The case for improving crop carbon sink strength or plasticity for a CO2 rich future

Dingkuhn, M., Luquet, D., Fabre, D., Muller, B., Yin, X. and Paul, Matthew (2020) The case for improving crop carbon sink strength or plasticity for a CO2 rich future. Current Opinion in Plant Biology, 56. 259–272. 10.1016/j.pbi.2020.05.012
Copy

Atmospheric CO2 concentration [CO2] has increased from 260 to 280 μmol mol−1 (level during crop domestication up to the industrial revolution) to currently 400 and will reach 550 μmol mol−1 by 2050. C3 crops are expected to benefit from elevated [CO2] (e-CO2) thanks to photosynthesis responsiveness to [CO2] but this may require greater sink capacity. We review recent literature on crop e-CO2 responses, related source-sink interactions, how abiotic stresses potentially interact, and prospects to improve e-CO2 response via breeding or genetic engineering. Several lines of evidence suggest that e-CO2 responsiveness is related either to sink intrinsic capacity or adaptive plasticity, for example, involving enhanced branching. Wild relatives and old cultivars mostly showed lower photosynthetic rates, less downward acclimation of photosynthesis to e-CO2 and responded strongly to e-CO2 due to greater phenotypic plasticity. While reverting to such archaic traits would be an inappropriate strategy for breeding, we argue that substantial enhancement of vegetative sink vigor, inflorescence size and/or number and root sinks will be necessary to fully benefit from e-CO2. Potential ideotype features based on enhanced sinks are discussed. The generic ‘feast-famine’ sugar signaling pathway may be suited to engineer sink strength tissue-specifically and stage-specifically and help validate ideotype concepts. Finally, we argue that models better accounting for acclimation to e-CO2 are needed to predict which trait combinations should be targeted by breeders for a CO2-rich world.

visibility_off picture_as_pdf

picture_as_pdf
1-s2.0-S1369526620300790-main.pdf
subject
Published Version
lock
Restricted to Repository staff only
Available under Creative Commons: Attribution 4.0

visibility_off picture_as_pdf

Supplemental Material
lock

Atom BibTeX OpenURL ContextObject in Span OpenURL ContextObject Dublin Core MPEG-21 DIDL Data Cite XML EndNote HTML Citation METS MODS RIOXX2 XML Reference Manager Refer ASCII Citation
Export

Downloads