| n).dP(n), where o = o3+ o3 and 9 = (04/05)?, dP(0?|7) is not
cross-coherent with dP(n), depending on 7 only through the function | p|, where p = In(cy/0y),
when n; = n,. Clearly in this case only the component |r| of s/s,, where r = In(s,/sy), is
relevant to inference about ¢ and u;—p,, the sign of r being irrelevant. In a forthcoming
paper Professor A. T. James and I will describe a modified Behrens-Fisher distribution derived
from a simultaneous distribution for p; — u,, o and | p|, for the case n, = n,, and will consider
also the case n; # n,. The behaviour of the modified solution is similar to that described at
the end of Section 4.7.

(iv) Ratio of means (the Creasy—Fieller paradox). Given x;~N(u; 1), i =1,2, let ¢, w denote
the angular and radial coordinates of the point (u,, i), With ¢ measured relative to the radial
line through (xy, x,), and let $2 = x2+x3. James ez al. (1974), see also Sprott (1963), give the
simultaneous fiducial distribution dP(}, w) in the factorized form dP(w; S,).dP(|w; wS,),
where dP(| w) has density function (Fisher, 1956a, Ch. V)

wS
Pl w) = 9‘3—7(710(—223—‘/’—), —m<psm, (4.20)
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and dP(w) is determined by fiducial inversion of the noncentral 2 relation S? = x*(2, w?),
giving the distribution function

P(w?) = F{x*(2, w?) > S} 4.21)

(Added in proof: This replaces an incorrect equation in the read version.)

Note that the dispersion of dP(ys| w) on the circle is monotone in wS,. Hence it can be shown
that dP({s| w) is pivotally equivalent to w, as required.

Averaging dP(if| w) with respect to dP(w) gives an expected distribution dP() for ¢, and
hence, by transformation, for the ratio u,/p,. This is the correct distribution according to the
present theory, and gives more conservative fiducial limits than obtained by either Fieller
(1954) or Creasy (1954). Creasy’s derivation is invalid because dP(w) (and hence dP(u,/us))
is not coherent with dP(u,, 1,); Fieller’s, through failing to condition on the relevant ancillary
statistic S. Also, the Fieller “pivotal” statistic is not pivotal in the sense defined in the present
theory. Sprott (1963) gives another distribution for p,/u, which is also invalid from coherence
considerations.

(v) Combining information on means and variances. A.T. James and I, in a forthcoming paper
which extends results of Fisher (1961a, b), give exact fiducial theory for combining information
arising from experiments of the incomplete-block type. See also Section 4.8.

(vi) Multivariate Normal. This will be considered in Section 5.

4.7. Confidence and Coherence Properties

Returning to the context of Section 4.5 it is clear that dP(6,, 0,) has a piece-wise confidence
interpretation, associated with its component factors dP(6,), dP(6,|6,). The marginal dis-
tribution dP(6,) has the direct confidence interpretation of (3.2), and so has dP(6,| 6,), except
that now the confidence frequencies are functions, p(6,), of 0,.

The expected distribution dP(8,) has the expected confidence interpretation associated with
its definition, the expected confidence frequencies § being defined by

5= f 2(6,)dP(8,). (4.22)

Thus in the case of the Normal sample, Section 4.6(ii), the conditional confidence frequencies
p(o) for dP(u|o) are determined from the Standard Normal distribution in (4.14), and the
expected confidence frequencies j for dP(u) derive from the ¢ distribution in (4.15).

The inferentially essential preservation of these confidence properties under transformation,
and of cross-coherence also, defines in general the class of distributions dP(¢,, ) coherent
with dP(0,, 6,) to be those where

)] ¢ =01 01)'2' 6y,
(i) b2 = Po(ya, 03, 31, 01)2" 02] 63, (4.23)
(iii) P(bs| )% ¢y

However, the class of coherent distributions can be larger in special cases, which we now
consider.

In general, a fully relevant factorization (4.8), if it exists, will be unique in the sense that
the only functions on the sample space {(y;,¥,)} with distribution depending on only one
parameter are of the form g(x;)<=2x,. Thus only ; and functions pivotally equivalent to it
have a distribution with direct confidence interpretation. In special cases, however, a multi-
plicity of such factorizations may exist, and the class of coherent distributions is then corre-
spondingly enlarged. These special cases are characterized by the existence of a transformation

(04, 65) > (¢4, ¢2) such that
dP(¢y, $o) = dP($y).dP(¢), (4.24)
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that is, such that ¢, and ¢, are statistically independent fiducially. An equivalent, dual condi-
tion is the existence of statistically independent statistics y;, y,, that is, such that (conditioning
on relevant ancillaries as before)

dF(yy, ys; 0y, 0)) = dF(yy; 0)).dF(yy; 6y, 6,). 4.25)

In the case of the Normal sample the statistics % and s are statistically independent, and by
transformation of % to r = %/s, i to p = p/o (see Section 4.6(ii)), it can also be seen that p
and ¢ are fiducially independent.

In the special case where 6, and 0, are fiducially independent, which corresponds to the
special form of factorization

dF(yy,ya; 01, 8) = dF(yy; 0)).dF(ys)yy; 6y), (4.26)

it is immediately evident that dP(6,, 0,) has a direct, simultaneous confidence interpretation, in
that the conceptual class of simultaneous propositions

{6,< 01p,()’1) and 0,< sz,()’zlh)} (4.27)

contains a known fraction p = p, p, of true propositions with p derivable directly from
dF(y1,y,). In the general case, however, 6,, will also be a function of 6, which precludes p
from being expressible as a simultaneous repeated-sampling frequency.

Likewise the expected fiducial distribution dP(6,) will not have a direct confidence inter-
pretation unless 0, is statistically independent of 8, fiducially. The Behrens-Fisher distribu-
tion dP(u,— pq) in Section 4.6(iii) is an example.

Let us invoke now Fisher’s (1956a) concept of a relevant reference set in which inferential
probabilities are verifiable as freqencies. The relevant set will be some subspace of the sample-
parameter product space and is represented here by a condensed notation indicating both the
component variables and their assigned frequency distribution, if any. Summarizing the
theory so far we have, assuming all specified factorizations are fully relevant,

Reference Sets
(i) Objective Bayesian inference for one parameter:
{dF(0]| xp)} = dP(8,; x,).
(ii) Fiducial inference for one parameter:
{6,dF(y|24; O)} => dP(0,; Yar 20)-
(iii) Simultaneous fiducial inference for two parameters:
{01, dF(yy; 0} = dP(6,,),
{dP(01; Y10)} ® {0, dF (3| ¥145 01, 02)} = dP(0y4, b5,)-
(iv) Special case when dF(y,|y,) is independent of 6;:
{01, dF(yy; 01} = dP(6,,),
{05, dF(y3] 1105 0} = dP(65,). J

We are now at the crucial point of divergence between the Confidence and Fiducial theories.
In generalizing to two or more parameters, Confidence theory formally assumes that the
simultaneous confidence property is a necessary perquisite of a confidence region (and of
course this might very well be so in decision-theoretic applications such as quality control).
However, it is not a logical requirement in the theory of inferential probability presented here.
The only logically necessary requirement for forming a simultaneous inferential distribution
from confidence-based component distributions dP(6;), dP(,|6;) is the cross-coherence

condition P(,|6,)% 6,, which implies in general no more than the piece-wise confidence

(4.28)
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property. Furthermore, this leads to an expected confidence interpretation for dP(8,), see
(4.22), which is easily understood, given that the direct confidence frequencies associated with
dP(8,| 6,) depend on the unknown 6, so that some averaging of them with respect to possible
values of @, is intuitively appropriate.

A second logical point. Under the present theory no simultaneous fiducial distribution
exists with a simultaneous confidence interpretation numerically different from its piece-wise
confidence interpretation. Indeed, if a simultaneous distribution with conflicting confidence
properties did exist, it would be in logical conflict not only with Fisher’s Conditioning principle
and with the fundamental Relevance principle, but with a third, Diffusion principle which I
shall describe shortly.

Consider the implications of the Conditioning and Relevance principles first. Except in
the special case where dP(6,] 6,) is independent of both y, and 6, y,, is a relevant ancillary
statistic, on which dP(6,), or dP(8,) if 8, is fiducially independent of 6,, functionally depends.
Fixing y,, in defining the relevant conceptual reference set then logically dictates that the
sampling variation of y, be transferred fiducially to the unknown parameter 8,, as in (4.28) (iii),
since this is the only way of preserving, in the reference set, the known datum that y, and 6,
have a random, pivotal relation. A reference set in which both y, and 8, were fixed would
violate the Relevance principle. Indeed, the conditional distribution dP(6,] 6,), if considered
in isolation, does violate the Relevance principle in this way (if dependent on both 6, and y,),
and is inferentially relevant only as a component of the simultaneous distribution dP(0;, 6,),
and hence for determining dP(6,).

Thus it is clear that the simultaneous confidence interpretation, even when it exists, is not
inferentially relevant, since simultaneous repeated-sampling frequencies derive from a reference
set in which y; is not fixed. The logical difficulty is apparent in (4.28) (iv), since the two
2-dimensional reference sets there cannot be symbolically combined into a 4-dimensional
product space unless the subscript a is removed from the term p,|y;,. To illustrate with the
case of the Normal sample, it is the expected confidence property of dP(u,; %,,s,) in a reference
set with s, fixed and o varying fiducially that is inferentially relevant. The numerically equiva-
lent, direct confidence property of dP(u,/s,) derived from the pivotal relation between X/s
and p/s is not relevant in interpreting dP(u,), since s is not fixed in the related reference set.

Finally, not only is dP(6,) the only inferential distribution for 8, logically consistent with
the component distributions dP(6,) and dP(8,| 6,) and utilizing fully all the relevant informa-
tion; it also exhibits a property which in my view is empirically essential. If 8, were known,
then dP(6,| 6,) would be the correct inferential distribution. If we now eliminate *“6; known”
as a datum, the theory dictates that the dependence of dP(6,| 6,) on this false datum be elimin-
ated by averaging with respect to the distribution dP(6,), thus forming dP(f,). Now, in the
precise mathematical sense of diffusion theory, dP(f,) is a diffused form of the unknown
dP(8,| 8,,), the diffusion representing an increase in uncertainty about 8, (just like the increase
in entropy that physical diffusion causes). It is this property that I regard as empirically
essential, and formulate therefore as a principle of inference:

Diffusion Principle
Lack of relevant ancillary information increases uncertainty, by diffusing the
distribution of belief.

We now need just one convincing example to show that insistence on a repeated-sampling
property for inferential distributions would be in logical conflict with the Diffusion principle.
This is provided by the Behrens-Fisher problem, particularly in the case of equal sample
sizes n, which we now assume. If it were known that o, = g,, in the notation of Section
4.6(iii), then the Behrens-Fisher statistic would have inferentially a ¢-distribution,

d,= Gy _5(2-3%::'?%‘;; = o Ton—g: (4.29)

920z A1eniged z| uo Jasn NOWINOO LSIM HOYVYISIY AVALSINVYHLOY Ad 21G220./61 L/2/6€/0101LE/gsssIl/wod dno-olwapede//:sdiy Wwoij papeojumo(



136 WILKINSON — Resolving the Controversy in Statistical Inference [No. 2,

This also has a direct repeated-sampling interpretation, corresponding to removing the sub-
scripts a in (4.29). If, however, nothing is known about o, and o,, the Diffusion principle
dictates that d, be assigned an inferential distribution more diffuse than that of t,,_,, which
implies that the positive tabular value of d for any central p per cent fiducial interval should be
greater than that of ¢,,_,. In fact, unless » is very small, the tabular values of the Behrens—
Fisher distribution for d,, depend only slightly on the ancillary statistic s,,/s,, and are approxi-
mately equal to those of ¢,_,, rather than #,,_,. This loss of n—1 degrees of freedom is highly
plausible as a measure of the increase in uncertainty when o/, is unknown. At the same time
it is clear that since fiducial intervals based on t,,_, have a direct repeated-sampling inter-
pretation when o, = o,, the wider intervals dictated by the Diffusion principle cannot possibly
have such an interpretation.

Much of the foregoing reasoning is of course inherent in Fisher’s discussion of the Behrens—
Fisher solution (1937, 1939), following criticisms of it by Bartlett (1936) and Welch (1937),
and in Yates (1939). Further arguments by Fisher (1941, 1945, 1955, 1956a, b) against equating
“strength of evidence” with repeated-sampling frequencies were not widely accepted. See
comments by Neyman (1956), Bartlett (1956), Welch (1956) and Yates (1964).

It is perhaps of interest to note that if a priori knowledge indicated a finite (but unknown)
chance that o;/0, = 1 the fiducial distribution for oy/g, derived from the pivotal relation with
51/s5 would no longer be inferentially relevant, but rather a modified distribution for o)/o,
expressed as exp(|p|.sign(p)), where p =In(oy/oy), and derived from the simultaneous
distribution dP(|p|,sign(p)) (¢f. Section 3.6). As the observed ratio s,,/s,, mathematically
approaches unity the modified distribution for o/o, will exhibit an increasing degree of
shrinkage towards o,/0, = 1, with an increasing condensation there of inferential probability
providing an a posteriori upper-bound measure of belief in o;/0, = 1. Although I have not
worked out the details, it is clear that for the correspondingly modified dP(u,—p,), the
appropriate tabular values of the d-statistic would decrease towards those of £,,,_, as §;,/53,—> 1,
somewhat like the tabular values of the Welch test (Welch, 1947; Aspin, 1949), though the
latter have the defect of being less than those of ¢,,_, over a central range of s,,/5,,. (Added
in proof: See also comments on a modified solution in Section 4.6(jii).)

4.8. Derived Conditional Distributions

The distribution dP(6,, 0,) = dP(6,)dP(6,|6,) also implies a family of conditional dis-
tributions, when 6, and 6, are not independent,

_ P(ozl 6,)
dpP(6,|6,) 50 dp(9,), 4.30)
where p(8,|6,), 5(8,) are the density functions of dP(,|6,), dP(6,) respectively. These dis-
tributions do not have the direct confidence property of the distributions dP(8| 6,), hence the
term derived. Thus the order of the arguments 6,, 8, in dP(8,, 8,) is inferentially significant.

The conditional distribution (4.30) is formally a Bayesian posterior distribution for &,
with prior dP(6,) and fiducial likelihood p(,|6,) for 6,, though the latter is not generally
proportional to the sample likelihood f(yas| 145 0y, 65)-

Derived conditional distributions are inferentially inapplicable unless the value of the
conditioning parameter is known. However, they have an important application in extending
the theory to cases where no fully relevant factorization exists (Fisher, 1961a; Fraser, 1961).
Consider the simplest case of two independent observations x;, x, which each have a pivotal
relation to a single unknown parameter 4. If no conditionally sufficient statistic can be derived
from the combined observations, one could provisionally suppose that the observations
related to different parameters ¢; and 0, and hence obtain the simultaneous distribution
dP(8,, 6,). Imposing the constraint 6; = 8, would then identify a derived conditional dis-
tribution for #. There is an apparent element of indeterminacy here in the choice of condition-
ing variable, 8, — 6, or 6,/0,, etc., and the question of uniqueness needs further study. The
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main fiducial requirement, clearly, is that there exist a transformation to new variables
(8, 82)— (0, ¢), such that (8y, 6,) = 0 is equivalent to the constraint ¢, = 6,, and for which a
valid simultaneous distribution dP(6)dP(¢|8) exists, corresponding to an alternative, fully
relevant factorization of dF(x,, x,). In some cases a requirement of this kind leads to a unique
solution, and I conjecture this is true in general.

Consider, for example, inference about the ratio % = (0y/03)* from three independent x?
statistics S; = n;s? = o2x2, i = 1,2, 3, with the constraint o = o2+ 0%. Let & = o/(0}+03),
y = s3/s2 and z(n) = s§/s¥(n), where (n,+ny)s%(n) = (Sy/n+S,)(1+7). The following statistic-
ally independent relations involving F-variables,

y= 'ran,,n,’ z(n) = an.,n1+n,’ (4.31)

determine a simultaneous distribution dP(y, £) and hence a derived conditional distribution
dP(n| ¢ = 1) for . (Added in proof: This solution needs modifying in the way described for the
Behrens—Fisher problem, Section 4.6(iii).)

4.9. Miscellaneous Topics

Lack of space prohibits any but a brief mention of the following topics, some of which will
be developed elsewhere.

Discrete observations

The extension of the theory to discrete sample spaces is relatively straightforward, but the
resulting inferential distributions are partly indeterminate. Percentile relations become step-
functions which define, in the frequency projection process, only upper and lower bounds for
each inferential percentile point. In special cases when the parameter space is also discrete,
a discrete pivotal variate may exist, e.g. with x~ N(0,1) sign(8)/sign(x), with distribution
dependent on |x| and | 8].

Uniqueness

There appear to be no nonuniqueness problems in the theory described here, except
possibly in the application of derived conditional distributions (Section 4.8). Nonunique
ancillary statistics, discussed by Basu (1964), Barnard and Sprott (1971) and Cox (1971),
appear to arise only when a fully relevant factorization does not exist.

Structural distributions

Fraser’s (1968) theory of structural distributions is an important sub-theory of the theory
described here. Structural distributions are a special form of fiducial distribution which
pertains when the relevant pivotal relations are not merely monotone but have a group
invariant structure. Structural distributions formally resemble Bayesian posterior distributions,
but the theory makes it clear that the invariant differential measure which multiplies a likeli-
hood does not represent prior knowledge but characterizes the sampling variation of the
likelihood. (Fraser disagrees with the above description of structural theory, see Discussion
and Reply.)

Approximate theory

The nonexistence of a fully relevant factorization implies that the empirical information
about the parameter of interest cannot be completely untangled, there being some partial
confounding of relevant with irrelevant information, or between the relevant information for
two or more parameters. An approximate fiducial theory is then required to optimize as far as
possible the extraction of information relevant to each kind of inference. Fraser’s Local
Analysis (1968) produces approximate fiducial distributions with excellent asymptotic pro-
perties. See also Fraser (1964a,b, ¢) and Sprott (1973).
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5. MULTIVARIATE NORMAL INFERENCE

Many of the difficulties and apparent paradoxes encountered in inference about the
parameters of a multivariate normal population are explainable in terms of the noncoherence
of the relevant inferential probability distributions, and provide further empirical evidence for
noncoherence as an intrinsic property of inference. However, I emphasize that only a glimpse
of the full story is provided below.

Consider the following, statistically independent random variables relating to a sample
from an m-dimensional multivariate normal distribution,

x=N,@E), S=W,En), .1)

where S is a Wishart estimator of X with » degrees of freedom. We suppose that Z is non-
singular; that n2>m, so that S is non singular with probability 1; and that x, and S, (S, non-
singular) are the jointly sufficient statistics for g and X derived from the sample.

5.1. Inference about the Mean

Two mathematically noncoherent distributions for g may be derived, one of which may
be characterized as relevant for coordinate-dependent inference about ., the second for a
coordinate-free form of inference, in a way to be explained. The first was derived by Cornish
(1961), generalizing a special case of Fisher (1954); the second is a marginal distribution
(Bennett and Cornish, 1963) of the simultaneous fiducial distribution for g and Z derived by
Segal (1938). I shall refer to them respectively as the Cornish-Fisher and Segal distributions.
(Composite forms of these distributions are also possible.)

Both distributions have a similar form involving the empirical distance metric

83 = (p'_xa)T SZI(P‘—xa)’ (52)
dP(p) = cy(1+ 8 m)ntm=aidy, (5.3)

with g = 0 (Cornish—Fisher) or ¢ = m—1 (Segal) and ¢, the appropriate constant of integration.
For any linear function p = AT p, and with x = l’lgx, 52 = AT SA, the marginal distribution
dP(p.) derived from (5.3) is specified by the inferential relation

po=Xg+ Sty o (549

and this has two mutually noncoherent forms, with ¢ = 0 or m—1 as above. Direct fiducial
derivation shows that (5.4) with ¢ = 0 is applicable when A comprises the direction-cosines of
an a priori specified direction, whereas (5.4) with ¢ = m—1 is applicable when A specifies the
estimated direction of maximum linear discrimination of x relative to a specified point ., that
is, A is such that (ATx,—AT u)>/ATS, A is maximized and is therefore A = S7(x,— ).
Each p, uniquely determines a A and vice versa. The relevant distribution theory (Kshirsagar,
1972) shows that the normalized sample discriminant function (x— p)/s, where x = ATx and
5% = ATSA, is distributed as ¢, _,,,,, whence (5.4) with g = m—1.

The reason for the noncoherence is now intuitively clear. Noncoherent inferential proba-
bility theory is making a proper distinction between the direction A being specified a priori
or being selected for an optimal property on the basis of the observed data; and makes due
allowance for the selection effect by decreasing the relevant degrees of freedom by m— 1.

The reason for describing the inferences as coordinate-dependent or coordinate-free is
also clear. The discriminant function x—p is invariant under affine transformation of the
coordinate system.

The empirical distance metric 62 in (5.2) is similarly invariant, and has an inferential dis-
tribution dP(62%), specified by the relation

namely

mn

-
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This distribution may be derived directly from Hotelling’s frequency distribution for &% and
is coherent only with the Segal distribution for p, as one would expect.

5.2. Inference about the Dispersion Matrix

Both the noncoherent forms (5.3) of dP(w) are expected fiducial distributions, averaged
with respect to corresponding, noncoherent fiducial distributions for Z which may be formally
expressed by the relation

E-1= W, {S;Ln+(m—1)—q} (5.6)

with ¢ = 0 (Cornish-Fisher) or ¢ = m—1 (Segal). Segal used a simultaneous pivotal variate
=-1SZ—* in his derivation. The Cornish-Fisher form follows from the mathematical sym-
metry of the two cases, both leading to the similar forms (5.3) for dP(w).

Clearly the noncoherent forms of (5.6) must be applicable respectively to coordinate-
dependent and coordinate-free forms of inference, as before. With respect to any a priori
specified linear coordinate system, it can be shown that the Cornish-Fisher form correctly
specifies the fiducial distributions for all marginal variances, with relations of the form

o? = s2y=2, 5.7

which are otherwise directly deducible; and likewise for all conditional variances, the x?
degrees of freedom on (5.7) being then reduced by the number of conditioning variables.
The Segal form, however, is invalid for this purpose, producing a loss of (m—1) degrees of
freedom throughout, but I conjecture that it is applicable for coordinate-free inference relating
to the parameters of size, shape and orientation of the dispersion ellipsoid.

The Cornish-Fisher form of (5.6) does not give correct fiducial distributions for simple
correlations p (Geisser and Cornfield, 1963), even though it leads to a correct averaged dis-
tribution dP(i) for coordinate-dependent inferences. I hope to give a further explanation of
this elsewhere, but consideration of the bivariate case suggests that the averaging process
depends essentially only on p? rather than p. It appears in fact that no valid simultaneous
distribution dP(p, g, 0,) exists for these particular parameters. Fisher’s (1956a) distribution
for them does not satisfy the cross-coherence requirement, and gives incorrect marginal
distributions for oy and o, (Bennett and Cornish, 1963; Dempster, 1963a, b; Geisser and
Cornfield, 1963).

6. CoNFLICT WITH BAYESIAN THEORY

A logically consistent theory of inferential probability has been outlined. It includes
Objective Bayesian inference and classical probability (in the inferential sense) as special cases,
but is more generally a theory of confidence-based fiducial probability. It is free from the
earlier difficulties and paradoxes encountered in the development of fiducial theory, and
provides, I believe, a mathematical reconciliation of confidence and fiducial viewpoints. The
radical noncoherence property of confidence-based probability leads to highly plausible
expressions of inference in my view, that could not be derived without it.

Subjective Bayesian theory also appears to be a logically consistent theory of inference, if
improper priors are excluded (see Dawid ef al., 1973), but clearly it is fundamentally incom-
patible with the inferential theory in this paper. If one theory is right the other must be
wrong, and this is ultimately a matter of empirical resolution, perhaps requiring many more
convincing examples than presently available. I personally think that Bayesian theories of
inference are wrong (except in the asymptotic sense for large samples), since they fail to give
expression to the intrinsic, noncoherent implications of finite data, and some further argu-
ments are given below to support this view. However, I shall also make some more constructive
remarks concerning Bayesian methods.
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6.1. The Likelihood Principle

Which of the competing theories is right or wrong depends crucially on whether the
Likelihood principle is empirically valid in general and likewise for non-Bayesian Likelihood
inference. Returning to the simple context of Section 3.1, the objective information for
inference about 6 comprises two components, {x,,dF(x; 6)}. In (6.1) this information is
expressed in a logically equivalent form in terms of the realized likelihood function L, (f) and
its sampling distribution,

{xq, dF(x; O)}<>{L(6), dF(L(¢', x); O)}. 6.1

(The second symbol € is needed so that the functional dependence on 6 can be indicated.)
Then the Likelihood principle states that only the actual likelihood L, (0) is relevant for
inference about 6,,.

Now this is unequivocally true only in the Objective Bayesian case where 8, is known to be
the outcome of a physical random process, with frequency distribution dF(8), for then it is a
fact of frequency theory that dF(|x,) cc dF(6).L,(0), i.e. Bayes’ theorem. Except for this
case, why is the second, logically distinct component of information dF{L(f’,x); 8} to be
always judged irrelevant? In general it does depend on 8 and in the equivalent form dF(x; 6)
determines the pivotal relation between x and 6 shown in Fig. 1, in which the clustering of the
percentile relations gives information on how close any observed value will be to the corre-
sponding parameter value. Only in the special case where the specified family of sampling
distributions is invariant under a group of transformations is dF{L(8’, x); 6} logically equiva-
lent, in conjunction with the invariance information, to L(6). For instance, if we know that
6 is a pure location parameter, so that L,(6)=L(x,— ), then given only L,(6) we can infer
also the pivotal relation between x and 6 and hence that the fiducial distribution dP(6) is
proportional to L,(68)df. The additional invariance information is represented, in dP(6), by
the multiplying element df, which is the invariant differential measure with respect to transla-
tions. We may also infer other distributions noncoherent with dP(6) given L,(6), such as
dP(6%), but their density functions will not be proportional to a sample likelihood as in dP(6).

In general it can be argued, therefore, that the additional sampling information is relevant
and necessary for a proper interpretation of a sample likelihood, and that any theory which
always suppresses this information violates the fundamental principle of uncertain inference.
A Bayesian counter-argument to this would be that there is a sound axiomatic basis for
Subjective Bayesian theory. I return to this in Section 6.3.

Birnbaum (1962) gave a purported proof that the Conditioning and Sufficiency principles
jointly imply the Likelihood principle. The present theory of inferential probability contra-
dicts this, since sufficiency and conditioning are fully utilized to give inferential distributions
that do not satisfy the Likelihood principle, except in the special case described above. The
notion of irreducibility (Section 4.1) is important here. Durbin (1970) showed that Birn-
baum’s proof fails if the Sufficiency principle is first applied to eliminate irrelevant informa-
tion, so that conditioning is restricted to relevant variables only. G. A. Barnard (personal
communication) has also indicated that Birnbaum’s crucial Lemma 1 of the Sufficiency
principle in invalid—(added in proof) whenever there is relevant ordering information in the
sample and parameter spaces. (See Discussion (Barnard) and Reply.)

6.2. Inferential Completeness
An inferential statement (or set of statements) about a parameter § could be termed
complete if it suffices as a representation of the currently available information for all future
applications. Here we shall consider a more restricted notion of completeness, namely that
the inferential statement, if complete, should suffice for combining with further observational
information about @ that may come to hand, to form an appropriately modified statement of
inference.
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A self-evident corollary of this is that a complete statement of inference will be sym-
metrically (invertibly) related to the relevant empirical information for it, since otherwise it
could be argued that relevant information has been lost in the mathematical transformation to
inferential form.

A remarkable difference can now be seen between an Objective Bayesian posterior and a
fiducial distribution. Given that 8 itself is a random variable with known frequency dis-
tribution dF(0), Bayes’ theorem is applicable for combining further observational information
about the unknown realized value 8, and requires only the actual likelihood function L, (8,)
determined by the observations. The sampling variation of L(8) is irrelevant. The posterior
distribution dP,(8,) is thus complete in the above sense, and can be described as the known
distribution of belief regarding 6,, given the observations. A fiducial distribution dP(8,),
however, is inferentially incomplete. To preserve a symmetrical relation with the relevant data
for it, {x,, dF(x: 6)}, it needs to be specified additionally as a function dP(f,; x,) of x,. In
equivalent terms not only dP,(6,) but also its sampling variation is relevant. In a statistical
sense therefore, a fiducial distribution is more logically described as an estimated distribution
of belief.

In general, Bayes’ theorem cannot be applied to combine additional observational informa-
tion with a prior fiducial distribution. This was proved by Lindley (1958). The basic reason
is that the additional information invalidates the fiducial prior and a new fiducial posterior
distribution must be deduced afresh from a fully relevant pivotal relation derived from the
combined observations. The additional sampling information about a fiducial distribution is
needed for this combination of information.

6.3. Subjective Priors

Savage (1954) proposed a set of axioms on the basis of which it is possible to deduce a
personal, prior distribution of belief in any circumstances. However, Savage’s formulation
involves the use of an auxiliary random mechanism in determining a prior. This, in my view,
violates the fundamental Relevance principle; outcomes of such a random guessing process
are of questionable relevance in inference. Quite apart from this point it is clear that such a
prior is itself a random variable, with random variation determined partly and often mostly
by the guessing mechanism; and thus has a logical status similar to that of a fiducial distribu-
tion, as a (subjectively) estimated distribution of belief. Since Bayes’ theorem is not applicable
in general to fiducial priors, I see no reason for believing it to be applicable to personal priors
either.

6.4. Noncoherence

A Bayesian counter-argument to the above is the view advocated by Lindley that one must
behave coherently (in a decision-theoretic sense), and that coherent behaviour dictates the use
of Bayes’ theorem (Ramsey, 1931). However, in view of the other recognizable conflicts
between statistical inference and decision theory, the validity of this argument is questionable.
Furthermore, since there are empirically recognizable noncoherent implications in observa-
tional data, I suspect that decision-theoretic coherence as a necessity may be an artifact of the
decision-theoretic formulation. Consider, for instance, the noncoherent implications of
Stein’s (1959) example in a quality control context, with two classes of customers specifying
conflicting quality criteria. Where is the necessity for coherence here?

I also find it difficult to see why a prior distribution, formulated on the vaguest of prior
information, should be considered capable of obliterating the empirical noncoherence of
observational data, especially when the noncoherence is as extreme as that in the Stein
example. Indeed, a symmetry argument may be invoked here: If reasoning from observational
data alone leads only to noncoherent probability, what additional property does prior informa-
tion possess that would lead instead to coherent prior probability ?
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A fundamental property of ‘“‘ignorance” is its preservation under transformation—
ignorance about # implies ignorance about any function of 8, and one would expect the same
to hold approximately for “near-ignorance”. Such a property is compatible with the view that
belief is intrinsically noncoherent, but not with the Bayesian view that belief is representable
by a single probability distribution. I believe, indeed, that the Noncoherence Principle is as
fundamental in Statistical Inference as the Heisenberg Uncertainty Principle is in Quantum
theory—the parallel is unusually apt.

6.5. The Principle of Precise Measurement

I do not think this principle is valid as usually stated, for justifying the use of otherwise
dubious diffuse priors; for any prior, however diffuse, has the remarkably strong effect, when
used in conjunction with Bayes’ theorem, of suppressing all information other than expressed
in the sample likelihood function, and thus, in particular, the noncoherent implications of the
observational data. The main justification for Bayesian methods is in terms of their large-
sample asymptotic properties.

6.6. A Modified Bayesian Theory

In spite of the fundamental objections voiced above, Bayesian methods clearly have an
important practical role, and I think that a noncoherent form of Bayesian theory could be
developed as a logically consistent adjunct to the confidence-based inferential theory described
here. Some common ground already exists with respect to the subtheory of structural dis-
tributions and of derived conditional distributions (Section 4.8). The latter suggest that
fiducial likelihood functions may have an important role in a modified Bayesian calculus.
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DIscUSSION OF MR WILKINSON’S PAPER

Dr A. W. F. EbDwaARDs (Cambridge University): My pleasure at being asked to propose the vote
of thanks to Mr Wilkinson is exceeded only by my disappointment at being unable to do so in
person; the administrative machinery of the University of Cambridge is relentless, and not even a
signal contribution to our understanding of fiducial probability causes it to release one of its
prisoners on parole.

I first encountered fiducial probability a few weeks before graduating from Fisher’s department
in 1957, having bought his recently published Statistical Methods and Scientific Inference. When 1
took it to him for his autograph he willingly signed it “Good luck—Ronald A. Fisher”, and never
was that phrase in greater need. Sixteen years later I had the temerity to write inside the cover the
date and “I have now reached the end of this book”.

Until today’s paper, I have found most published contributions on fiducial probability
disappointing. Notable exceptions are those of Sir Harold Jeffreys, who from an early stage was
quite clear that with respect to location and scale parameters his invariant prior distributions and
Fisher’s fiducial postulate were different ways of saying the same thing; those of D. A. S. Fraser,
whose early papers on fiducial probability were most illuminating, but who then fell into the black
hole of structural probability and was inclined to forget the route by which he had travelled; and
those of Ian Hacking, who took us back to the work of Jeffreys and Fisher at a time when it was
more fashionable to move in the opposite direction.

Barnard, Dempster, Sprott and Yates all kept worrying away at the argument, but for the most
part the published comment ranged from outright hostility, through papers in which respected
statisticians made it abundantly clear to the informed reader that they had totally failed to grasp
the essential point, to the comments of one or two courageous names who publicly admitted their
confusion.

Mr Wilkinson has put us in his debt by taking fiducial probability seriously. Anyone who does
that is forced into one of two positions. Either he limits the field of application of fiducial
probability to those models which do not generate paradoxes, which means essentially location-
and-scale parameter models, though as Fraser has shown one can eliminate paradoxes which arise
through a multiplicity of pivotal quantities by specifying the pivot as part of the model: hence
structural probability. Or he takes the bull by the horns and argues that fiducial probabilities are
not ordinary probabilities, and that some new principle has to be admitted. Hacking wheedled
the Principle of Irrelevance out of the writings of Fisher and Jeffreys, and the development of that
line led to the restricted viewpoint described in my paper “Fiducial probability”> to which
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