Down‐regulation of key genes involved in carbon metabolism in Medicago truncatula results in increased lipid accumulation in vegetative tissue

Wijekoon, C., Singer, S. D., Weselake, R. J., Petrie, J. R., Chen, G., Singh, S., Eastmond, Peter and Acharya, S. N. (2020) Down‐regulation of key genes involved in carbon metabolism in Medicago truncatula results in increased lipid accumulation in vegetative tissue. Crop Science, 60 (4). pp. 1798-1808. 10.1002/csc2.20124
Copy

Alfalfa (Medicago sativa L.), is the most widely grown perennial forage crop, which is a close relative of the model diploid legume Medicago truncatula. However, use of alfalfa lead to substantial greenhouse gas emissions and economic losses related to inefficiencies in rumen fermentation. The provision of supplemental lipids has been used as a strategy to mitigate these issues, but it is a costly approach. The ability to enhance lipid content within the vegetative tissues of alfalfa would therefore be very advantageous. As such, our aim was to assess and select gene candidates to increase total shoot lipid content in M. truncatula using a virus‐induced gene silencing (VIGS) approach. We targeted gene homologs of the SUGAR‐DEPENDANT 1 (SDP1), ADP‐GLUCOSE‐PYROPHOSPHORYLASE SMALL SUBUNIT 1 (APS1), TRIGALACTOSYLDIACYLGLYCEROL 5 (TGD5) and PEROXISOMAL ABC TRANSPORTER 1 (PXA1) in M. truncatula for silencing. Reduced target transcript levels were confirmed and changes of shoot lipid content and fatty acid composition were measured. Silencing of SDP1, APS1 and PXA1 each resulted in significant increases in shoot total lipid content. Significantly increased proportions of α‐linolenic acid (18:3Δ9cis,12cis,15cis) were observed and stearic acid (18:0) levels significantly decreased in the total acyl lipids extracted from vegetative tissues of each of the M. truncatula silenced plants. In contrast, palmitic acid (16:0) levels were significantly decreased in only SDP1 and PXA1‐silenced plants. Genes of PXA1 and SDP1 would be ideal targets for mutation as a means of improving the quality of alfalfa for increasing feed efficiency and minimizing greenhouse gas emissions from livestock production in the future.

visibility_off picture_as_pdf

picture_as_pdf
csc2.20124.pdf
subject
Published Version
lock
Restricted to Repository staff only
Available under Creative Commons: Attribution 4.0


Accepted Version


Atom BibTeX OpenURL ContextObject in Span OpenURL ContextObject Dublin Core MPEG-21 DIDL Data Cite XML EndNote HTML Citation METS MODS RIOXX2 XML Reference Manager Refer ASCII Citation
Export

Downloads