A polarimetric Doppler radar time‐series simulator for biological applications

Stepanian, Phillip, Mirkovic, D. and Chilson, P. B. (2018) A polarimetric Doppler radar time‐series simulator for biological applications. Remote Sensing in Ecology and Conservation, 4 (4). pp. 285-302. 10.1002/rse2.80
Copy

The high mobility of airborne organisms makes them inherently difficult to study, motivating the use of radars and radar networks as biological surveillance tools. While the utility of radar for ecological studies has been demonstrated, a number of challenges remain in expanding and optimizing their use for surveillance of birds, bats and insects. To explore these topics, a Lagrangian simulation scheme has been developed to synthesize realistic, polarimetric, pulsed Doppler radar baseband signals from modelled flocks of biological point scatterers. This radar simulation algorithm is described, and an application is presented using an agent-based model of the nocturnal emergence of a cave-dwelling colony of Brazilian free-tailed bats (Tadarida brasiliensis). Dualpolarization radar signals for an S-band weather surveillance radar are synthesized and used to develop a new extension of the spectral velocity azimuth display for polarimetric roost-ring signature analysis, demonstrating one capability of this simulation scheme. While these developments will have direct benefits for radar engineers and meteorologists, continuing investment in radar methods such as these will have cascading effects toward improving ecological models and developing new observational techniques for monitoring aerial wildlife.


picture_as_pdf
Stepanian-2018-A-polarimetric-doppler-radar-time-s.pdf
subject
Published Version
Available under Creative Commons: Attribution 4.0

View Download

Atom BibTeX OpenURL ContextObject in Span OpenURL ContextObject Dublin Core MPEG-21 DIDL Data Cite XML EndNote HTML Citation METS MODS RIOXX2 XML Reference Manager Refer ASCII Citation
Export

Downloads