Soil carbon, nitrogen, and sulphur status affects the metabolism of organic S but not its uptake by microorganisms

Ma, Q., Wen, Y., Pan, W., Macdonald, Andy, Hill, P. W., Chadwick, Dave, Wu, L. and Jones, D. L. (2020) Soil carbon, nitrogen, and sulphur status affects the metabolism of organic S but not its uptake by microorganisms. Soil Biology and Biochemistry, 149. p. 107943. 10.1016/j.soilbio.2020.107943
Copy

Plant sulphur (S) deficiency is a worldwide concern. However, the mechanisms controlling the immobilization and mineralization of low-molecular weight organic S by soil microorganisms remain unclear. Therefore, we investigated the assimilation of carbon (C) and S by soil microorganisms using uniformly 14C- or 35S-labelled cysteine and methionine. The decomposition of cysteine and methionine in the soil occurred in three steps. First, the microbial biomass (MB) rapidly immobilised the added cysteine-S (55%–63%) and methionine-S (81%–84%) in less than 30 min. Subsequently, S in the MB was released as 35S-sulphate (release of S into the soil peaked at 1 h [21.4%] and 24 h [17.3%] after adding cysteine and methionine, respectively). Lastly, the released 35SO4 2− was reutilised by microorganisms. The amount of 14CO2 and 35SO4 2− released from methionine was much lower than that from cysteine. The addition of excess glucose-C or inorganic nitrogen and S had little effect on cysteine and methionine uptake rate, but had a major effect on microbial C use efficiency (CUE) and internal S partitioning and the subsequent release of SO4 2− . We conclude that the microbial community cycles S-containing amino acids at a high rate, irrespective of soil S and N status with a large proportion of the C used in catabolic processes

visibility_off picture_as_pdf

picture_as_pdf
Ma-2020-Soil-carbon-nitrogen-and-sulphur-st.pdf
subject
Published Version
lock
Restricted to Repository staff only
Available under Creative Commons: Attribution 4.0


Atom BibTeX OpenURL ContextObject in Span OpenURL ContextObject Dublin Core MPEG-21 DIDL Data Cite XML EndNote HTML Citation METS MODS RIOXX2 XML Reference Manager Refer ASCII Citation
Export

Downloads