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Summary

The homoterpenes (3E)-4,8-dimethyl-1,3,7-nonatriene (DMNT) and (€, E)-4,8,12-trimethyl-
1,3,7,11-tridecatetraene (TMTT) are major herbivore-induced plant volatiles that can attract
predatory or parasitic arthropods to protect injured plants from herbivore attack. In this study,
DMNT and TMTT were confirmed to be emitted from cotton (Gossypium hirsutum) plants
infested with chewing caterpillars or sucking bugs. Two CYP genes (GhCYP82L1 and
GhCYP82L2) involved in homoterpene biosynthesis in G. hirsutum were newly identified and
characterized. Yeast recombinant expression and enzyme assays indicated that the two
GhCYP82Ls are both responsible for the conversion of (£)-nerolidol to DMNT and (E, E)-
geranyllinalool to TMTT. The two heterologously expressed proteins without cytochrome P450
reductase fail to convert the substrates to homoterpenes. Quantitative real-time PCR (qPCR)
analysis suggested that the two GhCYP82L genes were significantly up-regulated in leaves and
stems of G. hirsutum after herbivore attack. Subsequently, electroantennogram recordings
showed that electroantennal responses of Microplitis mediator and Peristenus spretus to DMNT
and TMTT were both dose dependent. Laboratory behavioural bioassays showed that females of
both wasp species responded positively to DMNT and males and females of M. mediator could
be attracted by TMTT. The results provide a better understanding of homoterpene biosynthesis in
G. hirsutum and of the potential influence of homoterpenes on the behaviour of natural
enemies, which lay a foundation to study genetically modified homoterpene biosynthesis and its
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possible application in agricultural pest control.

Introduction

Plants promote self-fitness against herbivore attack not only by
producing toxins and repellents but also by emitting volatiles that
attract natural enemies of herbivorous insects (Gols, 2014). It has
been reported that herbivore-induced plant volatiles (HIPV) play
an important role in plant communication, functioning as
airborne cues to induce defence in adjacent foliage or plants or
to prime uninfected plant tissue for potentiated defence
responses upon subsequent herbivore attack (Turlings and Ton,
2006). Moreover, carnivorous arthropods can use HIPV to locate
their victims (Dicke, 1999). A well-studied example of the role of
volatiles in plant defence is the tritrophic interaction among lima
bean (Phaseolus limensis, plant), spider mites (Tetranychus
urticae, herbivore) and predatory mites (Phytoseiulus persimilis,
carnivore). After damage by T. urticae, P. limensis leaves release a
complex volatile blend containing homoterpenes that play a
crucial role in plant indirect defence to attract the predators of
herbivores (de Boer et al, 2004). When the emission of
homoterpenes was inhibited by the terpenoid pathway inhibitor
fosmidomycin, reduced attraction of the predatory mite P. per-
similis was observed (Mumm et al., 2008).

Although monoterpenes and sesquiterpenes are two major
classes of HIPV, homoterpenes are the most often reported
volatiles (Dicke, 1994, Pateraki et al., 2015). Two unusual acyclic
homoterpenes with irregular carbon skeletons, a C11 homoter-
pene, DMNT, and a C16 homoterpene, TMTT, are not only
constituents of flower fragrances (Loughrin et al., 1994) but are
also released from many plant species after herbivore damage.
Lima bean and thale cress (Arabidopsis thaliana) plants release
homoterpenes to attract predatory mites when attacked by spider
mites (Lee et al., 2010; Mumm et al., 2008). Rice (Oryza sativa)
plants produce homoterpenes highly attractive to females of
Cotesia chilonis after attack by the striped rice stem borer Chilo
suppressalis (Li et al., 2017). Campoletis sonorensis and Cotesia
marginiventris also respond to homoterpenes released by
Spodoptera littoralis-infested cotton (Gossypium herbaceum) or
maize (Zea mays) plants (Gouinguené et al., 2005). However,
these homoterpenes are generally unable to be detected in
undamaged and mechanically damaged foliage (Paré and Tum-
linson, 1997).

In A. thaliana, AtCYP82G1 can convert (E E)-geranyllinalool
to TMTT (Lee et al., 2010). Additionally, TMTT emitted from
Pieris rapae-infested A. thaliana can attract the natural enemy
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Cotesia rubecula (Kappers et al., 2005; Van Poecke et al.,
2002). DMNT and TMTT are also induced and released from
herbivore-attacked cotton plants (Loughrin et al., 1994; Lough-
rini et al, 1995; McCall et al., 1994; Rodriguez-Saona et al.,
2002). However, the CYP genes involved in homoterpene
biosynthesis in Gossypium hirsutum remain unclear, and the
influence of DMNT and TMTT on the natural enemies of target
insect pests in G. hirsutum is rarely reported. Encouragingly,
the well-characterized ancestry of cotton and the availability of
full genome sequences for G. hirsutum provide a useful
framework to explore plant indirect defence at the genomic
level (Paterson et al., 2012).

In this work, emission of DMNT and TMTT from herbivore-
injured cotton plants was confirmed by gas chromatography—
mass spectrometry (GC-MS). Enzymatic activities of putative
recombinant CYPs in Saccharomyces cerevisiae were investigated
by solid-phase microextraction (SPME) coupled with GC-MS, and
two CYP genes regulating homoterpene metabolism were newly
identified. Subsequently, quantitative real-time PCR (gPCR) was
performed to determine the transcript abundance of these genes
in different plant organs. Furthermore, the effects of DMNT and
TMTT on parasitic wasps of cotton major pests were evaluated by
electroantennogram (EAG) and behavioural response assays
under laboratory conditions.

Results

Emission of DMNT and TMTT from herbivore-injured
G. hirsutum

GC-MS analysis of headspace volatile compounds from herbi-
vore-injured cotton plants showed that both DMNT and
TMTT were emitted from Helicoverpa armigera- and Apolygus
lucorum-damaged cotton plants, while neither DMNT nor TMTT
was released from herbivore-free control plants (Figure 1). The
amounts of DMNT and TMTT produced were calculated by
comparing the peak area ratio to an internal standard (Table 1).
These results confirmed the existence of homoterpene biosyn-
thetic pathways in G. hirsutum and the participation of
particular genes in homoterpene metabolism.

T e Ws  Be 15 1we 15 me 03
Retention fime (min}

Table 1 DMNT and TMTT collected from control and damaged
cotton plants

Undamaged H. armigera-damaged  A. lucorum-damaged
Compound  plants plants plants
DMNT ND 680 + 65 825 + 44
TMTT ND 432 + 51 928 + 152

Amounts (means 4 SD) measured in ng/h. ND, not detected.

Identification of candidate CYP genes

According to the proposed biosynthetic pathways of homoter-
penes in plants, P450 enzymes are assumed to catalyse the final
degradation step. It has been reported that AtCYP82G1 is
responsible for TMTT formation in Arabidopsis, so the
AtCYP82G1 amino acid sequence was employed as a template
to blast protein sequences of the G. hirsutum genome. Given the
existence of conserved domains among P450s, together with the
enzyme binding site of the characterized AtCYP82G1 enzyme
(Figure 2), CotAD_38483, CotAD_50571, CotAD_50575,
CotAD_66393 and CotAD_58474 were selected as candidate
genes.

Catalytic functions of putative CYPs in vitro

When we amplified the candidate nucleotide sequences with
gene-specific cloning primers (Table 2), two highly homologous
gene sequences (CotAD_50571-1 and CotAD_50571-2) were
obtained from CotAD_50571. Finally, six recombinant plasmids
were  constructed from  CotAD_38483, CotAD_50571,
CotAD_50575, CotAD_66393 and CotAD_58474, and the enzy-
matic activities of all the recombinant proteins were analysed.
Using the suggestions of mass spectra libraries (NIST and
Department of Chemical Ecology, Gothenburg University, Swe-
den) together with the GC retention times and mass spectra of
authentic standards, it was found that only CotAD_50571 had
the ability to convert (E)-nerolidol to DMNT or (£, E)-geranyllinalool
to TMTT (Figure 3). However, the recombinant CotAD_50571
proteins without CPR could not degrade the substrates to the
corresponding homoterpenes (Figure 4).
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Figure 1 GC-MS analysis of DMNT and TMTT emitted from cotton plants. (a) I, gas chromatogram of authentic DMNT; II, volatiles from cotton plants
infested with H. armigera; lll, volatiles from cotton plants infested with A. lucorum; IV, volatiles from control cotton plants; V, volatiles from an empty glass
jar; (b) mass spectrum of peak 1; (c) I, gas chromatogram of authentic TMTT; II-V are the same as described in (a) I-V; (d) mass spectrum of peak 2. 1,

DMNT; 2, TMTT.
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Figure 2 Alignment of deduced amino acid sequences of candidate CYPs with AtCYP82G1. PRD, proline-rich domain; PD, PERF domain; HBD, heme-
binding domain. SRS1-6 indicates substrate recognition sites as predicted for AtCYP82G1. Residues with an asterisk represent the key substrate-interacting
residues identified in AtCYP82G1.

and phylogenetic classification of cytochrome P450s, the
two target genes are alleles and classified into the CYP82L
family and were deposited in GenBank with the accession
numbers KY247144 (GhCYP82LT) and KY247145
(GhCYP82L2).

Table 2 Primers used in this study

Primer name Sequence (5'-3)

Gene cloning
CotAD_38483-forward
CotAD_38483-reverse
CotAD_50571-forward
CotAD_50571-reverse
CotAD_50575-forward
CotAD_50575-reverse
CotAD_66393-forward
CotAD_66393-reverse
CotAD_58474-forward
CotAD_58474-reverse
gPCR

ATGGGAACTTTCTTTCCAAACC
TTATTCATACAGATGAGGGGGAAG
ATGGATCTTTACACTTACATTCCATC
TTAAAGGCATTCGTAAAACTCAGT
ATGCAAGAAGCTAGCAACAAT
CTAGTTTTCATTCATATTTITACCTT
ATGGAATTCTCATATTCTGTAGCG
TTAGGTCCTGTGCAGATACATTG
ATGGAATTCTCATATTCTGTAGCG
TTAAGTGCTGTGCAGATACATTG

Transcript abundance of CYP82Ls in herbivore-damaged
and control G. hirsutum

To investigate the target gene expression in herbivore-damaged
and control plants, gPCR measurements were conducted to
evaluate the transcript levels of CYP82Ls in leaves, stems and
roots of different treatments (Figure 6). CYP82L1 and CYP82L2
showed similar expression patterns, with the highest transcript
levels in stems, moderate transcript accumulation in leaves and
trace accumulation in roots. The two CYP82Ls showed signif-
icantly up-regulated expression in stems and leaves of herbi-

GhCYP82L1-forward ATTCTCTGGTAACGAGTT . . ,
GhCYPSILY AACACTGATTACTGAGTC vore-attacked plants in comparison with undamaged control
-reverse . .
GhCYPEIL2-forward ATTCTCCGGTAACGATTA plants (H. armigera-infested vs. control treatments: Pcypsor,
GhCYP82L2-reverse AACATTGATTATTGAGTCGA leaves = 0.02, Pevesaur, - stem < 0.01, Pevesatr, roors =0.80,
Actinforward ATCCTCCGTCTTGACCTTG Pcypgat2,  leaves < 0.01,  Pcypgarz,  stem < 0.01,  Pcypsalz,
At TGTCCGTCAGGCAACTCAT roots = 0.19;  A. lucorum-infested vs. control treatments:
ctin-reverse
PCYP82L1, leaves = 0.04, PCYP82L1, stem < 0.05, Pcypsatt,
roots — 0.87, PCYPSZLZ, leaves = 0.01, PCYPSZLZ, stem < 0.01,

Pcypgal2, roots = 0.11).

Homology analysis of target CYPs

From the phylogenetic tree of P450s in the plant CYP82 family,
the two target CYPs showed the highest identity with
CpCYP82L3 (Figure 5), with values of 61.83% and 59.92%,
respectively. In addition, the identity between the two tar-
get sequences was 95.34%. According to the nomenclature

EAG responses of parasitic wasps to homoterpenes

The EAG responses of Microplitis mediator and Peristenus spretus
to DMNT or TMTT generally increased as concentrations increased
(Figure 7). However, there were no significant differences
between males and females of the tested wasps to homoterpenes
(for M. mediator male vs. female to DMNT: 1 ug/uL, P = 0.36;

© 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd., 16, 581-590
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Figure 3 GC-MS analysis of DMNT and TMTT produced by recombinant proteins expressed in S. cerevisiae with Cy5 or C,q substrates. (a) I, gas
chromatogram of authentic DMNT; II-VIII, volatiles produced by recombinant proteins CotAD_38483, CotAD_50571-1, CotAD_50571-2, CotAD_50575,
CotAD_66393, CotAD_58474 and empty vector pYES2, respectively, with (E)-nerolidol; (b) I, gas chromatogram of authentic TMTT; II-VIII, volatiles
produced by recombinant proteins CotAD_38483, CotAD_50571-1, CotAD_50571-2, CotAD_50575, CotAD_66393, CotAD_58474 and empty vector
pYES2, respectively, with (E, E)-geranyllinalool. 1, DMNT; 2, TMTT.
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Figure 4 Effect of CPR on the enzymatic activity of recombinant CotAD_50571 proteins. (a) I, gas chromatogram of authentic DMNT; II-VII, volatiles
produced by recombinant CotAD_50571-1 protein co-expressed with CPR, CotAD_50571-1 without CPR, CotAD_50571-2 with CPR, CotAD_50571-2
without CPR, empty vector pYES2 with CPR and empty vector pYES2 without CPR, respectively, when (E)-nerolidol was used as substrate; (b) I, gas
chromatogram of authentic TMTT; II-VII, volatiles produced by recombinant CotAD_50571-1 protein co-expressed with CPR, CotAD_50571-1 without
CPR, CotAD_50571-2 with CPR, CotAD_50571-2 without CPR, empty vector pYES2 with CPR and empty vector pYES2 without CPR, respectively, when (E,
E)-geranyllinalool was used as substrate. 1, DMNT; 2, TMTT.

10 pg/pL, P = 0.19; 100 pg/pL, P = 0.41; for M. mediator male 1 pg/uL, P = 0.60; 10 pg/uL, P = 0.62; 100 pg/pL, P = 0.52; for
vs. female to TMTT:. 1 pg/uL, P = 0.47;, 10 ug/uL, P = 0.76; P. spretus male vs. female to TMTT: 1 ug/uL, P = 0.33; 10 pg/ul,
100 pg/ul, P = 0.65; for P. spretus male vs. female to DMNT: P =0.35; 100 pg/uL, P = 0.28).
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Behavioural responses of parasitoids to homoterpenes

The behavioural responses of M. mediator and P. spretus to
homoterpenes were studied in a Y-tube olfactometer. The results
showed that M. mediator females were significantly attracted by
DMNT (x%> =7.41, df =1, P<0.01) and TMTT (x* =4.26,
df =1, P=0.04) compared to the mineral oil control, while
M. mediator males showed higher preference only for TMTT
(x> =9.09, df =1, P<0.01), and there was no significant
preference of M. mediator males to DMNT or mineral oil
(x> =2.27, df =1, P=10.13). In P. spretus, there was a signif-
icant attraction of females to DMNT (y® =4.55, df=1,
P =0.03), while no statistically significant preference of males
for DMNT or mineral oil was observed (x? =0.00, df =1,
P = 1.00). Neither males nor females of P. spretus had significant
preference for TMTT (PsM, %2 = 0.05, df =1, P =0.82; PsF,
x% =0.07, df =1, P = 0.80; Figure 8).

Discussion

Homoterpenes were induced by herbivore damage in
G. hirsutum

Emissions of DMNT and TMTT were observed only from
H. armigera- or A. lucorum-damaged G. hirsutum in this study.
They were also reported to be released only from G. hirsutum
infested with leaf-chewing caterpillar Spodoptera exigua or
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Figure 6 Transcript abundance of CYP82L genes in different organs of G. hirsutum. Data represent the means + SE. Asterisks indicate significant

differences between treatments (**P < 0.01, *P < 0.05).
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Figure 8 Behavioural responses of M. mediator and P. spretus to DMNT
and TMTT. MmF, females of M. mediator; MmM, males of M. mediator;
PsF, females of P. spretus; PsM, males of P. spretus. The percentage of
wasps that chose mineral oil (white bars) versus DMNT (grey bars) or
mineral oil (white bars) versus TMTT (tawny bars) are shown in figure. The
numbers on each bar represent the number of wasps that made a choice.
Sixty wasps in total were tested in each treatment. Asterisks indicate a
significant difference with a choice test: **P < 0.01, *P < 0.05, and ns
indicates no significant difference.

piercing-sucking bug Lygus hesperus compared to herbivore-free
plants (Loughrin et al., 1994; Williams et al., 2005). The result
indicated that DMNT and TMTT were emitted exclusively from
herbivore-damaged G. hirsutum plants, and the observed
homoterpene metabolism was induced by herbivore damage.

Two CYP82L genes were involved in DMNT and TMTT
biosynthesis of G. hirsutum

Among all the tested recombinant proteins, only GhCYP82L1 and
GhCYP82L2 could catalyse conversion of (E)-nerolidol to DMNT or
(E,E)-geranyllinalool to TMTT. It was previously reported that
AtCYP82G1 could degrade (E E)-geranyllinalool to TMTT in
A. thaliana (Lee et al., 2010). ZmCYP92C5 was capable of
converting (E)-nerolidol to DMNT by oxidative degradation, and
ZmCYP92C6 was specific for the conversion of (E,E)-geranyllina-
lool to TMTT in Z mays (Richter et al,, 2016). Homoterpene

formation in Z. mays does not depend on CYP82-type P450s, as
this family is absent in monocots (Tholl et al., 2011), whereas
ZmCYP92C5 and ZmCYP92C6 were classified into the CYP92
family within the stress-responsive CYP71 clan, which included
the CYP82 and CYP92 families (Richter et al, 2016). The
GhCYP82Ls and AtCYP82G1 belonged to the same CYP82 family
in dicots. The results also suggested that the GhCYP82Ls in
G. hirsutum could share similar catalytic functions with
AtCYP82G1 in A. thaliana.

CPR was necessary for the catalytic action of GhCYP82Ls

Enzyme activity assays revealed that the recombinant proteins
without CPR could not degrade (E)-nerolidol to DMNT or (E,E)-
geranyllinalool to TMTT. When the target genes were co-
expressed with CPR from Cucumis sativus, the recombinant
protein could convert substrates to DMNT or TMTT successfully,
which indicated that GhCYP82Ls associated with CPR could
achieve optimal enzyme activities. It was reported that co-
expression with CPR was essential for CYP to perform catalytic
activities (Pompon et al, 1996). In Arabidopsis, CYP71A13
without CPR and NADPH could not convert indole-3-acetaldox-
ime to indole-3-acetonitrile (Klein et al., 2013). In poplar,
CYP71B40v3 and CYP71B41v2 catalysed the dehydration of
aldoximes to nitriles without further oxidation, independent of
added CPR (Irmisch et al., 2014).

Transcript abundance of CYP82Ls also suggested that
the expression of CYP82Ls in G. hirsutum was induced by
herbivore damage

The expression of GhCYP82Ls in G. hirsutum was significantly up-
regulated after herbivore damage, especially in leaves and stems.
These results were consistent with those of ZmCYP92Cs in
Z. mays, PtCYP79Ds in Populus trichocarpa and AtCYP82GT in
A. thaliana, which were strongly up-regulated in herbivore-
damaged plants compared to undamaged controls (Irmisch et al.,
2014; Lee et al., 2010; Richter et al., 2016). The highly expressed
GhCYP82Ls contributed to the formation of homoterpenes in
herbivore-damaged plants. Leaves damaged by herbivores could
cause systematic defence in cotton plants, which would induce
the expression of GhCYP82Ls in stems. The reasons caused higher
expression level of GhCYP82Ls in stems should be further
investigated in details. Moreover, tissue-specific expression

© 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd., 16, 581-590



patterns of CYP genes might be helpful in enhancing plant fitness
upon herbivore attack. For example, AtCYP76CT exclusively
expressed in flowers could reduce floral attraction and favour
protection against visiting insect pests (Boachon et al., 2015), and
AtCYP705A1, as a root-specific gene of A. thaliana, was
expressed to defend against the root rot oomycete pathogen
Pythium irrequlare (Sohrabi et al., 2015). High expression of
GhCYP82Ls in the aerial parts of G. hirsutum was presumed to
enhance the emission of homoterpenes to attract herbivore
enemies.

The potential roles of DMNT and TMTT in attraction of
herbivore enemies

Electroantennogram and behavioural studies accompanied by
proper identification of semiochemicals not only increase our
knowledge of insect chemical communication but also help in
making appropriate plant protection strategies (Khan et al.,
2010). It was reported that DMNT and TMTT were able to attract
natural enemies of arthropod herbivores when released from
damaged foliage (Tholl et al., 2011). DMNT and TMTT, with other
induced volatiles from T. urticae-infested Phaseolus Ilunatus
leaves, could affect the foraging behaviour of P. persimilis, while
neither DMNT nor TMTT as a single synthetic compound was
attractive to P. persimilis. Moreover, volatiles induced by S. ex-
igua had significant attractiveness to P. persimilis after TMTT was
added (de Boer et al., 2004). Severely reduced emission of DMNT
or TMTT when P. lunatus was treated with fosmidomycin could
lead to a reduced attraction to predatory mites (Mumm et al.,
2008). Therefore, specific compounds from complex herbivore-
induced volatiles could play an important role in the behavioural
choice of natural enemies of herbivorous arthropods. In this
study, EAG assays confirmed that both DMNT and TMTT could be
perceived by male or female parasitoids as attractants. Y-tube
assays further showed that females of both wasp species
responded positively to DMNT, and males as well as females of
M. mediator were attracted by TMTT.

Volatile blends were promising for application in integrated
pest management strategies that employ volatiles attracting
herbivore enemies in the so-called push—pull systems (Khan et al.,
2008). It was also reported that manipulation of TMTT was an
ideal platform for pest control via the attraction of generalist and
specialist predators in different manners (Brillada et al., 2013).
The roles of DMNT and TMTT in attracting parasitoids of
herbivores have spurred growing interest in improving natural
plant defence via the genetic engineering of DMNT and TMTT
formation. C. chilonis were more attracted to rice plants with
overexpression of TPS3 and TPS4 genes of P. lunatus, which
released more DMNT and TMTT than wild-type rice plants (Li
et al., 2017). Transgenic Lotus japonicus plants with the TPS2
gene of P. lunatus produced TMTT, and the specialist P. persimilis
was strongly attracted to herbivore-damaged L. japonicas
expressing this gene (Brillada et al, 2013). The identified
GhCYP82Ls in G. hirsutum could also be used as target genes
for modification by transgenic techniques to manipulate DMNT or
TMTT formation in plant self-defence, which would provide new
strategies for pest management.

Experimental procedures

Plant and insect material

Cotton seeds (G. hirsutum cv. CCRI12) were sown in plastic pots
(16 cm i.d. x 14 cm height) with a 2 : 1 mixture of soil and
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vermiculite (Yinong Nursery Substrates Co. Ltd, Shandong, China)
and grown in a glasshouse (29 + 4 °C, 40 + 10% RH, 16L : 8D
photoperiod). Plants with 67 fully expanded leaves were used for
all the experiments (Huang et al., 2015).

Larvae of H. armigera were reared on an artificial diet under
conditions of 27 + 2 °C, 75 + 10% RH and 14L : 10D pho-
toperiod (Huang et al., 2015). Second-instar larvae were used for
further experiments. Nymphs of A. Jucorum feeding on green
beans (Phaseolus vulgaris) were cultivated in climatic chambers at
29 £ 1 °C, 60 4+ 5% RH and 14L : 10D photoperiod (An et al.,
2016). Three-day-old A. lucorum adults were employed for the
following assays. M. mediator, a parasitoid of H. armigera larvae,
was reared in a plexiglass cage (30 x 30 x 25 c¢m) in a growth
chamber (28 + 1 °C, 60 + 10% RH, 16L : 8D photoperiod).
Newly emerged wasps were maintained with 10% honey solution
(Wang et al., 2015). P. spretus, a parasitoid of A. lucorum, was
maintained with 10% honey solution as described above under
conditions of 25 + 1 °C, 65 & 5% RH and 14L : 10D photope-
riod (Luo et al., 2015). Three-day-old adult wasps were prepared
for the experiments.

Plant treatments

Two A. lucorum adults or H. armigera larvae were placed on
each leaf of a pair of cotton plants. Plants without herbivore
damage under the same conditions were used as controls. After
24 h, one plant of the group was immediately used for collection
of herbivore-induced plant volatiles. The roots, stems and leaves
of the other were harvested, and the collected samples were
immediately frozen in liquid nitrogen for PCR assay. For each
treatment, three biological replicates were conducted.

Collection and identification of volatiles

One pot containing one herbivore-injured or control plant was
put into a glass jar (25 ¢cm in diameter x 60 c¢m in height), and
the container was tightly sealed with metal camps on the lid. Air,
purified by passage through an activated charcoal filter, was
actively pumped through the container at a flow rate of 1500 mL/
min with a vacuum pump. Volatiles emitted from herbivore-
injured or control plants were collected in an 8-mm-diameter
glass tube with 50 mg of 60/80 mesh Tenax-TA (Shanghai ANPEL
Scientific Instrument Company, Shanghai, China) for 8 h (Huang
et al., 2015). The collected compounds were then extracted with
300 pL of hexane (Fisher, Fairlawn, NJ), to which 8.6 pug of ethyl
caprate (Sigma-Aldrich, Oakville, Canada) was added as an
internal standard for quantitative analysis. A 1-ulL aliquot of the
extracted sample was splitlessly injected in a GCMS-QP2010SE
(Shimadzu, Japan) equipped with an Rtx-5 MS dimethylpolysilox-
ane column (30 m x 0.25 mm x 0.25 pm, Agilent Technolo-
gies, CA). Purified helium was used as carrier gas at a constant
flow rate of 0.8 mL/min. The injector, transfer line and ion source
temperatures were set at 250, 280 and 250 °C, respectively. The
GC oven temperature was initially maintained at 40 °C for 1 min
and then increased to 190 °C at a rate of 5 °C/min, held for
5 min and finally increased to 250 °C at a rate of 10 °C/min and
held for 5 min. In addition, MS was scanned at a 1-kV detector
voltage over 50-650 atomic mass units. Tentative identifications
of DMNT and TMTT were made by comparison of mass spectra (a)
with mass spectra libraries (NIST and Department of Chemical
Ecology, Goteborg University, Sweden) and (b) with mass spectra
and retention times of authentic samples obtained from Fluka,
Sigma (http://www.sigmaaldrich.com; Huang et al., 2013; Pickett
et al., 2003).
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Identification of candidate CYP genes

To identify sequences of putative CYPs that regulate DMNT and
TMTT formation, a BLASTP search with 107> as the cut-off e-
value was performed against amino acid sequences of G. hirsu-
tum using a sequence of one characterized CYP monooxygenase,
AtCYP82G1 (At3g25180), from Arabidopsis. In addition, all the
differentially expressed CYPs from previous transcriptome data of
G. hirsutum infested with A. Jucorum (data not shown) were also
screened. To identify candidate CYPs, the filtered CYP sequences
were aligned with representative sequence AtCYP82G1 using the
domains conserved among P450s (Xu et al., 2015; Rupasinghe
and Schuler, 2006), including the proline-rich domain (PRD,
PxxxxxxP), PERF domain (PD, PERF), heme-binding domain (HBD,
FxxGxxxCxG) and substrate recognition sites (SRS).

Heterologous expression in S. cerevisiae

The complete open-reading frames (ORFs) of putative CYP genes
were amplified with gene-cloning specific primers (Table 1).
These sequences were then cloned into the pYES2 vector as Kpnl-
Xbal or Hindlll-Xbal fragments co-expressing with CPR of
C. sativus. The recombinant constructs were transformed into
the INVSc1 strain, and transformed cells were selected on SC-U
selection medium. Expression of target genes was performed in
the yeast strain INVSc1 according to the manufacturer’s instruc-
tions (Invitrogen, Carlsbad, CA). Briefly, a single colony containing
the recombinant construct was inoculated in 10 mL SC-U liquid
medium containing 2% raffinose at 30 °C in a shaking incubator
at 280 r.p.m. until the ODggg Of the culture reached 1.0; then, the
cells were cultured in induction medium containing 2% galactose
to express the recombinant protein under the conditions men-
tioned above for 48 h.

CYP activity assays

Enzyme activity assays of CYPs were performed in 20-mL PTFE/
Silicon Septa screw cap glass vials (Agilent Technologies). The
reaction system, containing 5 mL resuspended culture harbouring
recombinant proteins pelleted from 50 mL induction medium and
10 uM (E)-nerolidol or (E,E)-geranyllinalool, was incubated at
30 °C on a temperature-controlled tray for 4 h. The reaction was
terminated by adding HCl to a final concentration of 0.05 M (Lee
et al., 2010). An SPME (SAAB-57330U, Bellefonte) fibre coated
with 100 um polydimethylsiloxane/divinyloenzene (PDMS/DVB)
was rapidly inserted into the headspace of the vial to capture the
reaction products for 1 h at 30 °C. Yeast cells containing empty
PYES2 plasmids were used as a control. After absorption, the SPME
fibre was directly inserted into the GC injector, and the catalytic
products were analysed by SPME-GC-MS as described above.

RNA extraction and qPCR

Total RNA was extracted from collected tissue samples of
G. hirsutum using the EASYspin Plant RNA kit (Aidlab Biotech,
Beijing, China). The quantity of RNA obtained was determined
using a Nanodrop ND 2000 (Nanodrop Technologies, Wilming-
ton, DE), and ¢cDNA was synthesized using the SuperScript™ I
Reverse Transcriptase Kit (Invitrogen, Carlsbad, CA) according to
the manufacturer’s instructions. The gPCR measurement was
conducted on an ABI7500 PCR System (Applied Biosystems,
Carlsbad, CA). Actin (GenBank accession number: AY305733)
was used as reference gene. Gene-specific primers (Table 2) for
two target genes, and reference gene were designed using
Beacon Designer 7.9 (Premier Biosoft, Palo Alto). All samples were

assayed in 20 pL reaction systems using the Talent gPCR PreMix
kit (Tiangen Biotech Co. Ltd, Beijing, China) according to the
manufacturer’s instruction. The PCR cycling parameters were as
follows: 95 °C for 3 min, followed by 40 cycles of 95 °C for 5 s
and 60 °C for 32 s. Three technical replicates were done for each
sample.

Electroantennogram assay

EAG was used to record the electroantennal responses of two
parasitic wasps, M. mediator and P. spretus, to DMNT and TMTT
(ChangZhou NinglLu Biological Technology Co., Ltd, Jiangsu,
China). Concentrations of chemicals tested were 1, 10 and
100 pg/uL. For each compound, 1-nonanal at a concentration of
10 png/uL was used as a reference and liquid paraffin as a control.
Filter paper strips (4 mm x 30 mm) loaded with 10 uL of each
compound were inserted into a Pasteur pipette. An activated
carbon-filtered airflow at 300 mL/min was passed through the
Pasteur pipette, which was placed 5 mm away from the antenna
(Zhou et al., 2014). Each compound was tested with an interval
of at least 30 s on three female and three male adult antennae
separately.

Behavioural response trial

Insect behavioural responses to DMNT and TMTT were evaluated
using a Y-tube olfactometer, which consisted of a 20-cm-long
central tube and two 20-cm-long lateral arms with an interior
diameter of 3 cm. The two branch tubes were attached to separate
odour-source flasks. Ten microlitres of each tested chemical
(100 pg/ul) was dripped onto a filter paper strip, which was then
put into one odour-source flask. Liquid paraffin in the other flask
was used as control (Williams et al., 2010). Three-day-old para-
sitoids were individually released at the base of the central arm of
the Y-tube and observed for 5 min. If a parasitoid did not make a
choice during this period, it was removed and recorded as no
choice. Parasitoids that travelled 2/3 of the distance into the
terminal arms and stayed there atleast 5 s were recorded as having
made a choice. After five runs, the position of the arms was
reversed to avoid position bias. The Y-tube was changed after every
10 individuals tested (Bruce et al., 2008). Sixty insects of each
species were used in one treatment. All behavioural assays were
conducted between 8:00 AM and 12:00 AM.

Data analysis

The comparative 272" method (Livak and Schmittgen, 2001)
was used to calculate the relative transcript levels of GhCYP82L1
and GhCYP82L2 in organs of G. hirsutum. In addition, a paired-
sample t-test was employed to examine significant differences in
transcript levels of CYP82Ls between controls and treatment
groups (Irmisch et al, 2012). Relative EAG values of each
parasitoid to volatiles were calculated as described previously
(Yang et al., 2016). The paired-sample t-test was also employed
to examine significant differences in EAG responses between
sexes of tested wasps. In the behaviour trial, we performed a chi-
square analysis with a 50 : 50 distribution to determine the
preference of wasps between odour sources and controls. For this
analysis, we included only parasitoids that had made a choice. All
data were analysed using SAS 9.2 (SAS Institute Inc. Cary, NC).
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