Linking the depletion of rhizosphere phosphorus to the heterologous expression of a fungal phytase in Nicotiana tabacum as revealed by enzyme-labile P and solution 31 P NMR spectroscopy

Giles, C. D., George, T. S., Brown, L. K., Mezeli, M., Shand, C. A., Richardson, A. E., Mackay, R., Wendler, R., Darch, TeganORCID logo, Menezes-Blackburn, D., +7 more...Cooper, P., Stutter, M. I., Lumsdon, D. G., Blackwell, MartinORCID logo, Wearing, C., Zhang, H. and Haygarth, P. M. (2016) Linking the depletion of rhizosphere phosphorus to the heterologous expression of a fungal phytase in Nicotiana tabacum as revealed by enzyme-labile P and solution 31 P NMR spectroscopy. Rhizosphere, 3. pp. 82-91. 10.1016/j.rhisph.2016.11.004
Copy

Root exudation of phytase could improve the ability of plants to access organic forms of soil phosphorus (P), thereby minimizing fertilizer requirements and improving P use efficiency in agroecosystems. After 75 days growth in a high available P soil, shoot biomass and P accumulation, soil pH, and rhizosphere P depletion were investigated in Nicotiana tabacum wild-type and transgenic plant-lines expressing and exuding Aspergillus niger phytase (ex::phyA), or a null-vector control. Solution 31P NMR analysis revealed a 7% to 11% increase in orthophosphate and a comparable depletion of undefined monoester P compounds (-13 to -18%) in the rhizosphere of tobacco plants relative to the unplanted soil control. Wild-type plants had the greatest impact on the composition of rhizosphere P based on the depletion of other monoester P, polyphosphate, and phosphonate species. The depletion of phytase-labile P by ex::phyA plants was associated with decreased proportions of other monoester P, rather than myo-InsP6 as expected. Rhizosphere pH increased from 6.0 to 6.5–6.7 in transgenic plant soils, beyond the pH optimum for A. niger phyA activity (pH=5), and may explain the limited specificity of ex::phyA plants for phytate in this soil. The efficacy of single exudation traits (e.g., phytase) therefore appear to be limited in P-replete soil conditions and may be improved where soil pH matches the functional requirements of the enzyme or trait of interest.

visibility_off picture_as_pdf

picture_as_pdf
1-s2.0-S2452219816300908-main rhizosphere.pdf
subject
Published Version
lock
Restricted to Repository staff only
Available under Creative Commons: Attribution 4.0


Atom BibTeX OpenURL ContextObject in Span OpenURL ContextObject Dublin Core MPEG-21 DIDL Data Cite XML EndNote HTML Citation METS MODS RIOXX2 XML Reference Manager Refer ASCII Citation
Export

Downloads