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CoMPLEX EXPERIMENTS

By F. Yares, M.A.

[Read before the Industrial and Agricultural Research Section of the Royal
Statistical Society, May 23rd, 1935, Stz WirLiaM Damrier, Se.D., F.R.8.,
in the Chair.]

1. Introduction.

SEVERAL papers have recently been read before this Section or
published in the Supplement to the Journal which have dealt with
one aspect or another of the randomized block and Latin square
methods of carrying out replicated experiments.

These methods were first developed in connection with field
trials in agriculture, but since their inception it has been abundantly
clear that they are of very wide application, and are therefore of
interest to experimental workers in almost all branches of science
and technology. The paper I propose to give to-night may be
considered as belonging to the same series. In it I intend to deal
with another aspect of the methods which has not yet been discussed,
namely the part which treatments play in experimental design.

Following the previous writers, I shall describe the special
technique which has been developed in agricultural field trials, but
it is hoped that the paper will prove of interest not only to agri-
cultural workers, but also to workers in many other branches of
research. For while the complex method has been most fully
developed in connection with agriculture, the special difficulties
occasioned by the necessity of eliminating soil heterogeneity both
limit its application and complicate the method. It would appear
that its use in other fields in which the material is more homogeneous
would be even more fruitful.

In the absence of specialized knowledge of the problems and
conditions which occur in other branches of research and industry
it is impossible to give detailed examples of the utility of complex
design in these fields. But a few general suggestions may be made
to show the wide scope of the method. For the rest I would stress
that there are many more ways than one of carrying out experimental
work, and only with a knowledge of the basic principles of the
available methods, and a good acquaintance with the sources of
variation of the experimental material, can the experimenter hope
to arrive at an efficient technique. For this reason it has appeared
to me profitable to discuss somewhat fully the application of these
methods to agricultural research. The difficulties to be overcome
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in other fields will not be identical, but many of them will be similar,
and in so far as this is the case the solutions which have been arrived
at in agriculture will be of material assistance. In so far as they
differ fundamentally, new technique will be required, but such
technique can only be evolved when in actual contact with the
difficulties themselves.

As examples of particular applications of complex experimenta-
tion (or, as we shall call it, factorial design) to fields other than
agriculture, I may first instance research into cotton-spinning
problems carried out at the Shirley Institute. In some experiments
described by Tippett in a paper recently read before this Section,®
the adoption of complex methods enabled him to investigate three
or four factors at once instead of one. His experimental problem
was peculiarly simple, in that he was prepared to assume the virtual
independence of the several factors he was investigating, so that the
effect of variation in one factor could be regarded as substantially
the same whatever the values of the other factors. (This method is
described in Section 9.) In biological experiments such assumptions
cannot be regarded as satisfactory, but I imagine that in many
experiments on manufacturing processes they are more justified.

Similar problems might occur in almost any branch of manu-
facture. In testing different types of motor tyre, for instance, we
might wish to vary both the speed and the load, or both and the
surface; or in actual road tests types of car, drivers, average speeds
and similar factors might be varied. Factorial design would result
in considerably more efficient utilization of experimental resources.

Then there is the wide field of biological enquiry, of which the
work I am about to describe is a special branch. I need only here
instance dietetic experiments on animals, and especially on human
beings (where experimental material is hard to come by). Here the
interactions between the various components of any diet are of vital
importance, and factorial designs would appear to be as necessary
as they are in the very similar problems encountered in agronomic
research.

As regards the applications of the designs alluded to in Section 10
(for which I shall propose the name of incomplete randomized blocks)
I need only mention three instances. In human beings the
resemblance between monozygotic twins is well known; if this is to
be utilized experimentally wé are limited to the equivalent of
blocks of two. In certain virus experiments which involve the
inoculation of leaves of young plants only five suitable leaves are
growing on the plants at one time, so that blocks must be limited
to five leaves each. And in many laboratory-determinations in which
variation in conditions seriously affects the results the number of
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determinations which can be carried out simultaneously (or approxi-
mately simultaneously) is strictly limited.

It has been thought better to retain throughout the terminology
of agricultural field experiments, rather than create a more general-
ized terminology which might be applicable to all experimental
material. This course recommends itself the more in that workers
in any field will in practice refer to their experimental units by their
appropriate names, so that some transposition of terms when
passing from one field to another will always be necessary.

Since the whole evolution of experimental technique is bound
up with questions of efficiency I have considered it worth while to
devote a certain amount of space to a discussion of the actual gain
in efficiency that is likely to result in agricultural field trials by the
use of factorial design. This part of the paper will be of particular
interest to agriculturists, since objections against factorial design
have been made on the ground of actual loss of efficiency. But
here again the discussion is likely to be of general interest, as indicat-
ing the lines to be followed in similar investigations in other
fields.

I am afraid that certain parts of the paper will prove difficult
reading to those not familiar with the principles of the analysis of
variance. This is inevitable if undue bulk and tedious repetition
are to be avoided. To those not acquainted with this branch of
statistical technique I would recommend that they make a pre-
liminary study of Fisher!, and Fisher and Wishart3, before they
attempt to follow the analytical procedure of the examples given
in this paper. I would also like to emphasize that a full appreciation
of all the points of the various designs is more likely to be obtained
if the actual examples given are worked over in full on a computing
machine. It is to make this possible that I have reproduced here
the numerical values of the individual plot yields.

Finally, it may be well here to emphasize two further points in
connection with the evolution of an efficient experimental technique,
which are sometimes lost sight of. The first is that the amount of
work it is profitable to expend in developing a technique depends
on the amount of experimental work of a given type that is likely to
be undertaken. It is because the need for agricultural experimenta-
tion is so widespread and persistent that it has been worth while
devoting considerable research merely to improving agricultural
experimental technique. The other is that it is not necessarily any
reflection on the ability of an experimenter if the methods he has
employed and advocated are later found to be less efficient than
other newer methods. In many fields of research there is a tendency
for a sort of vested interest to grow up round an experimental method,
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which leads to its defence on entirely illogical and unreasonable
grounds, and to a very grudging acceptance of newer methods.

2. An Experimental Problem.

Suppose that a new plant of agricultural importance is introduced
into a country. (An example has recently been provided by the
introduction of sugar beet into England.) What is the right way
to set about determining the best varieties and the appropriate
manurings and cultivations ?

One procedure, extensively practised, is to divide the problem
into a large number of smaller problems and attack each one separ-
ately. One set of experiments will be started to determine the best
variety, a second set to determine the best manuring, a third the
best cultivations. Nor need, nor does, the subdivision stop there.
Responses to the three standard fertilizers, nitrogen, phosphate and
potash, for instance, may be relegated to separate experiments.

This procedure has on the face of it a deceptive appearance of
simplicity. The questions formulated are themselves simple :—Is
one variety better than another? Is the yield increased by the
application of nitrogen? Their answers can be obtained with an
apparently high precision. But there is one very cogent objection.
Clearly the experimenter on fertilizers, who, we will imagine, decides
to confine his enquiries at the start to response to nitrogen, must
choose some variety on which to experiment. He will probably
choose what he considers is the best variety. After three years of
experiment the experimenter on varieties may announce that some
other variety is markedly superior. Are all the experiments on
fertilizers now worthless, in that they apply to a variety that will
no longer be grown? The experimenter on fertilizers will probably
answer that the response of the two varieties is not likely to be
widely different, and that his conclusions therefore still hold. But
he has no experimental proof of this, only his experience of other
crops, and would not have even this last if he and all other experi-
menters on fertilizers had persistently only experimented on one
variety.

If the experimenter on varieties is so rash as to criticize his
results on these grounds, however, and has himself laid down some
standard of manuring for his varietal trials, the experimenter on
fertilizers can effectively turn the tables by pointing out that the
varietal trials are also of little value, being carried out at a level of
manuring different from what he proposes to recommend.

Had the enquiries been combined into one system of experiments,
so that all varieties were tested in conjunction with all levels of
nitrogen, this imaginary controversy could not have arisen; for
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definite information would be obtained on whether all varieties did,
in fact, respond equally to nitrogen. Moreover, if it was found that
they did, a considerable gain in efficiency on the primary questions
would result (provided that the experimental errors per plot were
not greatly increased), since each plot would enter into both primary
comparisons and would thus be used twice over. If, on the other
hand, differential response was demonstrated, then although the
response of the chosen variety would be known with less accuracy
than if the whole experiment had been carried out with that variety,
yet the experimenter might count himself lucky in that the possi-
bility of false conclusions due to using another variety in his fertilizer
trials had been avoided. Moreover, the conclusion as to the best
variety might also require modification in the light of the differences
in response to fertilizer.

When new varieties are being selected this greatly understates
the advantage, for the essential and valuable difference of one
variety over another may lie just in its ability to respond to heavy
dressings of fertilizer; at the customary levels of manuring, it may
be, the yields are about the same. Nor need this response be direct.
In the case of wheat, for instance, the limit of nitrogenous manuring
is determined less by what the plant can make use of than by what
it can stand up to without lodging.

In practice it will seldom be possible to include every variety it is
desired to test in the fertilizer trials. This, however, is no argument
against including a representative selection of varieties. If no
substantial differences in fertilizer response are discovered with
such a selection we may then, reasoning inductively, conclude that
it is improbable that substantial differences exist for any variety.

The method of experimentation in which two or more sets of

treatments, or treatments and varieties, are taken in all combina-
tions, was originally called complex experimentation, but inasmuch
as this term may be taken to imply complexities of other kinds, T
propose, following Fisher, to use the terms factorial design and
Jactorial experiments.

3. History.

The idea of using all combinations of various sets of treatments
in fertilizer experiments, and not only those which appear advisable
on the grounds of the particular theory held at the moment, is a very
old one. The two contrasting methods are well exemplified in
classical fertilizer experiments on wheat and barley at Rothamsted.

The wheat experiment on Broadbalk was first laid down in the
season 1843—4, but was first put on a permanent basis in 1851-2.
Table I gives the table of treatments, the majority of which have
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been continued without change ever since. It will be seen that the
effect of any particular mineral salt is for the most part given by

TasLe 1.
Broadbalk Permanent Wheat.
Scheme of Manuring adopted in 1852.

Plot. No. Manuring.

2b Farmyard manure

3-4 ]

2a (half) No manure
20 J

5 — P K Na Mg

g iN P K Na Mg
15a } N P K Na Mg

8 IiN P K Na Mg
16 2N P K Na Mg
10 N — — — —
11 N P — — —
13 N P K — —
12 N P — 32Na —
14 N 4 — — 23Mg

2q (half) — —_— K Na Mg
17\ alter- { N — — — —
18 fnating — P K Na Mg

9 Nitrate of Soda, etc.
{gb Rape Cake, ete.

N == Ammonium salts. Na = Sulphate of soda.
P = Superphosphate. Mg = Sulphate of magnesia.

K = Sulphate of potash.

the difference of only a single pair of plots. On the other hand, the
effect of increasing dressings of nitrogen is well determined by five
levels of nitrogenous manuring. In plan the experiment consisted
of a series of long, narrow plots (349 yards X 6-go yards), each
4 acrein area, stretching the full length of the field. The numbering
was consecutive from 2 to 19 across the field. A few of the plots
were divided longitudinally into two halves (indicated by a and b).
3—4 was one plot. 2a was divided into two halves transversely, and
20 was one-third the length of the field.

The design of the Hoosfield barley experiment, laid out in 1852,
is shown in Fig. 1. The mineral treatments were in strips along the
field, and the nitrogen treatments in strips at right angles to them,
so that all combinations of

No Nitrogen
{No Superphospha.te} % {No Potash Ammonium Salts
Superphosphate Potash, ete. o Nitrate of Soda
Rape Cake

were included, as well as farmyard manure and a few miscellaneous
treatments.
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Miscelllaneous

Rape
rCake

>Nitml:e of
Soda

Farmyard Manure

Ashes

Ammonium
Salts

Unmanured

\ No
Nitrogen

Su})er. Potash, Sui‘)er. No
Potash, ete. minerals.
ete.
Fi6. 1.

Hoosfield Permanent Barley.
Plan and Manures, 1852.
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It will be seen that almost the whole of the field enters into the
contrast between potash and no potash, and superphosphate and
no superphosphate, and into the response to the various forms of
nitrogen. Moreover, information is provided on the differences in
response to any one of the fertilizers in the presence and absence of
the others. Thus in one respect the design is markedly superior to
Broadbalk. Unfortunately, however, the effect of broad fertility
irregularities is likely to be serious. If, for instance, there is a
fertility gradient from bottom to top of the field, even with no real
effect of nitrogen a response to nitrogen would be indicated, rape
cake being apparently the best. The fact that all four rape cake
plots did better than all four no-nitrogen plots, which if the plots were
arranged at random might be taken as evidence of a real difference,
could here be equally regarded as evidence of fertility differences.
In Broadbalk, on the other hand, fertility differences in one direction
(actually up and down the slope) are entirely eliminated, since the
plots stretch the whole length of the field. A certain amount of
internal replication is also accidentally provided if it is assumed (as
seems likely) that the effects of sulphate of soda and sulphate of
magnesia are small.

The realization of the large and unknown errors introduced by
fertility differences led to the use of replication, and also to a ten-
dency to confine attention to a few simple comparisons, so that
greater accuracy might be attained. Fertilizer experiments, for
instance, tended to a simplified Broadbalk system of treatments,
such as

- (1)! n’ np, npk!
or (1), np, nk, pk, npk, g

the particular choice of treatments depending largely on the par-
ticular theory of fertilizer response held by the experimenter.
(Throughout the paper the separate treatments will be indicated by
small letters and the treatment effects and their interactions by
capital letters. No treatment is indicated by (1), or by the suffix 0.
The use of (1) instead of O for no treatment enables the expressions
for the main effects and interactions to be written down by the
rules of algebra.)

The development of complex experimentation in modern agri-
cultural research is primarily due to Fisher. As early as 19262
he made a very strong recommendation in favour of complex
experiments, which it will be of interest to recall.

“In most experiments involving manuring or cultural
‘treatment, the comparisons involving single factors, e.g. with
or without phosphate, are of far higher interest and practical
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importance than the much more numerous possible comparisons
involving several factors. This circumstance, through a process
of reasoning which can best be illustrated by a practical example,
leads to the remarkable consequence that large and complex
experiments have a much higher efficiency than simple ones.
No aphorism is more frequently repeated in connection with
field trials than that we must ask Nature few questions, or,
ideally, one question, at a time. The writer is convinced that
this view is wholly mistaken. Nature, he suggests, will best
respond to a logical and carefully thought out questionnaire;
indeed, if we ask her a single question, she will often refuse to
answer until some other topic has been discussed.”

Since this date complex experimentation based on factorial design
has been extensively practised at Rothamsted, and to a lesser extent
elsewhere. The methods have evolved gradually, particularly in the
direction of confounding, and with growing familiarity has come
increased confidence. In the following sections I propose to give an
outline of the methods at present in use. It is manifestly impossible,
within the scope of a single paper, to enter into explanations of the
detailed mechanism of all the devices. Detailed examples of three
arrangements have, however, been included as exemplifying most
of the points at issue.

4 The2 X 2 X2 X ...System of Treatments.

The simplest type of factorial design is that in which there are
only two treatments in each set, so that the total number of com-
binations is some power of 2. If we ignore the different forms of
nitrogen the system of treatments in the Hoosfield barley
experiment already referred to is of this type.

Let, us first consider the case where there are two treatments,
say nitrogen (n) and potash (k) only. We then have the four
treatment combinations

), n, k, nk.
In the experiment on peas referred to in detail later the total yields

on the six replicates of these treatments (ignoring slag, which in
fact produced no effect) were respectively

1 n k nk
317-3, 3651, 3075,  327-1.

There are three independent comparisons, represented in the
analysis of variance by three degrees of freedom. Clearly the com-
parisons can be made in many ways. We might, for instance,
consider the response over the six replicates to » alone, given by

920z Ateniged z| uo sesn Y39 Aq 81£920./1.81/2/zZ/o100./qssswod dno-oiwapese//:sdly wolj papeojumoq



190 Yares—Complex Experiments. [No. 2,

n — (1), here 47'8, and to £ alone, given by & — (1), here — ¢'8,
and the increase or decrease over the sum of these responses when
n and k are applied in combination, namely (nk — (1)) — (n — (1))
— (b — (1)), or nk — n — k -+ (1), here — 28-2.

The difference between nk and k, however, also furnishes in-
formation on the response to %, being the response to » in the presence
of k, and if the response to n and % are, in fact, independent, this
response is equal to the response to » in the absence of k, except for
experimental errors. A general measure of the effect of n is there-
fore provided by the mean of the responses to # in the presence and
absence of k. The appropriate estimate of this is

N=Hmk— k) + (n— 1)} =3 — (1) (k+ (1))
= 1(19:6 -+ 47-8) = %(67 4) = 337,

and this may be defined as the main effect of n.
Equally the mean response to % in the presence and absence of
7, t.e. the main effect of k, is estimated from

K = ¥{(nk — n) + (k — (1))} = $(n + (1)) (k — (1))
—3(— 380 — 9:8) = H(— 47:8) = — 239,

A measure of the lack of independence of # and % is given by the
difference of the responses to % in the presence of k and in the absence
of k, namely (nk — k) — (n — (1)), or what is the same thing, the
difference of the responses to % in the presence and absence of
n, namely (nk— n) — (k — (1)). One half of either of these is
equal to

NXK=3}nk—n—Fk+ (1)} =4n— (1) (k- (1)
= 3(19-6 — 47-8) = }(— 380 -+ 9-8) = }(— 28:2) = — 141.

This quantity is called the interaction between n and k, and
represents one-half the differential response of » in the presence and
absence of k.

The conventional introduction * of the factor { has two advan-
tages: first, the main effects and the interaction are all deter-
mined with equal precision, and secondly, the differences between
individual treatment combinations can be determined by the direct
addition or subtraction of the appropriate main effects and inter-
actions. Thus the response to » in the absence of % is given by

— (N X K) = 337 — (— 141) = 478,
and the response to both fertilizers in combination, nk — (1), is given

by
N+ K = 337 — 239 — 9-8.

* This was made since the meeting.
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It will be noted that this last response is not affected by the inter-
action.

It should be noted that the expressions for the main effects
and interactions are really a matter of definition, the interactions
being measures of the departure of the observed differences from
the law implied in the definition of the main effects. Here the main
effects are so defined as to imply an additive law between the effect
of n and the effect of %; this is statistically convenient, and in
agriculture appears to provide a good representation of the type
of effects usually observed. But it should be clearly understood
that the additive law has been provisionally imposed by the statistician
and is not implicit in the data.

~ All the above responses are expressed in terms of the effects on
totals of six plot yields. In practice the final presentation of the
results will be in terms of some such units as hundredweight per acre,
involving some further conversion factor. In the computation the
factor 1 will be combined with this conversion factor. Thus in the
above example, where each plot has an area of 1/70th acre, and the
yields are in pounds, the main effects and interaction will be found
by multiplying 67-4, — 478, and — 282 (each of which is composed
of the sums and differences of 24 plot yields) by

70 -
12 x 112

to give the responses and interaction in hundredweight per acre.

It may be noted that the quantities 67-4, — 47°8, and — 28-2
are the differences of the marginal totals and the cross difference
of the two-way table :

. n. Total.

(1) ... 317-3 365-1 682-4
k.. 307-5 327-1 634-6
Total 624-8 692-2 1317-0

The sums of squares in the analysis of variance corresponding
to these three quantities can be found by squaring the three numbers
674, — 47'8, and — 28-2 and dividing each square by 24, since
each is the difference of two sums of 12 plots each. (The appropriate
divisor of the square of any linear function of the plot yields

Wty +. ...

representing a single degree of freedomis /241,24 . . . . The same
rule holds for finding the divisor of the sum of squares of deviations
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of quantities whose differences represent a set of two or more degrees
of freedom, provided that no plot yield occurs in more than one
quantity.)

The subdivision of the treatment sum of squares is given in

Table II.

TasrLe TI.
D.F. Sum of Squares.| Mean Square.
Nitrogen ... 1 189-28° 189-28
Potash ... 1 95-20 95-20
Interaction 1 3314 33-14
Total 3 317-62 105-87

These three sums of squares possess an interesting statistical
property, in that they add up to the total sum of squares (three
degrees of freedom) for treatments. This is an indication that
the three estimates are statistically independent. Technically

the three linear functions corresponding to the three single degrees

of freedom are said to be orthogonal. For a full discussion of the
practical implications of orthogonality and non-orthogonality the
reader is referred to Yates8. Two linear functions of the plot
yields )

Ly, + Ly + . - - .
L'y +Lys+ . . ..

are orthogonal if
L4+ L +. .. .=0.

Although the appropriate estimates of the treatment effects are
not always orthogonal, this is usually the case in a well-designed
experiment, a fact which introduces a certain logical completeness
into the analysis of variance. The additive property of sums of
squares corresponding to orthogonal degrees of freedom is extensively
used in the practical calculations required in the analysis of variance.
It is important, therefore, that workers should be able to recognize
the existence of non-orthogonality so as not to assume the additive
property when it does not hold, an assumption which will lead to
Very serious errors.

The first two of the comparisons given in the third paragraph
of this section are not orthogonal. The linear functions are

Yt H % Y0 — Y
Vet Yt Yo=Y Y
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and the sum of the products Il is - 6. The sums of squares are
T={n — (1)}? 190-40

S— 1) 800
Sk —n— k4 (1) 3314

Total 231-54

The total is very different from the total sum of squares for
treatments, 317-62. But each of these sums of squares may be
legitimately compared with the error mean square by means of
the 2 test, if it is desired to test the effect in question, just as the
quantities n — (1) = 47-8, etc. may be tested by the ¢ test, which is
the exact equivalent of the z test for a single degree of freedom.

The error mean square in this experiment (twelve degrees of
freedom) is 15-44 (Table VI), so that the mean effects of both nitrogen
and potash (Table II) are both significant (potash giving a depression),
but the interaction is not significant.

It is, of course, possible that an interaction of some kind exists
although it is not significant. It will be noticed that the response
to n is only significant in the absence of %, and the depression with
k is only significant in the presence of #n. But in the absence of
consistent interactions of this type over a series of experiments and
of any knowledge of when they are likely to occur, the average
response to n, 33-7, and the average depression with k, — 23-9, are
the best estimates to adopt in assessing the advantages of these
fertilizers.

It will also be noticed that should the interaction exist and the
yields of the individual combinations of treatments be substantially
correct, the experimenter who divided his experiment into two
parts, one on n with a basal dressing of %, and one on % with a basal
dressing of #, would certainly discover the inadvisability of applying
k, but would also come to the conclusion that the response to n was
quite trivial, a seriously erroneous judgment.

In general if there is no evidence of interaction the mean responses
to the two factors may be taken as the appropriate measures of the
responses to these factors, which may be regarded as additive.
If interaction exists, then usually information will be required on
the responses to each factor in the presence and absence of the other.
The experiment furnishes information on this point, but with only
half the precision (.e. with 4/2 times the standard error) of the mean
comparisons. Nothing is lost, however, as even should the results
be judged insufficiently precise, the information already obtained
can be combined with that added later.

In certain cases it may be judged as a result of the first series
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of experiments, that more precise information will only be required
on certain of the comparisons embodied in the factorial design.
One variety, for instance, might prove itself so superior to all others
that interest in response to fertilizers centred on the response of
that variety. But the fact which may have emerged that some
other variety did respond considerably more, although of no im-
mediate practical interest, might still be of considerable value to
the plant breeder in his task of combining the desirable features of
several varieties.

The 2 X 2 system may be easily extended to any power of 2.
We need only consider the case of a 2 X 2 X 2 system. If the
treatments are the three standard fertilizers », p and % in all com-
binations, the main effect of » may be defined as the mean of the
responses to n in the presence of all combinations of the other two
fertilizers, and will then be estimated from

N =Hn— L)+ (np — p) + (nk — k) + (npk — pk)}
={n— @) (p+ @) B+ 1)).

The first order interactions of # and p may be defined as the mean
of the interactions of # and p in the presence and in the absence of
k, and will then be estimated from

N X P =¥3np— n— p+ (1)) + npk — nk — pk + b}
—Hn— (1)) (p— (1) (b + ().

The expressions for the main effects of p and of %, and the first
order interactions of n» and & and of p and %, will be similar. There
is still one degree of freedom unaccounted for. This represents
what is called the second order nteraction between n, p and k, which is
one half the difference between the interactions of » and p in the
presence and absence of k, or betweén the interactions of » and %
in the presence and absence of p, or between the interactions of p
and % in the presence and absence of n, all these being equivalent
and equal to

N X P x K = {{(npk — nk — pk + k) — (np — n — p + (1))}
= 3n— D) (p— (1) (k— (1))

A numerical example of this type of subdivision is provided by
the experiment on peas at Biggleswade, further discussed in Section 7.

The expressions tabulated on page 195 for various typical
responses may be noted.

If the second order interaction is ignored the response to all
three factors in conjunction is equal to the sum of the main effects
of the three factors.
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Expression in terms of

Response to:

treatment combinations. ’ main cffects and interactions.
n (p absent, mean of & and no &) ¥nk +n—k— (1)} N—-(¥Nx P
n (p and k absent) n— (1) N—(NxP)— (1}’ x K) +

P X K)

nand p (mean of k andno k) ...| inpk + np — k — (1)} l N+ P
n and p (k absent) np — (1) N+ P —( X K)y — (P x K)
n, p and k (complete fertlhzer) npk — (1) N+P+ K+ (NXxPxK)

5, Subdivision of Sets of Degrees of Freedom.

Very frequently we wish to introduce sets of treatments which
contain more than two treatments each. In experiments involving
fertilizers, for instance, it may be desirable to investigate more
than one level of each fertilizer, or several different forms of the
same factor, as in the nitrogen treatments of Hoosfield barley. In
combined varietal and manurial trials it is usually advisable to
include at least three varieties.

The primary subdivision of the treatment degrees of freedom
follows the same lines as in 2 X 2 X 2 X . . . experiments, but
each main effect and interaction will now contain more than a single
degree of freedom.

The actual structure is best made clear by an example. Table III

TasLe III.

Oats Variety and Manuring Experiment.
Treatment Totals.

Tge [ g 7. Total.

Vg e 429 538 665 711 2,343
Vg ves 480 591 688 749 2,508
V3 ... 520 651 703 761 2,635
Total ... . 1,429 1,780 2,056 2,221 7,486

gives the treatment totals (six replicates) of an experiment on oats
involving three varieties and four levels of nitrogen. (The design
of this experiment, which was a split-plot one, will be discussed in
detail later.)

The partition of the treatment degrees of freedom and sum of
squares is as follows :

D.F. Sum of Squares.| Mean Square,
Varieties ... 2 1786-36 803-18
Nitrogen ... 3 20020-50 6673-50
Interaction 6 321-75 53-63

Treatments... .. 11 22128-61 —
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The sum of squares due to varieties is calculated from the varietal
marginal totals, and that due to nitrogen from the nitrogen totals,
while the interaction is usually obtained by subtraction of these

two sums of squares from the total sum of squares due to treatments. -

The computation is exactly analogous to the computation of the
sums of squares for blocks, treatments and error in a randomized
block experiment. In fact “error” in such experiments is formally
composed of the interactions of blocks and treatments.

This, however, does not exhaust the possibilities of subdivision.
Any set of n degrees of freedom can be divided into # single degrees
of freedom in an infinity of ways. Only the division which coincides
with whatever physical facts it is desired to bring into prominence
will normally be of interest, but in certain cases some especially
simple formal division is useful for purposes of confounding.

In our example the three degrees of freedom for nitrogen may
naturally be divided into the one degree of freedom representing
the linear component of the response curve, and a second representing
the quadratic component, and a third the cubic.

The dressings represent equal increments of nitrogen and the
linear term is therefore (Fisher!, Section 27) given by some

fraction of
— 38(ng) — S(n;) + S(ny) + 35(ny),
the quadratic term by
S(ng) — 8(ny) — S(ng) + S(ny),
and the cubic term by
— S8(ng) + 38(n,) — 38(ny) + S(ns).

The squares of these quantities, divided by 360, 72 and 360 re-
spectively, will give the sums of squares attributable to each degree
of freedom. These are

D.F. Sum of Squares,
Linear term . 1 19536-4
Quadratic term ... 1 480-5
Cubic term 1 36
Total 3 20020-5

Most of the variation due to nitrogen response is accounted for by .

the linear term. The appropriate error mean square is 17708, and
the quadratic term is therefore not significant. The cubic term is
below expectation. '
The interactions between varieties and nitrogen may be similarly
split up by caleulating regression terms for each variety and taking
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the sums of the squares of the deviations between them. Indeced in
testing for differential response this should be done, since such
differential response is most likely to reveal itself in differences
between the regressions for the different varieties; the whole
set of interactions contains four degrees of freedom which are likely
in any case to be small when there is little curvature in the average
response curve.

In this particular example the total sum of squares for the six
degrees of freedom is only 321-75, so that no interaction can possibly
be significant, but the calculation may be performed as a formal
exercise. The numerical values of the regression terms are

Linear. ’ Quadratic. Cubic.
Py eee 973 63 99
Uy eee 904 50 232
Vg eee 775 73 —85

The sums of the squares of the deviations of these quantities divided
by 120, 24 and 120 respectively give the following sums of squares :

D.F. Sum of Squares.| Mean Square.
N, X varieties 2 168-35 84-18
N, X varieties 2 11-08 5-54
Ng X varieties 2 142-32 71-16
Total 6 321-75 —

If it were desired to test some theoretical response curve, the
appropriate division of the sum of squares would be into the part
accounted for by the curve, with as many degrees of freedom as
there were arbitrary constants in the curve, and a part representing
deviations from the curve. The test of the adequacy of the theory
would be the non-significance of the latter response.

6. Split Plot Arrangements.

As already mentioned, the chief practical difficulty in the ap-
plication of factorial design to agricultural field experiments is the
fact that the number of treatment combinations rapidly becomes
large with increasing complexity, with resultant large blocks and
inadequate elimination of fertility differences. A further practical
difficulty is that many agricultural operatlons cannot be conveniently
carried out on small plots.

To meet these difficulties various modifications of the randomized
block and Latin square lay-outs have been devised. The two of
chief interest are the splitting of plots for subsidiary treatments,
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and the confounding of high-order interactions. We will first
consider the split-plot type of design.

In principle this is very simple. The whole-plot treatments are
arranged in the ordinary manner in a randomized block or Latin
square, and each plot is subdivided into two or more parts to which
are assigned at random the two or more sub-treatments. The
analysis is also simple, especially if the division is only into two.
In this case all that is necessary is to perform two separate analyses,
with separate errors, one on the totals of the whole plots, and the

‘ ny 156 n, 118 n, 109 ny 99
vy Vs
1 ny 140 | m, 105 ne 63 | m, 170
[ ng 111 | n, 130 ne 80 | m, 94
Y1 vy
1 ng 174 | m, 157 ng 126 | n, 82
ne 117 | n, 114 ny 90 | m, 100 ]
vy V1
ny 161 | n, 141 ny 116 | n, 62 f
ny 104 | my 170 ng 96 | m, 60 l
vy Vg
n, 89 | my 117 n, 89 | m, 102 J
( ng 122 | n, T4 ny, 112 | n, 86
vy L1
l ny 89 | n, 81 ne 68 | m, 64
n, 103 | n, 64 ny 182 | my 124 ]
Uy \ VU3
ny 132 n, 133 n, 129 | n, 89 J
ny 108 | =, 126 ng 118 | mn, 53
Vy L1
ny 149 ng 70 ny 113 n, T4
[ ny 144 | n, 124 ng 104 | n, 86 1
vy Vg
1 ny 121 | n, 96 n, 89 | m, 82 J
| m 61 | 5 100 ng 97 | n, 99 ]
v, Vs
‘l ny, 91 ny 97 n, 119 ny 121 J'
<—— rows —>
Area of each plot: 1/80 acre. (284 links X 44 link rows.)
Fiq. 2.

Oats Variety and Manuring Ezperiment.
Plan and yields in quarter 1b.
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other on the differences of the pairs of sub-plots. This latter
analysis will contain an extra degree of freedom representing the
direct effect of the sub-plot treatment. The interactions of the sub-
plot treatment with the whole plot treatments will also appear in
this analysis. If the subdivision is into more than two parts, the sums
of squares corresponding to the components of the second analysis
are usually obtained by subtraction, in the same manner as the
interaction sum of squares in Section 5.

The oats variety and manurial experiment already referred
to furnishes a good example of this type of lay-out. The
varieties were sown in six randomized blocks of three plots
each, and each plot was subdivided into four for the four levels of
nitrogen. ' )

The plan and yields of grain are shown in Fig. 2. The full
analysis of variance is given in Table IV. The analysis is on a
sub-plot basis, sums of squares from the whole-plot totals being
divided by an extra 4, since each is the total of four sub-plots.

Tasie IV.
Oats Variety and Manuring Experiment.

Analysis of Variance (Sub-Plot Basis).

D.F. Sum’ of Squares. Mean Square.

Blocks ... 5 15875-28 3175-06
Yhole | Varieties 2 178636 893-18
Error, ... 10 6013-30 601-33

Total 17 23674-94 —
Sub- Nitrogen . 3 20020-50 6673-50
Plots N x Varieties... 6 321-75 53-63
Error ... 45 7968-76 177-08

Total 71 51985-95 _—

In general in such experiments the comparisons between the
sub-plot treatments are likely to be more accurately determined
than those between the whole-plot treatments, since they depend
on comparisons between closely adjacent plots. This is the case
here, where the two error mean squares are 177-08 and 60i-33, or
in the ratio of 1 to 3-40. (The reader should satisfy himself that
the ratio between these mean squares does represent the comparative
accuracy of means containing the same number of sub-plots but
subject to sub-plot and whole-plot errors respectively.) By replacing
each treatment mean square by the corresponding error mean square
we obtain the equivalent of a uniformity trial. Combining the two
resultant error sums of squares then gives an estimate of what the
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error mean square would have been had all treatments combinations
been randomized. This gives

12 X 601-33 -- 54 x 177-08

66 = 254-22

subject to errors of estimation. Thus the accuracy of the varietal
comparison would have been considerably increased, with some,
but not a proportionate, loss of accuracy on the responses to nitrogen
and their interactions with varieties. On the varietal comparisons
we obtain 2-37 (=601-33/254°22) times the original information, and
on the comparisons involving nitrogen o-70 (= 177-08/254-22) times
the original information.

In general, therefore, if the .main effects of all treatments are
required with equal accuracy, split-plot arrangements are not to
be recommended where the whole-plot treatments are arranged in
randomized blocks, except in the case in which whole-plot treat-
ments are such that they could not be conveniently applied to such
small plots as the sub-plot treatments.

If, however, the whole-plot treatments can be arranged in the
form of a Latin square the situation is somewhat different, for if
the whole of the treatments were randomized the Latin square
arrangement might have to be sacrificed and a usually less efficient
randomized block arrangement substituted.

In order to see what differences would result in practice by
complete randomization in place of the use of split-plots, the split-
plot experiments carried out at Rothamsted and its associated
centres were examined. For the randomized block experiments
new errors were computed as above. For Latin square experiments
the mean of the sums of squares of rows and columns was first added
into the whole-plot error, with a corresponding increase in degrees of
freedom. Otherwise the procedure was the same as with randomized
blocks.

The results are shown in Table V. In the case of randomized
blocks there is a considerable gain in accuracy on the whole-plot
comparisons, with, as must be the case, a corresponding loss of
accuracy on the split-plot comparisons, relatively less in the case
of splits into four. In the case of the Latin squares, however, with
plots split into two, there is usually a loss of accuracy even on the
main-plot comparisons owing to the transition from the Latin
square to a randomized block arrangement. In the case of splits
into four there is little to choose on the whole-plot comparisons
but a definite gain on the split-plot comparisons.

It can, of course, be objected that the treatment of rows or
columns as if they were blocks is unfair to the randomized block

920z Ateniged z| uo sesn Y39 Aq 81£920./1.81/2/zZ/o100./qssswod dno-oiwapese//:sdly wolj papeojumoq



1935.] Yares—Complex Experiments. 201

method, in that more compact blocks would, in fact, be chosen.
The results given later in this paper, however, do indicate that Latin
square arrangements are in practice markedly more efficient, and
it is doubtful if the free choice of blocks would on the average have

TaBLE V.
Split-Plot Arrangements.

Percentage information that would have been obtained with ordinary randomized
‘block arrangements.

Latin Squares. Randomized Blocks.

Plots split into: 2. 4.

[
o

Comparisons Whole | Split | Whole | Split | Whole | Split | Whole | Split
involving : Plots. | Plots. | Plots. | Plots. | Plots. | Plots. | Plots. | Plots.

Percentage. Numbers of Experiments,
0- 20
20— 40
40— 60
60— 80

1
1
80-100 -5

— 3

_ 1 —
- 2

— 1

100-120
120-140
140-160
160-180
180-200
200-220
220-240

|| =t mmos]
L1 w meoaos
I
AR

NRESEE
|

Total 22 9 7 3

resulted in any appreciable reduction in the errors below those
calculated in the construction of the above table.

One point which must be borne in mind when considering the
relative efficiency of randomized blocks and Latin squares is the
number of error degrees of freedom. The six degrees of freedom
for error provided by the 4 X 4 Latin square have long been
recognized as inadequate, at least by Fisher. Something of the
order of twelve error degrees of freedom would appear desirable in
all experimental results which may afterwards have to be considered
in conjunction with other material, unless the effects under investiga-
tion are large in comparison with their experimental errors. This
seems to me to be the governing consideration in favour of the
2 X 2 X 2 confounded arrangement to be described later, as opposed
to the use of a 4 X 4 Latin square with split plots, which on a com-
parison of errors only would appear to be decidedly more efficient.
Two 4 X 4 Latin squares with split plots, or a 3 X 2 X 2 system
of treatments arranged in a 6 X 6 square with split plots, are not
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open to this objection and are likely to be a very efficient arrange-
ments; unfortunately, however, they require 64 and 7z plots
respectively, which is frequently more than is practicable.

We may therefore conclude that the Latin square arrangement
with split plots is a very efficient way of introducing an extra set
(especially a pair) of treatments into a factorial system which can
otherwise be arranged in the form of a Latin square, provided that
it furnishes sufficient error degrees of freedom on the main comparisons.

The treatment of whole blocks of an ordinary experiment with
different subsidiary treatments is a modification of the split-plot
type of arrangement. Thus different blocks of a fertilizer experi-
ment might be sown with different varieties. Here practically no
information is obtained on the average effects of the block
treatments, but their interactions with the principal treatments
are determined with full accuracy, though it should be noted
that differential response to the principal treatments in the
different blocks will affect these interactions; this objection is
discussed in Section 12.  Such a procedure undoubtedly gives a wider
inductive basis to the results and for this reason is to be recom-
mended, though it is doubtful if there are many cases in which
information on the subsidiary treatments is really not required.
In the case of such subsidiary treatments as farmyard manure,
however, it might be maintained that a one year’s experiment is
in any case almost worthless in assessing its value, but that a know-
ledge of the differences in response to fertilizers in its presence and
absence is of considerable interest and importance.

It may be noted here that although whole blocks of a randomized
block experiment may be given different treatments, the procedure
is inadmissible with the rows or columns of a Latin square, unless
the interactions of the principal and subsidiary treatments are to
be disregarded, owing to the resultant non-orthogonality of the
interactions with the columns or rows respectively. The pointis dealt
with elsewhere.® The rows themselves may be split, e.g. for varieties,
but this, of course, increases the number of plots, unless varietal
differences are ignored at harvesting, and thus is not a particularly
efficient arrangement.

Another type of arrangement that stands condemned, but for
a different reason, namely, because of a biased error, is the ‘ semi-
Latin square.” In this arrangement there are twice (or more
generally & times) as many rows as columns, and every treatment
occurs once in each column and once in each pair of (or each k)
rows, which are treated as a unit. It is only possible to make
unbiased estimates of the appropriate errors when the treatments
are grouped so as to give the equivalent of a split-plot arrangement.
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7. Confounding.

Confounding is a method of reducing the block size by not
completely replicating within each block. We have seen that in
a factorial experiment the treatment comparisons are divisible into
main effects and interactions of varying complexity. High-order
interactions are usually non-existens, or at least small in magnitude
compared with their experimental errors, and for this reason, if
no other, of little practical interest. Certain components of these
high-order interactions appearing in the analysis of variance table
(though by no means all) are derived from the direct comparisons
of equal groups of the various treatment combinations, all combina-
tions being included. If smaller blocks are used, each containing
only the combinations belonging to one group, the contrasts between
the groups will coincide with block differences. No information,
except a trivial amount derived from inter-block comparisons, is
therefore available on the corresponding interactions, which are
said to be confounded with blocks.

Provided that the other constituents of treatments in the analysis
of variance table are orthogonal with the confounded interactions
the remaining comparisons will not be formally affected by the
confounding, being entirely intra-block. Their accuracy may be
expected to be increased owing to reduction of error due to the smaller
blocks.

A very simple example is provided by the 2 X 2 X 2 system of
treatments. If the experiment is arranged in blocks of four plots,
half of which contain the treatments '

(1), np, nk, pk,
and the other half the treatments
» n, p, k, npk,

the second order interaction will be confounded.

It is easy to see that the main effects and first order interactions
are unaffected by block differences. In each two positive and two
negative treatment combinations occur in each block.

The experiment on peas at Biggleswade which has already been
considered will form a useful example. The plan and yields are
given in Fig. 3. The treatment totals are as follows :

Sub-blocks (a). Sub-blocks (b).
(1} np nk pk n P k npk
154-3 173-8 164-0 151-5 191-3 163-0 156-0  163-1

The full analysis of variance is given in Table VI.

The components of the treatment sum of squares may be checked
SUPP. VOL. II. NO. 2. I
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by computing the treatment sum of squares from the treatment
totals and also the confounded interaction as if confounding did not
exist. These calculations give 384-79 and 3700 respectively, and the

pk (1) n k
49-5 | 46-8 || 62-0 | 45-
216-1 200-5

np nk npk P
62-8 | 57-0 | 488 | 44-

n k np nk
5-5 || 52-0 | 49-8

229-8 7 202-1

< —— TOWS —>

243-11
npk k np (1)

55-8 | 550 | 59-0 | 56-0 J
Area of each plot: 1/70 acre. (31-75 links x 44-7 link rows.)-
Fie. 3.
Ezperiment on Peas.

Plan and yields in lbs.

difference represents the sum of squares due to treatments in the
analysis. The significant results of the experiment have already
been discussed.
TaBLE VI,
Experiment on Peas.

Analysis of Variance.

o}

Sum of SBquares.| Mean Square.

343-30 68-66
189-28 —
840 —
95-20
21-28 —
33-14 i —
0-48 —
185-28 15-44

Blocks

ZZRT2

X
X
X

=
AT
L et ot ot ot ot et O rg

[5oha!
et

I'TO!

Total ...

[
o

876-36 —

Instead of always confounding the same set of interactions it
is possible to confound different sets in different sets of blocks.
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Such a procedure is called partial confounding. Some information
will then be obtained on all degrees of freedom, the loss of information
being spread over several sets of degrees of freedom instead of being
confined to one set.

In a 2 X 2 X 2 system, for instance, each first order interaction
might be confounded in a quarter of the blocks, and the second
order interaction in the remaining quarter. The advisability or
otherwise of such a course depends on the relative importance of
the first and second order interactions.

A somewhat more complex example is provided by the 3 X 3 X 3
system. Consider first the 3 X 3 table:

a,. ay. .
b, £ Ty T
by ¥ Yo Ys
by 21 Zy 23

There are eight degrees of freedom. The two degrees for. each
main effect are given by the contrasts of the marginal totals. The
four degrees of freedom for interactions are given by similar contrasts
of diagonal totals, as follows.

D.F. . Contrasts between

A main effects 2 Tt Y1+ 2, Lo Y+ 2 Byt

B main effects 2 Ty Ty + Xy Y1+ Y+ Vs 21+ 2 + 25

meesions {5 2IGTRRIRTRETRIG

The degrees of freedom in a 3 X 3 X 3 arrangement are capable
of similar subdivision. There are eight degrees of freedom for the
second order interactions, which can be split into four sets of two.
Just as in a 3 X 3 table the interactions are given by the contrasts
of the diagonal totals, so in a 3 X 3 X 3 table the second order
interactions are given by the contrasts of totals of diagonal planes
in three dimensions. Thus one of the sets (I) is given by the contrast
of all the 1’s, all the 2’s and all the 3’s in the following table :

a;. @, a4,

b . b be | By b, ba | by by bs.
€y 1 2 3 3 1 2 2 3 1
Cy 3 1 2 2 3 1 1 2 3
cg 2 3 1 1 2 3 3 1 2

A second (II) is given by interchanging a, and a4 in this table, and the
other two (I1I and IV) are obtained by interchanging ¢, and c; in the
first two sets. If the 1’s, 2’s and 3’s of the above table are placed in
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separate blocks the two degrees of freedom for second order inter-
actions represented by this table will be confounded. An example
of this type of confounding is given later in the paper.

Since in a 3 X 3 X 3 system the split of the eight degrees of
freedom into four sets of two is purely formal, all sets are of equal
importance. Partial confounding should therefore be resorted to,
different sets being confounded in different blocks. With 108 plots
equal information will be obtained on all four sets, which introduces
satisfactory simplicity into the statement of the results.

In the above examples the confounded degrees of freedom belong
to the set of highest order interaction degrees of freedom in the
ordinary subdivision of the treatment degrees of freedom. Such
arrangements are only possible in a limitéd number of symmetrical
systems. In a 3 X 2 X 2 system, for instance, the treatment
degrees of freedom are normally partitioned into :

D.F. D.F.
] A 2 ( AXB 2
Main Effects g } Interactions- % i 8 %
lA xBxC 2

Only the main effects and the interaction B X C can be completely
confounded. Any other division of a complete replication involves
more than one of the above sets of degrees of freedom.

To avoid sacrificing all information on the possibly important
B x C interaction the balanced arrangement given in Table VII

TasLE VII
3 X 2 X 2 arrangement.

Replication : 1. 11, III.

Block : Ia. To. Tla. m. | ‘Il II6.

Treatment : e b ¢ a. b. ¢ a. b. ¢ a b ¢ a. b. ¢ a. b. ¢
00 1{0 0 6{0 0 0[O0 0 1|0 0 0j0 01
o1o0{011/011(0 10011010
i 0010101001 00|1 01
111(r 101101 11{1 111 1O
2 0 0{2 01({2 00|2 012 011|200
2 11/210(211|210(|210]211

was devised. In this arrangement B x C is confounded as little as
possible in each division. The balance attained by the three re-
plications performs an important function and leads to a considerable
simplification of the computations.

In this arrangement as little as } of the information on B x C
(1 D.F.) is lost, as compared with a similar unconfounded com-
parison. On the second order interactions A x B X C (2 D.F.)
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4 of the information islost. It may benotedthatl X 1 +2 X $=1,
corresponding to the one degree of freedom involved in the division
of each replication into two parts. This relation only holds with
the balanced arrangement.

Similar balanced arrangements have been devised for the
3 X 3 X 2 system of treatments, and these can be extended to any
system of the type 3 X 2rand 3 X 3 X 2~

Higher degrees of confounding than those exemplified in the
above examples are sometimes advantageous, but the degree of
confounding that can be indulged in without involving important
interactions is very limited. In the 25 system, for instance, any
single degree of freedom including the fourth order interaction can
be confounded by a single division into blocks of 16 plots. If a
triple division into blocks of 8 plots is required, at least two second
order interactions and one third order of the type A X B x C,
A XD x Eand B x C x D x E must be confounded ; if the fourth
order interaction is confounded a first order interaction or main
effect is also necessarily involved. While in the case of blocks of
four plots at least two first order interactions are necessarily con-
founded, a possible set being A X B, C x D, A x C X E, AXD xE,
BxCxE BxDXE, AxBxCxD.

A high degree of confounding is therefore not likely to be of any
value in agricultural research. In other branches of research,
however, where whatever corresponds to block size is more strictly
limited it may be of considerable utility. With five replications
of a 25 system in blocks of four, for instance, a different pair of first
order interactions, and their associated second and third order
interactions, could be confounded in each replication. The loss of
information would then be 1 on all first order, % on all second order,
and 1 on all third order interactions.

A variant on the standard systems which is of frequent occurrence,
and which modifies the strictly formal analysis, both of ordinary
factorial experiments and confounded experiments, is the occurrence
of dummy treatments. If, for example, we are investigating three
levels and three forms of nitrogenous manuring in all ¢ombinations,
the three plots of each replication receiving no nitrogen are, in fact,
identical. In confounded experiments this leads to the occurrence
of plots receiving the same treatments in different blocks of the same
replication, and these plots can, if desired, be used to furnish informa-
tion on the differences between these blocks and therefore on
apparently confounded degrees of freedom.

It should be mentioned here that although information is available
on partially confounded degrees of freedom, its presentation in the
form of a’ table of yields of individual treatment combinations
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necessitates a certain amount of extra computation. The difficulty
does not arise in experiments with certain degrees of freedom totally
confounded, nor in partially confounded experiments when we are
content to present only the unconfounded effects.

8. The Estimation of Error from High Order Inieractions.

Another difficulty arising from the large number of treatment
combinations in an elaborate factorial experiment is that even two
replications of each treatment combination may give a larger number
of plots than are required to give the necessary accuracy on the
main effects.

To meet this difficulty the device has been introduced of estimat-
ing the error from certain unconfounded high order interactions,
which from previous experience can be confidently expected to be
small in relation to experimental error.

A good example of this procedure is provided by the 3 X 3 x 3
type of arrangement. This is a very suitable arrangement for
investigating the responses to the three standard fertilizers, since
evidence is obtained on the curvature of the response curves as well
as their gradient, knowledge of the former being vital when decisions
as to the optional dressing have to be made. A single complete
replication demands 27 plots, which are as many as can be con-
veniently undertaken by most non-experimental farms which are
interested in fertilizer trials. Were a minimum of 54 plots to be
demanded many possible experiments would be ruled out.

(211) 2575 (121) 2599 (202) 2189
(120) 2472 (220) 2517 (020) 2093
(200) 2517 (022) 2411 (210) 2354
(002) 2403 (110) 2252 (111) 2268
(010) 2220 (212) 2381 (001) 1926
(021) 2252 (201) 2067 (122) 2152
(101) 2295 (102) 2021 (221) 2349
(112) 2362 (611) 1953 (012) 2025
(222) 2434 (000) 1989 (100) 2106
<— TOWS —>

Treatments : (211) indicates n,, p,, k,, etc.
Area of each plot : 1/10 acre. . (50 links x 200 link rows.)

Fic. 4.
Sugar Beet Experiment at Colwick.
Plan and yields of roots in lbs.
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As an example of this type of experiment we may take the
experiment on sugar beet at Colwick in 1934. The plan and yields
of roots are shown in Fig. 4. The experiment is arranged in blocks
of nine plots, so that one of the pairs of degrees of freedom for the
second order interaction is allotted to blocks. The error is estimated
from the remaining second order interactions and from all the first
order interactions except the interactions of the regressions. From
physical considerations and practical experience these may be ex-
pected to be small in relation to error in an experiment of ordinary
accuracy. The partially confounded N regr. x P regr. X K- regr.
can be separated from error if desired, but this is unlikely to be of
importance unless the effects of fertilizers are very marked.

The full analysis of variance is given in Table VIII. N regr.
is computed from the square of S(n,) — S(#n,) divided by 18, N dev.
by S(ny) — 28(n,) + S(ny) divided by 54, and the first order inter-
actions from the functions indicated by the tables :

’

N regr. x P regr. N regr. X P dev. N dev. x P regr. N dev. x P dev.
r Po- P1- Do | ’ Poe Pr1- P2 l Po P1r Po l Po- Pyo P2
o | +1 0 —1| mg | -1 42 1| mg | -1 0 41| m | +1 —2 +1
ny 0 0 01 ny \ 0 0 0| m | +2 0 2| n | -2 +4 —2
Ny -1 0 +1 Ny \ +1 -2 41 N -1 0 +1 Ny 4+1 -2 +1
Divisor: 12 36 36 108

The construction of these tables is obvious if we remember that
the linear response to n for p, and the mean of all k is given by
S(ngpy) — S(ngp,), with similar expressions for the linear response
to n for p, and p,. The linear regression of these three quantities
18 — 1 times the first, o times the second, and -+ 1 times the third,
giving the first table; while the curvature is -~ 1 times the first and
third, and — 2 times the second, giving the second table. The
third and fourth tables are derived in a similar manner.

The numerical totals over all levels of k are :

Po- P Ps- Total.

Ny .ee 6,318 6,198 6,756 19,272
Ny e 6,422 6,882 7,223 20,527
Ny +en 6,773 7,310 7,300 21,383
Total . 19,513 20,390 21,279 61,182

from which the n and p effects and their interactions can be |

calculated.
The division of the second order interactions has already been

described.
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TasrLe VIIL
Sugar Beet Experiment at Colwick.

Analysis of Variance.

D.F. Sum of Squares.| Mean Square.

Blocks (I) 2 244,526 122,263
N regr. 1 247,673 —
N dev. 1 2,948 —
P regr. 1 173,264 —
P dev. 1 3 —
K regr. 1 1,120 —
K dev. . 1 2,017 —
N regr. >< P regr 1 660 —
N regr. X K regr. 1 70,687 —
Pregr. x K regr. 1 616 —

Error . 15 262,298 17,487
Total 26 1,005,712 —

Components of Error.

S f Si f

D.F. Sq‘g:rgﬁ. D.F. Squllergs.

N regr x P dev. 1 41,684 | P regr. x K dev. 1 26,136

N dev. X P regr. 1 11,271 | P dev. X K regr. 1 28

N dev. X P dev. 1 1,261 P dev. x K dev. 1 972

N regr. X K dev. 1 6,110 1I 2 388

N dev. X K regr. 1 15,335 | N x P x KJ1II 2 5,742

N dev. X K dev. 1 95,230 v 2 58,141

In this experiment the response to both # and p reach the 1 per
cent. level of significance, but in neither case is there any evidence
of falling off in response with higher dressing nor is there any inter-
action between the two fertilizers. % shows no significant effects.

9. Independent Factors.

The estimation of error from high-order interactions leads
naturally to the consideration of the case where all interactions
can be assumed to be non-existent. A very simple example of this
is provided by the operation of weighing.

Suppose that the weights of seven very light objects require
to be determined, and that the apparatus being used necessitates
an additional observation for zero correction. Suppose, further,
that systematic errors are non-existent, or at least small compared
with random errors. The obvious procedure would be to weigh
each object separately, and to make an eighth weighing with no
object to determine the zero correction. The efficiency, however,
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can be quadrupled by weighing the objects in groups according to
the following scheme :

Weighing No, Objects weighed.
1 atbtetdiretftg
2 a+b +d
3 a +ec +e
4 a +f+yg
5 b+c +f
6 b +e +9
7 c+d + 9
8 dte+f

In this scheme it will be noticed that every object is weighed
four times, and that in the four weighings of a given object every
other object is included twice, the remaining four weighings also
including every other object twice. Thus object @ is included in
weighings 1, 2, 3, and 4, which together contain b, ¢, d, e, f, g twice
each. Weighings 5, 6, 7, and 8 contain objects b, ¢, d, e, f, g twice
each, but not . The difference between the mean of 1, 2, 3 and 4,
and the mean of 5, 6, 7 and 8, therefore provides an estimate of the
weight of a, and since it is the difference of two means of four weigh-
ings the estimate has four times the precision (one-half the standard
error) of that given by the ordinary procedure.

The formal analogy of the above scheme and the 2 X 2 X 2
factorial system may be drawn here. If the weighings 1 to 8 are
replaced by the treatment combinations npk, np, nk, », pk, p, k
and (1) respectively, it will be found that the estimate of the weight
of @ is transformed into the estimate of the main effect N.
Similarly, the estimates of the weights of b, ¢, d, ¢, f and g are trans-
formed respectively into the estimates of the main effects P and
K, and the interactions N X P, N X K, PX Kand N X P X K.

Cases in which the interactions are certainly negligible are,
in fact, rather rare. Even in the example given above, although
weights are undoubtedly additive, systematic errors of the apparatus
are likely to complicate the issue. But such experimental systems
may be useful in certain preliminary surveys, where there is good
reason to believe that interactions are small and where it is desired
to include as many factors as possible (some of them perhaps unlikely
to produce any effect whatsoever).

The experiments described by Tippett ¢ and already referred
to in the introduction are of this type. He there considers designs
for experiments containing 3, 4 or 5 factors, with five values for
each factor, the designs being based on 5 x 5 Latin, Graeco-Latin,

and hyper-Greco Latin squares. Not only are the error degrees
12
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of freedom composed of interactions of the various factors, but the
mean values representing the main effects are not in reality pure
main effects, but also contain certain interaction components.

10. Loss of Efficiency due to Increase in Block Size.

As far as I know no very extensive investigation has been made
of the increase in experimental error due to increased size of block,
but Wishart 7 in a paper presented to the Empire Cotton-Growing
Corporation Conference in 1934 advised against complex experiments
on these grounds. He there concludes :

“1 know that there has been a tendency to proceed to
complex experiments with two or more sets of interacting
treatments, owing to the flexibility of the arrangement. The
danger of loss of efficiency on this ground [the large size of
the blocks], and on the ground of inadequate replication, should
be guarded against by every experimenter.”

The question of inadequate replication has already been dealt
with. It has been shown that far from there being any loss of
efficiency in factorial designs there is a very considerable gain. It
remains to consider how far increase in plot error due to increase
in block size is likely to outweigh the very real advantages of factorial
design.

The question might be best approached by considering the
efficiency of various types of arrangement, and in particular of
varying block size, over a series of uniformity trials. This, however,
has not been possible up to the present owing to the large amount
of work involved.

Some indication of the relative merits of various types of arrange-
ment can be gained from the examination of the results of experi-
ments already carried out. Very little extra work is entailed, since
the analyses are already in existence.

A comparison of the efficiency of split plots with that of complete
randomization within blocks has already been described in Section 6.
Two further comparisons have been made on Rothamsted material,
one to determine the loss of efficiency that would result if experi-
ments actually arranged in Latin squares or randomized blocks
had been completely randomized, and the second to determine the
loss of efficiency that would result if experiments actually confounded
had not been confounded.

To investigate the effects of complete randomization it is necessary
to make an estimate of what the error mean square would have been
had there been no restrictions.
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Suppose that the mean squares and degrees of freedom in the
analyses of variance are as follows :

Randomized Blocks. Latin Square.
M M
D.F. Sqlf:rne. D.F. quelzlrle.
Blocks g—1 B | Rows p—1 R
Treatments ... p—1 T | Columns ... p—1 C
Error Wp—Ie—-1)| E Treatments... p—1 T
Error Wfp—p—2)] E

If the treatments had been dummy the treatment mean square

would equal the error mean square, except for errors of estimation.

. Replacing T by I the total sum of squares in the case of the random-
ized block experiment would become

(g—1)B+qlp—1E
with pg — 1 degree of freedom. If there were complete randomiza-
tion the error mean square with dummy treatments would be de-
rived directly from this. The relative efficiency is therefore given
by the ratio
(pg — DE

o g=DB+qlp—DEF
In the case of the Latin square similar reasoning gives the ratio

(PP —1)E _ (p+ 1DE
(p—DR+(p—1)C+(p—1)E R+ C+(p—DE

The distribution of the percentage efficiencies for all experiments
carried out in 1932 and 1933 is given in Table IX. The mean per-
centage efficiencies for the two years were as follows. (The numbers
in brackets indicate the numbers of experiments.)

1932. 1933.
Randomized Blocks .| 723 (22) 75-2 (22)
Latin Squares ...| 54-1(38) 57-4 (37)

The differences between the randomized block and Latin square
arrangements are quite marked, especially with the larger sizes of
blocks. Whereas the randomized block arrangements have only
removed on the average 26 per cent. of whatever variation existed
over the experimental site, Latin squares have accounted for no less
than 44 per cent.

On the basis of these figures, therefore, one might expect a
randomized block arrangement to have on an average an efficiency
of only 28, or about 75 per cent. of a Latin square on the same plots.
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TasLe IX.
Percentage Efficiency with Complete Randomization.
Latin Squares. Randomized Blocks.
ext | s |y g | | o 0. e
Percentage
Efficiency. Number of Experiments.

0- 10 — — — 1 — —_—
10- 20 5 2 — — — —
20- 30 3 1 1 2 — —
30- 40 8 7 — 1 —_ 1
40- 50 6 3 1 2 — —_
50~ 60 4 2 1 2 1 —
60— 70 2 2 — 1 6 1
70~ 80 5 4 — 4 1 1
80- 90 7 2 1 — 3 3
90-100 2 1 — 2 4 1

100-110 2 — 1 2 3 2
110-120 2 — — — —
Total 46 ‘ 24 ‘ 5 17 18 9

A comparison of the average percentage standard errors given
in Table X reveals an even greater advantage in favour of the Latin
square. (Rothamsted and Woburn experiments have been excluded
from this table, since in the later years they consisted of large
factorial experiments not comparable with those of the outside

TasLe X.
Average Percentage Standard Errors per Plot.

Qutside Centres.

1927-30. 1931 1932. 1933, | Weighted
Potatoes :— '
Randomized Blocks  ...| 9-0(6) 10-2(6) 4-5(3) 10-6(7) | 9-2(22)
Latin Squares 152(15) 66(11) 78(15) 7-4(15) | 6-8 (56)
Sugar Beet, Roots :—
Randomized Blocks .| 74 (5) 58(2) 82(7) 12:9(1) | 7-0(15)
Latin Squares | 64(8) 53(5) T1(7) 55(8) |61(28)

centres.) In the case of potatoes the relative efficiency as judged
by the ratio of the squares of the mean errors is 55 per cent., and
with sugar beet it is 6o per cent. It is to be expected that the
apparent, efficiency of randomized blocks as compared with Latin
squares would be found to be lower when judged on this comparison,
as many of the Latin squares were only 4 X 4, so that presumably
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there was less fertility variation to remove than in the case of the
larger randomized block experiments.

On the basis of these figures we can make a rough estimate
of the relative efficiency of a factorial design and the equivalent
simple arrangements. As an example we will consider an experiment
on three levels of each of the three standard fertilizers. With
54 plots we should have the option of making three separate experi-
ments of 18 plots each, or of carrying out a 3 X 3 X 3 factorial
experiment in six blocks of g plots (two replicates). The separate
experiments might well be laid out in two 3 X 3 Latin squares
each (six squares in all) with a pooled estimate of error (eighteen
degrees of freedom) from the three experiments, provided these were
allin the same field. Taking the error variance per plot in the Latin
square arrangement as 50 per cent. of that in the factorial arrange-
ment (7.e. somewhat less than the values of 55 per cent. and 6o per
cent. given in the last paragraph), the relative efficiency on the
main effects will be in the ratio of 3:2 in favour of the factorial
design (since three times as many plots are involved in all
means). Thus in mere accuracy of estimation of main effects
the factorial design is 5o per cent. more efficient, as well as having
the additional and even more important advantage of providing
information on the interactions and a wider inductive basis for the
results,

It will be noted that the factorial arrangement might be ex-
pected to be even more efficient relatively to the simple arrange-
ments if these latter had been arranged in randomized blocks instead
of Latin squares. It is not so much the increase in size of block
in a complex experiment that causes a higher error variance per
plot as the necessity of abandoning the admittedly more efficient
Latin square arrangement. Indeed, as we have seen, that complete
randomization without restrictions of the 1932 and 1933 randomized
block experiments would only have decreased the efficiency by about
25 per cent. on the average.

The examination of the confounded experiments confirms this.
The reduction in block size due to the confounding has resulted on
the average in quite moderate increases in efficiency.

In making the estimation of loss of efficiency due to failure
to confound it must be assumed that had the experiment not been
confounded the blocks composing each complete replication would
have formed one large block; it is, of course, possible that the
experimenter might have laid out the experiment with differently
shaped large blocks had he not been confounding. To simplify
the calculations it has also been assumed that partially confounded
interactions are negligible except where they have been judged
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significant. Completely confounded interactions have always been
assumed negligible.

The method of calculation is as follows. Suppose that each
block contains & plots, and that there are Ak treatment combinations
in all, so that in each replication # — 1 degrees of freedom are con-
founded. Let there be r replicates. The analysis of variance with
a single set of degrees of freedom completely confounded is as follows.

M
D.F. Squ?r‘;_
Between complete replications... r—1 A
Blocks { e ! O T B
Treatments... Mk — 1) T
Error | Br—1)k—1) E

Replacing T by £ and including the second part of blocks gives
the sum of squares

r(h — 1)B + rh(k — 1)E,
with 7(hk — 1) degrees of freedom, so that the percentage efficiency
without confounding is
(hk — )E
(h — )B4 k(k — 1)~
Table XI gives the distribution of this fraction for various
groups of Rothamsted experiments. In less than 1o per cent. of
TasLE XI.

Relative Efficiency without Confounding.

2X2x2 3 x3x3.

Miscel-

1/10 and laneous.

1/20 acre
Plots.

Total.
Small 1/10 acre Small
Plots. Plots. Plots.

Percentage
Efficiency. Number of Experiments.
0- 10
10- 20
20- 30
30— 40
40— 50
50— 60
60—~ 70
70— 80
80— 90
90-100

»—awr—-ﬁslr—'lr—i| ]
mwne | | ] |

— e
B WORWON

100-110
110-120

oo wown| [ ]~ |
]w q»—'clh-w»—u—'|]|
[ wofee=| || ]]]

Total 10

b
w

13

(3
—
©
(=23
(=]
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the experiments has the efficiency been more than doubled by the
confounding, but in over half the experiments it has been raised
by more than 235 per cent. In about a third of the experiments the
gain was either trivial or non-existent.

11. A Further Consideration Governing Optimal Block Size.

There is another aspect of the question of the most efficient
block size which is of importance. It is often tacitly assumed
that the block size which gives the minimal error variance per plot
will be the most efficient, but in fact it is necessary to take into
consideration not only the variation of the error with change in
block size, but also the number of treatments it is desired to test.

The points involved can be brought into prominence by consider-
ing the relative efficiency of the (randomized) half-drill strip method
and the randomized block or Latin square method of comparing
several treatments. The discussion applies equally to any system
»f comparing the treatments in pairs.

Usually in the method of pairs one treatment is chosen as control
and all others are compared with it. This has one obvious dis-
advantage, in that the comparisons with control are made with
twice the accuracy (s.e. 1/v/2 of the standard error) of comparisons
between any other pair of treatments, since if A is the control, the
difference of B and C must be deduced from §,,(B — A) — 35,,(C — A),
where 3,,(B — A) is the mean difference of B and A in the pairs where
they occur together. This disadvantage can be obviated by making
comparisons between every pair of treatments. Thus with five
treatments, A, B, C, D, E, there are ten possible comparisons AB,
AC, AD, AE, BC, BD, BE, CD, CE, DE. It is a remarkable fact
that with this type of design, using the same number of plots, the
same accuracy is obtained on all comparisons as would be obtained
on the comparisons of the control and another treatment in the
customary type of arrangement.

With the symmetrical arrangement, if ¢'2 is the error variance
per plot, p the number of treatments, and # the available number of
plots, the variance of the difference between two treatment means is

4(]’ - 1) G2
— .

With the “ control ” arrangement this is the variance of the
(p — 1) comparisons involving the control, while the other 3(p — 1)

(p — 2) comparisons have double the variance. The mean variance
of all comparisons is therefore

8(p — _1_)2 62
PR :
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With an arrangement in randomized blocks or Latin squares,
with an error variance of % per plot, the variance between two
treatment means is

Thus, provided that 62/s’2 is less than 2(p — 1)/p, the randomized
block or Latin square arrangement is more efficient than the sym-
metrical arrangement, while 6%/c’2 must be greater than 4(p — 1)?%/p?
for the control method to be the more efficient. With six treat-
ments these fractions have the values of 5/3 and 25/9 respectively.

In agricultural field trials the greater similarity of pairs of plots
over those of blocks of five is seldom likely to give a ratio of o%/c’2
as great as 25/9, or even 5/3.

Tables XII and XIII show the results of a test on two uniformity
trials. In Mercer and Hall’s wheat data 5 randomized blocks gave

TasLe XII.
Mercer and Hall. Wheat.

Plots used : 5 unit-plots along rows (E and W) X 1 unit-plot across rows,
giving 100 plots (5 x 20) of 1/100 acre each.
Blocks of 5 plots across rows, or four 5 x 5 Latin squares.

Error mean square.

Randomized blocks ... .. 0940

Latin squares ... 0723

Half-drill strip method .. 0698

Randomized pairs ... e 0742
TasLE XIII

Immer. Sugar Beet.

Plots used : 4 rods long x 4 rows wide, 2 edge rows rejected.
Rows 7-54 only used : 60 plots (5 X 12) of 1/90 acre each.
Blocks of 6 plots across rows, or two incomplete 6 X 6 Latin squares.

Error mean square.

Randomized blocks ... .. 2372

Latin squares e 11444
Half-drill strip method <. 130-6
Randomized pairs ... ... 1618

an error mean square of o-g40, compared with 0-698 by the half-
drill strip method, their ratio being 1-35. The method of randomized
blocks is therefore much more efficient.

. In Immer’s sugar beet data ¢ randomized blocks gave 237-2 and
the half-drill strip method 130-6 with a ratio of 1-82. This is slightly
greater than 5/3, but much less than 25/9. The symmetrical
method would therefore be slightly more efficient than randomized
blocks, but the control method considerably less so.

In both cases the Latin square arrangements have reduced the
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error to that of the half-drill strip method, so that the latter method
must be judged very inferior to the use of Latin squares. In onc
case only has the half-drill strip method any appreciable advantage
over random pairs. In fairness, however, it should be pointed out
that the plots are wider than they would properly be on the half-
drill strip method.

In other experimental material much greater similarity may
exist between pairs than between larger blocks, as, for example,
in human beings, where the similarity between monozygotic twins
is strikingly greater than between any other groups that can be
formed. In such cases the arrangement in symmetrical pairs may
be of considerably greater efficiency than any arrangement based
on the use of larger blocks.

It may be mentioned here that the method of symmetrical
pairs is capable of extension to blocks of any number less than the
number of treatments. Thus if the experimental material naturally
forms blocks of three, six treatments may be tested by an arrange-
ment such that (1) every treatment occurs equally frequently and
not more than once in each block, (2) every pair of treatments occur
together in the same number of blocks. For this type of arrange-
ment 1 propose the name of symmetrical incomplete randomized
blocks. Certain modifications are required in the analysis of variance,
and in the presentation of results, but these modifications are
surprisingly simple and demand very little extra computational
labour.

12. Differential Responses in Different Blocks.

An objection that has sometimes been made against confounding
is that the effects of one or more of the treatments may vary from
block to block. This will tend to inflate some other interaction
sum of squares. In the 2 X 2 X 2 arrangement, for instance, if
blocks containing the npk plots respond better to nitrogen than
those containing no fertilizer it is easy to see that an apparent
positive P x K interaction will result. There will, of course, be
no bias in this interaction, for positive and negative values will
occur with equal frequency, but it will be judged significant more
often than it should if compared with the ordinary error.

The objection is not really one against confounding, but against
the whole system of pooling estimates of error in the analysis of
variance. If such variation in response exists, then the error is
no longer homogeneous, and should be split up into its component
parts, namely, the interaction of each treatment degree of freedom
with blocks. The response to #, for instance, would then be tested
against the variation of this response from block to block, namely
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N X blocks, and in so far as the blocks could be regarded as a random
sample of all possible blocks in the field, this would answer the
question as to whether the response to nitrogen over the field could
be regarded as significant or whether it was due to a lucky selection
of blocks. This subdivision of errors cannot be made in Latin square
arrangements.

In practice the force of the objection depends entirely on whether,
in fact, there is likely to be any substantial variation in response
from block to block in experiments ordinarily carried out. It is
well known that response to fertilizers varies very greatly from
farm to farm, and it would therefore appear possible that such
variations occur even on different parts of the same field.

There are various methods of testing whether, in fact, this is
$0. One is to tabulate the mean squares of the interactions of
blocks with each treatment degree of freedom, and see if they are
homogeneous by testing against 2. Again, in confounded experi-
ments the interaction of some particular main effect, say N, with
sub-blocks can be compared with the remaining error degrees of
freedom. Yet a third way, when there are split plot experiments
available, 1s to examine the interaction of the split treatment with
blocks or with the rows and columns of a Latin square.

This last test has been carried out on the experiments with
split plots at Rothamsted and its associated centres. Only those
experiments in which the split treatment shows a significant effect
were chosen. In each case the probability of getting as large or
larger apparent effect was calculated from the z distribution. Table
X1V shows the results. In Latin squares rows and columns have
been taken together if the error degrees of freedom were less than 4o0.

TasLe XIV.

Interaction with Soil Differences.

Year. Place. Crop. Treatment. Int:&%tmn 7 Ng. P.
Rothamsted | Barley g‘&vgrsnn s i gg 83%
1929 (two square s for single Potash Rows 4 52 0-2340
and double| nitrogen) Columns 4 59 0-752
1931 Rothamsted | Wheat Harrowing | Blocks 3 24 0-157
” . Qats Nitrogen Blocks 5 40 0-614
2 Badminton Hay Potash Rows and Cols. 8 12 0519
” Chesterfield | Hay Potash Rows and Cols. 8 12 0-415
» Downham Potatoes Nitrogen Blocks 3 24 0-424
e s Sugar Beet | Nitrogen Blocks 3 24 0-286
» Potton Potatoes N/S-S/A Rows and Cols. 6 6 0-254
» s Cabbages N/S-S/A Rows and Cols. 6 6 0-245
1932 Rothamsted | Potatoes Nitrogen Blocks 2 94 0-155
s Colchester Sugar Beet | Salt Blocks 3 24 0-020
. Qakerthorpe | Mangolds Dung Rows and Cols. 6 6 0-349
1933 | Rothamsted | Wheat Nitrogen (l;glvgxsnns g ﬁ 8228
» s Forage Nitrogen Rows and Cols. 8 12 0-116
. Elshamn Sugar Beet | Nitrogen Rows and Cols. 8 12 0-896
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The table shows no evidence of any variation in response. There
is only one significant result (P = 0-0195), that of salt in the 1932
experiment at Colchester, and examination of the yields of the
individual plots of this experiment did not support the theory of
differential response.

The distribution of the probabilities is shown in Fig. 5. The
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Interactions of treatments with soil differences : distribution of probabilities.

The dotted line shows the expectation in each class.

probability of obtaining a set of probabilities lower than these by
chance is given by the sum of half the Napierian logarithms of the
probabilities, which will be distributed as yx? with 38 degrees of
freedom.! This probability was found to be o-34.

13. Conclusions.

I hope that the results presented in this paper will be a sufficient
demonstration that, rightly used, the complex methods of experi-
mentation included in the term factorial design are of considerable
value In agronomic research. The special devices of confounding
and the estimation of error from high-order interactions admittedly
complicate the statistical analysis of the results, but many of the
difficulties vanish with familiarity, and others (such as the somewhat
laborious calculations required to furnish a table of yields of all
treatment combinations freed from block effects) arise from the
attempt to present the results in a form which is excellent for an
ordinary randomized block or Latin square experiment but unsuitable
for a confounded arrangement.

There remains the danger of misinterpretation owing to faulty
statistical analysis, and the perhaps more serious danger of faulty
design. Both are real dangers, but the adoption of standard ar-
rangements would appear to be an adequate safeguard. In practice
most workers are unable to give special attention to the design
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and analysis of each individual experiment, and if only for this
reason the use of standard patterns appears to be a necessity.

I have not attempted to discuss the relative practical difficulties
of factorial and simple experiments. Many of these difficulties un-
doubtedly arise from unfamiliarity and vanish completely as soon
as one or two factorial experiments are actually carried out. Of
those that do not, the man actually responsible for the conduct
of the experiments in the field must be the judge. At the same
time, in order to judge fairly he must be able to assess the advantages
of factorial design. :

Factorial experiments, particularly confounded experiments,
are more vulnerable than simple experiments with small blocks.
The failure of any considerable part of a single block involves the
results of the whole of that replication in which it occurs, and any
use of the replication necessitates tiresome and lengthy computations.
The failure of animals in animal husbandry experiments can be
equally troublesome. For this reason excessively complex factorial
experiments should not be undertaken when the experiments are
exposed to serious natural hazards.

An important advantage of the straightforward randomized
block arrangement is that an estimate of error can be isolated for
- every comparison separately. This is of very great value when
handling new and unknown material, or treatments which may
produce large differences and even partial or complete failures.
In such cases the assumption of constancy of error variance is
entirely unjustified, but in a randomized block experiment any
treatment or treatments may be excluded and the analysis carried
out on the remainder. This is not true of either the Latin square
or of confounded arrangements.

I have already expressed the opinion that factorial design is
likely to be of interest to workers in other fields of research, and that
in many of these fields the complication of confounding is likely
to be unnecessary. At Rothamsted we are using factorial designs
in experiments with pigs, and also in pot culture work. I have not
space to say more of these applications here, but I would like to
conclude by expressing the hope that workers in other fields may find
these methods as effective as they have already proved in agricultural
research.
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DiscussioNn oN Mr. YATES’S PAPER.

Str WiLLiaM Dampier : I have two functions to perform to-day ;
one is to fill—however unworthily—this gorgeous Chair, and the
other is to propose a cordial vote of thanks to Mr. Yates for the very
interesting work which he has described. In doing so I shall confine
myself to a few general observations, leaving the detailed apprecia-
tion, and perhaps, in some cases, criticisms, of the paper, to those
who are far more able to deal with the technical aspect of it than
ITam.

Not only does the Complex Plan of experiments lead to increasing
aceuracy in experimental results, but also, as you will see, it has, in
the hands of the Rothamsted workers, led to improvements in the
theory of statistics. The history of those improvements has been
well summarized by Mr. Yates. The essence of the new method is
given on p. 189. The old idea was that we ought to arrange our
experiments so that there was only one variable left. But, as
Mr. Yates told us, Professor Fisher has shown that if we ask Nature
a single question, she—she, observe—will often refuse to answer
until some other topic has been discussed. Well, not. only does
factorial design enable us to estimate the effects of several variables
at once, but also, according to Mr. Yates, it increases the accuracy.
That is to me rather surprisingly brought out in the investigations on
weighing on p. 210. There it 1s shown that if instead of carrying out
a straightforward weighing in the old way, you weigh in groups, you
can actually quadruple the accuracy and efficiency of the results.
Then Mr. Yates shows how by a very simple nomenclature it is
possible to apply algebraic methods to the results, and how the
application of mathematics to statistics has led to great develop-
ments in recent years, such as the theory of variance and all the
results which have followed therefrom. The discussion of these
results I shall leave to others. I think the moral of the whole tale
is that in all experimental work, whether agricultural or other,
where we deal with large numbers, sound statistical advice is needed
not only in the interpretation of the results but also in the planning
of the experiments.

I should like to offer on behalf of us all a very cordial vote of
thanks to Mr. Yates.
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