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SUMMARY

Maximum-likelihood estimation problems can be solved numerically using
function minimization algorithms, but the amount of computing required
and the accuracy of the results depend on the way the algorithms are used.
Attention to the analytical properties of the model, to the relationship
between the model and the data, and to descriptive properties of the data can
greatly simplify the problem, sometimes providing a method of solution
on a desk calculator. This paper describes how parameter transformation,
sequential minimization and nested minimization can be used to solve par-
ticular problems. Applications to well-known problems of distribution
fitting, quantal responses and least-squares curve fitting are described. The
implications for computer programming are discussed.

1. INTRODUCTION

1IN this paper it will be argued that while general function minimization algorithms are
extremely important for solving non-linear maximum-likelihood and least-squares
estimation problems their value can be dramatically increased if they are used in a
manner appropriate to a given problem. The context of this paper is a statistical
advisory service in which many thousands of routine data-processing jobs are handled
each year. There is no time to study each individual set of data and therefore all
initial estimates of parameters must be computed by special routines appropriate to
each model. Only when the program fails to converge is the data set referred to a
statistician for comment.

This paper aims to show the common features of the special techniques which have
been used successfully in a wide variety of models. The techniques, introduced in
Section 1.3, are not all new but their systematic use in function minimization seems to
have been neglected. Statisticians have often used ad hoc methods to obtain approxi-
mate estimates of parameters, and function minimization can be used to refine these
estimates. The appropriate techniques for a given problem are found by a combina-
tion of a priori statistical reasoning and practical experience.

The methods discussed are valuable not only for models which occur commonly in
routine work but also for “one-off”” models such as the seven-parameter model
discussed in Section 4.2 which failed to converge using standard minimization
programs. An important requirement is that minimization programs should not be
too rigid in their specification, and that the minimization sub-routines can be used with
more than one function in any one use of the program. Programming considerations
are discussed in Section 5.
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For standard problems the ideal situation can be summarized as follows:

(i) the user need only supply the data and select the model;

(ii) convergence is as rapid and as accurate as possible;

(iii) insoluble cases are detected as early as possible;

(iv) if multiple solutions exist and are sufficiently distinct the intended solution

will be found;

(v) appropriate statistical analysis is provided.

These conditions are not generally met by standard minimijzation programs and
can only be achieved by special programming for individual models in the light of
experience of a variety of data sets.

1.1. Use of Minimization Algorithms

Maximum-likelihood estimation problems may be solved formally by evaluating
the negative log likelihood (subsequently called the likelihood) for trial values of the
parameters and using efficient function minimization algorithms. This leads to the
attractive proposition that a single computer program will be able to handle problems
of great complexity with the minimum of special programming for each problem.

The most popular algorithms for unconstrained minimization of functions of
several variables are the conjugate gradient method of Powell (1964), the orthogonal
search method of Rosenbrock (1960) and the simplex method of Nelder and Mead
(1965). If function derivatives are computable the conjugate gradient method of
Fletcher and Powell (1963) may be used, and if the function is a sum of squares the
methods of Powell (1965) and Marquardt (1963) are suitable. Good surveys of these
methods are provided by Kowalik and Osborne (1968) and Box et al. (1969). These
algorithms perform well for various problems yet there are many reports of failure to
converge satisfactorily when fitting models to real data (e.g. Chapter 6 of Kowalik
and Osborne, 1968).

An alternative approach is to take more care in presenting the likelihood function
so that the minimization problem is as simple as possible. The programming problems
are not necessarily much more elaborate than the simple evaluation of the likelihood,
but there is an essential change of role. A minimization algorithm is a tool to assist in
a statistical analysis, rather than a general system operating on a particular function.
To operate on the likelihood alone is to ignore much useful information that can
greatly improve the computing efficiency.

In this paper several methods are described that have enabled various problems to
be solved rapidly and accurately using a quadratically convergent modification of
Newton’s method (Box et al., 1969). Some of these problems could not be solved at ali
by direct minimization. To understand these methods we must first study the relation-
ship between data, a statistical model and its likelihood function in parameter space.

1.2. Data, Statistical Models and Likelihood Functions

The likelihood function measures the goodness of fit of a statistical model to data
for given values of the unknown parameters. Contours in parameter space represent

members of the family of models that fit equally well. In particular a minimum (local .

or global) is surrounded by a contour that includes all members for which the likeli-
hood is less than a certain value. Now unless the parameters happen to represent well-
determined features of the data, the contours must be expected to be elongated,
oblique to the axes and curved, giving the notorious “narrow descending valleys™ that
minimization algorithms are designed to negotiate.
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As an example consider the data in Table 1.

TABLE 1

and suppose that the model
E@)=b1-r®, O<r<l, 6))
is to be fitted by least squares.

r b
D (5,70)

c (.8,7-58)

B (.65,5.35)
A (-5,452)

m

(-8,4.0}

| 2 3 4 5

Fi1G. 1. Data of Table 1 with five curves of the family y = b(1 —r®).

Specimen curves of the family are shown in Fig. 1, which show that curves A, B
and C all fit quite well whereas curves D and E do not. Hence it is not surprising that
the least-squares function, R(r, b) displayed in Fig. 2, has a low contour R = 1 which
includes the points corresponding to the parameter values of A, B and C, whereas
the points D and E lie well outside this contour. The parameter b, the asymptote,
is an extrapolated quantity that depends strongly on r, so that the rough outline of
Fig. 2 can be predicted from study of Fig. 1 without any calculation. For example,

GZ0Z J9qWaAON (O UO J8sn pajsweyioy YOV Aq 8872889/502/€/6/0101e/0sssl/woo dno-oiwapese)/:sdjy Woly papeojumod



208 APPLIED STATISTICS

we may predict that adding a further data point (10, 5) will determine b accurately at
around b = 5, which will mean a much flatter contour with very little interrelation
between b and .

o
N WA NN ® 0 O

T

] | 1 L 1 i 1 1 | §
o) | 2 3 4 5 6 7 .8 .9 -0

r
F1c. 2. Contours of the function R(r, b), the residual sum of squares after fitting
E(y) = b(1—r®) to the data of Table 1. The curve ABC gives for each r the value of b for
which R is a minimum. The broken curve represents curves in Fig. 1 which pass through
(3, 4.

This example shows that the data shouid not be ignored in specifying the likelihood.
A minimization search of the function displayed in Fig. 2 is an unnecessarily elaborate
way of detecting the existence of the long narrow valley, and an inefficient way of
solving the estimation problem.

1.3. Simplifying the Estimation Problem
Minimization algorithms converge rapidly if the following objectives are attained:
(a) initial estimates are good;
(b) the likelihood function is well approximated by a quadratic in the neighbour-
hood of the minimum, in particular if the contour including the initial estimate
is approximately an ellipsoid;
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(c) the information matrix is well conditioned, which means that the parameter
estimates are not strongly intercorrelated;
(d) the dimensions are few.

It has been customary to make the user responsible for the initial estimates, to
regard the shape of the function as an unfortunate property of non-linear models, and
hope that objectives (c) and (d) are sufficiently well met to allow the use of algorithms
employing line minimization and orthogonal or conjugate gradients. However, some
of these objectives can be better realized by re-formulating the problem.

The methods proposed here can be classified under the broad headings:

1. Transformations of parameter space.
2. Sequential minimization.
3. Nested minimization.

The main difficulties in using these methods are that they require the programmer
to understand the statistical nature of the model, that they require extra programming
for each problem, and that the minimization algorithms must be flexibly written to
allow several different minimizations in a single run. The advantages are that con-
vergence is generally rapid, sure and accurate, that initial values do not have to be
supplied by the user, that insoluble cases can be detected at an early stage and that an
appropriate statistical analysis can be provided. This means that standard library
routines can be provided for the more frequently occurring problems, demanding no
special skill from the user.

2. TRANSFORMATION OF PARAMETER SPACE

In linear estimation problems the concept of orthogonalization is familiar as a
simplifying technique that allows parameters to be estimated independently and
confidence regions and significance tests to be evaluated. Orthogonalization is a
rotation of parameter space which meets objective (c) of Section 1.3. For linear
models objective (b) is already satisfied.

In non-linear estimation it is possible to use orthogonalization with good effect,
but there is no single linear transformation which will satisfy objectives (b) and (c)
over a sufficiently large region to include all plausible initial values. These objectives
can sometimes be met by non-linear transformations.

The single-parameter case is an exception in that objective (c) is not relevant, but
non-linear transformations can be sought to make the likelihood symmetrical and
quadratic in the neighbourhood of the minimum, analogous to the transformations
used on data to convert binomial or Poisson variates to approximately normal
variates.

Computationally all that is required is that the new parameters should be com-
putable from the old ones, and vice versa. The transformation is not necessarily 1-1;
many multicomponent models are parametrized ambiguously, and some convention
is required when the old parameters are recovered. Transformations can also clarify
what happens to the model when certain parameters become infinite or complex. In
particular a parameter with an infinite range can be transformed to one with a finite
range, which simplifies the problem of searching parameter space.

2.1, Stable Parameters

The choice of transformation is eased if parameters can be found that vary little
in the whole region of best-fitting models. Such parameters will simultaneously help
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to meet objectives (a), (b) and (c) of Section 1.3. These parameters may be called
stable parameters because they are little affected by changes in the remaining para-
meters. They may be found by asking the question:

“What properties are common to all members of the family that fit the data well 7

The answer depends on the goodness of fit of the model. If the fitted values are
reasonably close to the observed data then many properties of well-fitting members of
the family will vary within a narrow range. This principle may not hold when the
model fits very badly, but it is preferable to favour sets of data which do fit the model,
and to assume that the suggested transformations will not make the estimation any
more difficult for other sets of data. This is best exemplified by returning to Fig. 1.

The three curves A, B and C all have residual sums of squares less than 1 and fit
the data well, as would a freehand curve drawn through the points. Therefore all such
curves should cut the mean ordinate x = 3 at much the same point y = h, say, and A
is likely to lie in the range (3:5, 4-5) for all such curves. Similarly the area enclosed
by the ordinates x = 1 and x = 5, the x axis and the curve is likely to vary little for
all such curves. Hence we expect the following parameters to be stable:

h=b(1-r3), )
= (o= roydx = p{a-"=" €))
a=1 rlax= ( logr
and we can present the results in Table 2.
TABLE 2
Curve r b h a R

0-50 452 396 14-28 0-67
0-65 5:35 3-88 14-77 0-27
0-80 7-58 370 15-02 063
0-50 7-00 613 22-12 21-57
0-80 4-00 195 793 16-09

moaw»

The effect on the likelihood function when # is used instead of & is illustrated in
Fig. 3. The residual sum of squares, as a function of r and 4 will be called R'(r, k).
The contour R’ =1 is now almost an ellipse with little interaction between r and h,
and because r = 0 gives 4 = 36, a data-based initial value for 4 is available, namely
the mean observed y. The transformation to (r, a) space is very similar but is not
illustrated. The limiting case when r = 1 is a straight line through the origin and the
point (3, 4). The lines of best fit are represented in Fig. 3 but not in Fig. 2 because the
parameter b becomes infinite as r tends to 1.

2.2. The choice of stable parameters

The choice of stable parameters should ideally be such that the transformation will
be appropriate whatever data are represented to be fitted to the model. Thus a pre-
liminary descriptive analysis of the supplied data must be made, and parameters

derived therefrom. This analysis conveniently forms the basis for automatic initial
value estimation.
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When fitting distributions the moments can be used in the search for stable para-
meters. If the expected moments can be expressed in terms of the original parameters
then for well-fitting models the expected moments should be close to the observed
moments. Thus whereas Pearson’s method of moments estimates the original para-
meters from the observed moments, maximum-likelihood solutions may be sought by

8
7.—.
6 D RO
5| .
h R=l
AL — —A— B
3C R'<10
2 E
I —
1 1 1 1 1 | 1 1 I |
o) Jd .2 3 4 .5 .6 7 .8 9 1-O
r

Fi1G. 3. Contours of the function R'(r, /), where h = b(1—r?), the intercept of the curve for x = 3.

treating the expected moments as parameters and calculating the original parameters
therefrom. It is not necessary to transform all the parameters to moment parameters,
as the higher moments are less stable than the lower moments. As a simple example
consider the negative binomial distribution (Anscombe, 1950), which is often de-
scribed in terms of its mean m (estimated by the sample mean) and a dispersion para-
meter k, which is independent of m. The expected variance (which should be stable)
is given by the formula

v = m+(m?/k). “

Hence, when the optimum value of v is determined, the required maximum likelihood
estimate of k can be derived from the inverse formula

k = m*(v—m). %)

This method is particularly effective when k is large, which means that the distribution
differs little from the Poisson distribution.

The stable parameters of fitted curves are less easily identified, but intercepts,
slopes and definite integrals can all be of use, as shown in the previous section. The
parameters of simpler curves fitted to the data or transforms of the data can also be
used.

2.3. Other Transformations
When stable parameters cannot be identified, or the original parameters expressed

in terms of the stable parameters, simpler empirical transformations can be used to
good eflect, although they are less likely to work well for all possible data. Such a
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transformation was found that when fitting the probit plane (Finney, 1952, chapter 7),
a relationship between a quantal response and two independent variables of the form

E(ry/ny) = O(a+ bxy;+ cxyy), )

where @ is a sigmoid function, such as the standard normal integral or the logistic
function, and r; is the number responding out of a random sample of »; when stimuli
x;; and x,; are applied; x;; and x,; in equation (6) should always be expressed as
deviations from their means. In this case it was found effective to rewrite the argument
of @ as

61(ay+ by x1;+ Co X30) + O3 3, + 03 x5, Q)

where ay, by and c, are initial estimates of a, b and ¢, and the exploration of (6,, ,, 6,,)
space could begin at (1,0, 0).

Empirical transformations can be deduced from the study of the likelihood
function of a particular problem, but unless they chance to resemble transformations
based on stable parameters they are unlikely to have general validity.

3. SEQUENTIAL MINIMIZATION

The parameters of a complicated model can often be estimated from a sequence of
simpler models. This is equivalent to invoking principles (d) and (a) of Section 1.3,
for by solving an estimation problem in parameter space of few dimensions we are led
to good initial estimates for the general problem.

There are many ways in which sequential minimization can operate. With two
parameters, one would define some line or curve in the parameter space and minimize
the function on that curve. This is equivalent to introducing a constraint in the two-
dimensional problem to convert it into a one-dimensional problem. A suitable
strategy is to constrain a stable parameter to be constant, with a value estimated from
the data by some simple method. For example, in Fig. 2 we can draw the curve
corresponding to k=4 shown there as a broken curve. The value # =4 is the
observed value of y at x = 3. The minimum along this curve corresponds to r = 0-63,
which gives, by equation (2), excellent initial values (0-63, 5-33) for the search in
(r, b) space.

The nature of the model may suggest how the search should be organized. For
example, when fitting parallel curves to subsets of data it is advisable to fit individual
curves to each set and thence to deduce initial values for the full model of parallel
curves.

Sequential minimization is particularly powerful when applied to fitting dis-
tributions because the low-order moments are very stable. The example of the double
normal distribution will now be discussed.

3.1. The Double Normal Distribution
The problem of resolving a frequency distribution into two normal components
was solved by Karl Pearson (1894) in terms of the sample moments, requiring the
roots of a ninth-degree equation. Rao (1948) proposed the maximum-likelihood
solution but the practical computations have proved extremely troublesome, and in
Rao’s numerical example his solution may be significantly improved. Sequential
minimization and parameter transformation are effective techniques for this problem.
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The method is to fit three different models in order:

Model 1, a single normal distribution,

Model 2, a 50-50 mixture of normal components with equal variances but different

means, and

Model 3, two unequal normal components with equal variances.
Injtial values of the parameters are obtained at each stage by constraining the expected
mean and variance of the combined distribution to be constants, derived from the
previous stage. If the components are present in very unequal proportions it is not
possible to fit the intermediate model, and this case can be detected when the kurtosis
is positive.

If the model to be fitted is

J() = alN(py, 0%+ (1— ) N(p, 09), @®
where 0 <a <1, then the expected moments are as follows:
M, = opiy +(1— o) g, ®
M, = o+ o1 — o) (i — )%, (10)
My = o1 =) (1 ~20) (uy — o), ()
M;—3M2 = o1 —a) (1 — 601 — ) (1 — po)*. (12)

Given a grouped frequency distribution with class boundaries x, ..., x;, such that
n; observations fall within the interval (x;,_;,x;), i=1,...,k+1, with x, = —c0 and
Xj41 = +o0; then if the distribution function is F(x) the negative log likelihood is

k+1
L(®) = - 3. nilog {F(x)— F(x;_), (13)

where 0 is the set of parameters defining the model.
The absolute minimum Z_;, of L(0) is obtained by equating observed and expected
frequencies, thus

k41
Loin = NlogN— 3, n;logn,, (14)
i=1
where
k+1
N = 2 ni.

i=1
This allows the likelihood to be interpreted in terms of the likelihood ratio criterion of
Neyman and Pearson (1928), giving a direct test of goodness of fit of each model and
the significance of added terms. Hence the estimation can be combined with a series
of significance tests.

The three models are as follows:

Model 1: py = po,
Model 2: « = 0-5, p; # o,
Model 3: o # 05, py # po.
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This method can be extended to fit models with unequal variances or more than
two components, but such models tend to suffer from multiplicity of solutions and to

introduce more parameters than are justified by the data.
Fitting the general model proceeds in six stages, as follows:

(1) Calculate the sample mean and standard deviation.

(2) Use the optimization routine to fit Model 1 by maximum likelihood. The
mean and standard deviation will be slightly different from the sample values

because of grouping.

(3) If the kurtosis is positive omit Model 2 and continue from stage (5) with
o = 015 if the skewness is negative, and a = 0-85 if the skewness is positive.
These values of « satisfy the inequality of 6x(l —a) <1 as required by equa-
tion (12) for positive values of M;—3M3. Otherwise fit Model 2 by optimizing
with respect to o subject to the expected mean and standard deviation being the
values obtained at stage (2). The parameters p, and p, (1, < pp) can then be

derived from equations (14).

(4) Fit Model 2 by optimizing with respect to u,, u, and o.

(5) Fit Model 3 with respect to « and o with the mean and variance constrained as
in stage (3), and deriving the parameters p, and p, from equations (9) and (10).

(6) Fit Model 3 by optimizing with respect to p;, pe, o and a.
An example of this method is given in Table 3.

TABLE 3
Fitting the double normal distribution

Data and fitted values:

x< n Model 1 Model 2 Model 3
1 2 42 30 35
2 11 8-0 11-0 11-3
3 27 16:6 253 220
4 21 276 32-8 24-2
5 22 364 29-0 232
6 36 382 29-1 33-8
7 45 319 328 420
8 23 212 252 292
9 11 11-2 10-9 10-6

4 6-8 29 2:2

Fitting process:
Stage I3 Mo ) o Likelihood
1 521 — 206 11-35
2 521 — 2-07 11-34
3 3-64 679 1-34 7-79
4 336 6-63 1-25 667
5 2:99 6-48 1-21 0-36 2:66
6 3-01 6-46 1-20 0-36 263
Analysis of x®:
Source x® d.f.

Model 1 v. Model 2 93 1

Model 2 v. Model 3 81 1

Model 3 5-3 S
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4, NESTED MINIMIZATION

This heading includes all methods where the parameters can be arranged in a
hierarchy, in which, when particular values can be postulated for parameters of
higher rank, optimum values can be estimated for the parameters of |ower rank.
The simplest situation, which is very common, is that optimum values can be estimated
analytically, when it makes little sense to ignore the opportunity to reduce the number
of dimensions in which a numerical search is required. The general cage involves
recursive use of the minimization routine, which requires careful Programming, but
when there is only one parameter in the highest rank this is not serious,

Analytical minimization is used in curve fitting to estimate the linear parameters
when values of the non-linear parameters are assumed. This method was used by
Richards (1961) but is frequently overlooked. When particular values of pon-linear
parameters are assumed the model reduces to linear regression and the Jinear para-
meters and function value are directly determined by matrix inversion. Linear
parameters defining scales, origins and proportions occur in most curve-fitting
applications. A different kind of example is that of Wadley’s problem (Finney, 1952)
in which a quantal response of an unknown sample size is observed. The unknown
size parameter can be fitted as a function of the remaining parameters, Lawley (1967)
has applied a similar method to maximum-likelihood factor analysis.

The basic method of analytical minimization is to differentiate the likelihood with
respect to the parameters and obtain the standard normal equations, and to eliminate
from the likelihood function any parameters conveniently expressed in termg of others.

Nested minimization can be described geometrically as the search of the ortho-
gonal projection onto a sub-set of the parameters of the locus of the minimum over
the complementary sub-set. For example, in Fig. 2 the curve ABC is the Jocus of
points for which R is a minimum, given r. The reduced function min, R(r, b) is a
function of r only and is shown in Fig. 4. In effect the problem is reduced to, a one-
dimensional search along the curve ABC.

FiG. 4. The function min, R(r, b) showing a minimum at r = 0-66,
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4.1. The Exponential Example

The example of Fig. 2 works in detail as follows. The residual sum of squares to
be minimized is

R, = 3 (= (1=} as)

and the normal equations are
bE(1-r=) = Sy(1—-r%) (16)
and the less useful equation 0R/¢r = 0. Then b is eliminated from (15) and (16) to give
the function
{Z y(1—r=3*
SA—r=e 1

which is shown in Fig. 4. The minimum of R'(r) is 0-267 at r = 0-656 and the corre-
sponding b is 5-397. It happens that R'(r) is nearly a parabola over a wide range of
r-values, but this is an accident of scaling, because a change of scale of x to px is
equivalent to a transformation from r to r?. In general, for the best results the non-
linear parameters should be transformed so that conditions (b) and (c) of Section 1.3
hold for the simplified function in the restricted parameter space.

R()=minR(r,b) = X 33—
b

4.2. The HCK Model: a Seven-parameter Model in Bioassay

A problem solved using nested minimization was a bioassay model fitted to
unpublished data of Henry et al. (1961). This model will be known as the “HCK
model”. Two substances are observed to give a sigmoid relationship between a
quantitative response (») and log dose (x), but the range of each curve is unknown as
are the location and slope parameters.

The model had seven parameters, as follows:

Control group: y = 8,
Substance 1: y = 6,;+ 6, D(0,+ 6;x), (18)
Substance 2: y = 6,+ 0, D(0;+ b, %),

where ® is the standard normal integral. The data are given in Table 4.

TABLE 4
Data for the HCK model

X y
Control — 87-08
Substance 1 1-59934 98-60

1-90940 109-22
207733 127-07
2:31160 145-27
2-:52957 161-83

Substance 2 1-36398 91-13
1-91840 111-57
2:09123 114-75
2-32533 130-68
2-56949 128-48
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Fitting this model proved extremely troublesome to single-pass optimization
programs exploring seven-dimensional parameter space, several of the parameters
being almost completely correlated. However, the structure of model (18) can be
expressed diagrammatically as

Rank 1 6,
l

| I
Rank 2 0,0, 06,
|

Rank 3 6, o,

This diagram shows that given 6, there are two independent sub-problems, the
estimation of parameters for substances 1 and 2 separately. Furthermore, 6, and 4,
are simple scaling parameters for which analytical estimates are available. The cor-
relations between 6, and 6, can be reduced by subtracting the mean, 2:08545 from x
for substance 1, and similarly for the correlations between 6 and 6, by subtracting
2-05369 from x for substance 2. The method therefore was to optimize 6,, each
function evaluation involving separate optimizations for 8, and 8, and for 65 and 6,.
Initial estimates for 6, and 0; were obtained by storing estimates of 96,/06, and 06,/06,
from previous iterations, since for small adjustments to 8, there were almost linear
relationships between 6, and the optimum values of 6,, 8;, 85 and ;. The three
components of the function of 8, are shown in Fig. 5 and the results, for ® as the
normal distribution functions, were as follows:

6, = 88-09,

0,=—488, 60,=220, 6,=9841
0; =—546, 0,=2-86, 6,=4357,
Residual sum of squares = 55-65.

A rather better fit was obtained using the logistic function (residual sum of squares
= 52-92).

The matrix of variances and covariances was computed from the normal equations
for all seven parameters given the above results, but is not shown here.

If the minimization routine had not been written recursively, a second ad hoc
minimization would have sufficed for 6,.

4.3. The Use of Nested Minimization

Nested minimization is usually applied when the optimum in the space of lower
rank is unique and is easily determined either by direct calculation or by minimization.
For example, if it were applied to Rosenbrock’s test function (Rosenbrock, 1960):

S(6y, 05) = 100(0,— 632+ (1 — 6,)2, (19

it would be necessary to rank 6; above 6, because solutions of 6, given 6, are not
unique.

Nested minimization arises naturally when a model is applied to several sets of
data simultaneously, as in the HCK model or in fitting parallel curves. There are
general parameters applying to all sets of data, and specific parameters applying only
to a particular set. For example, in the linear model of parallel linear regression the
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common slope is a general parameter where the individual intercepts are specific
parameters.

The low dimensional functions obtained by nested minimization can be more
easily studied than the full likelihood function, and the difficulties associated with
some models can be more readily understood. Contours of values of subsidiary
parameters can also be constructed and superimposed on the likelihood contours.
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38
37+
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19

18+
| ] /1
86 87 88
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|
o 89
Fig. 5. The HCK model. The residual sum of squares R as a function of #,, and the three
independent components of R.

Controls

5. CoMPUTING CONSIDERATIONS

The methods discussed above require slightly more elaborate programming than
is found in standard library programs for optimization, and the following questions
arise:

(1) Is the increase in computing efficiency worth the extra trouble when computers

are becoming so fast anyway?

(2) Can the methods be generalized so that the best strategy can be selected

automatically ?
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(3) How should optimization programs be written to make these methods simple
to implement ?

5.1. Comparison with Simple Minimization

Minimization methods are often compared by quoting the number of function
evaluations required to solve standard problems. This is not exactly a fair comparison
in the present case because the functions to be minimized are not comparable although
they do not in general involve much more computing than the straightforward
likelihood. (Transformed functions take much the same time, sequential and nested
functions may take more or less time according to circumstances.) The comparison
is also difficult because the objectives of problem analysis include the provision of
automatic initial values, recognition of insoluble cases and diminution of any tendency
to diverge. Transformations are designed to favour minimization methods that are
quadratically convergent.

The examples in this paper have been tested using a quadratically convergent
minimization algorithm based on the Taylor series expansion of a general function.
This method did not work well when the problems were badly defined, but was
satisfactory when transformations were used. To illustrate the effect of reducing
dimensionality by analytical elimination of parameters, Table 5 gives some typical

TABLE 5

Effect of analytical elimination of parameters

No. of parameters No. of function calls
Model Model Standard Reference
Full Non-linear Standard  Reduced method
1 3 1 191 10 y =a+br® Simplex —
2 4 1 452 10 y=at+b+cex)r® Simplex —
3 5 2 503 68 y =a+br*+cs? Simplex —
4 3 2 2281 15 Rational function Fletcher Chambers
and Powell
5 6 1 120+ 10 Quantal responses Fletcher Chambers
and Powell
6 4 2 400 54 Enzyme reactions Rosenbrock  Kowalik

t Unsatisfactory convergence.

comparisons, the first three examples being exponential curves fitted by Nelder and
Mead’s simplex algorithm, examples 4 and 5 being taken from Chambers (1969)
(ex. 2 and 3) and example 6 from Kowalik and Osborne’s problem (v). Examples 1, 2,
4 and 5 can be solved on a desk calculator.

Sequential and nested minimization, with transformations, made problems such
as the double normal distribution and the HCK model quite straightforward whereas
they would not converge at all when tackled directly. But the really important point is
that these methods are suitable for library programs for standard models, in which the
user does not have to provide initial values or operational quantities for the minimiza-
tion routine. Ideally the minimization process should be concealed from the user,
unless it fails to converge, as it is no more important to him than the details of a
matrix inversion.
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5.2. Automatic Strategy Selection

There seems to be no obvious way in which numerical analysis can replace statistical
insight as a means of controlling the likelihood function. Non-linear transformations
can only be built up by extensive exploration of the function, whereas statistical insight
enables useful transformations to be anticipated. Automatic nested minimization is
possible but tends to be expensive in terms of numbers of function evaluations.

5.3. Writing Optimization Routines

The methods described are not suitable for use with minimization routines that
require derivatives or assume that the function is a sum of squares. The derivatives
are often difficult to compute directly. The minimization routine is a sub-routine
which is called upon to minimize several different functions in sequence, with para-
meters fixed or varied as required. If the sub-routine cannot be written recursively, a
separate routine can be written for the outer minimization that effectively enables
recursions to be used.

Numerical accuracy is important, and double length working may be required,
especially when analytical elimination is used, and in nested minimization the con-
vergence must be strict enough to provide the outer minimizations with a smooth
function. The minimizer should be able to recognize situations in which the function
to be minimized is effectively constant, which can occur when analytical elimination
is used and the current estimates are too inaccurate. The reason for this is that non-
linear terms such as exponentials can become effectively constant for all the data
values, and there is therefore no information available to the minimizer. In such
cases the program must appeal to the user to provide fresh starting values, or to check
for gross errors in the data, or to re-scale the data. Sometimes the reason for con-
vergence failure can be seen, and the model modified automatically if the first attempt
fails. For example, a convex exponential curve will not fit data that is basically
concave, but the minimization will then end with the exponential parameter taking its
limiting value and the process can be restarted with a change of sign.

6. CONCLUSIONS

I have described how individual problems can be solved by adopting a flexible
attitude to the use of minimization routines, by using the clues in the descriptive
statistics of the data and in the analytical and statistical properties of the model.
There is not necessarily one ideal strategy for all models, and several unrelated
techniques can give numerically satisfactory results, as shown by the various methods
used on the model of Fig. 1.

The benefits of special programming as contrasted with straightforward use of the
original model can be summarized as follows:

(1) Use of appropriate parameter transformations, sequential and nested mini-
mization can greatly shorten computing time.

(2) The estimates of the parameters tend to be more accurate because parabolic
approximations are justified over a wider region and nested parameters are
estimated exactly.

(3) Convergence is more certain, and reasons for failure can be readily studied.

(4) In programs for standard problems the mechanics of minimization may be
suppressed from the results, giving the user the same kind of output he would
expect from a linear regression program. In particular, the user does not have
to supply quantities needed to make the minimizer work effectively.
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(5) Satisfactory confidence regions can be obtained for the parameters and fitted
values of the data if the transformed likelihood function is approximately
parabolic.

(6) Sequential minimization combines a method of solution with a statistical
analysis of successive models.

The disadvantages are for the user who wants an answer with the minimum of
programming effort. Yet the appropriate devices are not difficult to recognize and to
incorporate in a program, and a little forethought may save much time later. There
are many reports in print of problems that have proved ‘“difficult” for approved
minimization routines, and the reason has usually been lack of attention to the
possibilities described above. A further difficulty is that not all widely available
minimization programs make it easy for the user to adopt these special devices,
although it is to be hoped that this will not always be so.

The ideas described here have been incorporated in a library program, MLP,
written for the Orion computer at Rothamsted. The program, written in machine code,
can be used either as a standard set of routines for the more frequently occurring
models, or as a sub-routine package for new models. Details of these standard
routines will be published separately.
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