High-yielding forage grass cultivars increase root biomass and soil organic carbon stocks compared with mixed-species permanent pasture in temperate soil

Gregory, AndyORCID logo, Joynes, AdrianORCID logo, Dixon, LizORCID logo, Beaumont, Deborah, Murray, Phil, Humphreys, M. W., Richter, GoetzORCID logo and Dungait, Jennifer (2021) High-yielding forage grass cultivars increase root biomass and soil organic carbon stocks compared with mixed-species permanent pasture in temperate soil. European Journal of Soil Science. 10.1111/ejss.13160 (In press)
Copy

Agricultural grass cultivars bred for increased forage yield commonly have extensive root systems. As roots are an important input of organic matter into the soil, it follows that such cultivars could lead to important increases in soil organic carbon (SOC), but this, and the mechanisms involved, are poorly understood with little empirical field evidence. We assessed the effect of two cultivars, Lolium perenne L. cv. ‘AberMagic’ and L. perenne L. × Festuca pratensis Huds. cv. ‘Prior’, in comparison with mixed-species permanent pasture (‘Pasture’) in a field experiment on temperate alluvial soil in the southwest UK. Root and SOC stocks, and specific plant-derived lipids as mechanistic biomarkers for shoot and root inputs of C, were measured on intact 1-m volumetric soil cores collected on four dates in 2013-2015. Total grass yields were greater for both grass cultivars (40-43 Mg ha–1) than Pasture (39 Mg ha–1), and by 2015 root stocks in the upper 0.1 m were significantly greater by more than 4.7 Mg ha–1. At 0.1-0.3 m depth, SOC stocks (per 0.1-m depth) were significantly greater under the two grass cultivars (24-50 Mg ha–1) compared to Pasture (18-32 Mg ha–1). In the full 1-m profile, mean SOC stocks were 137, 133 and 110 Mg ha–1 for AberMagic, Prior and Pasture, respectively, matching root biomass distribution. Odd-chain n-alkane concentrations were significantly greater for shoots than roots (274 vs. 64 mg kg–1, respectively), and roots had significantly greater concentrations than shoots of even-chain hydroxy fatty acids (1829 vs. 305 mg kg–1, respectively) and diacids (317 vs. 93 mg kg–1, respectively). This confirmed lipids as candidate biomarkers for distinguishing shoot and root inputs into the soil, with the latter being the dominant source of SOC. Based on the observations of increased forage yield and SOC stock, high-yielding forage grass cultivars can contribute to future strategies for climate-smart agriculture in grassland-dominated temperate regions.

visibility_off picture_as_pdf

picture_as_pdf
ejss.13160.pdf
subject
Published Version
lock
Restricted to Repository staff only
Available under Creative Commons: Attribution 4.0

visibility_off picture_as_pdf

Accepted Version
lock
visibility_off picture_as_pdf

Supplemental Material
lock

Atom BibTeX OpenURL ContextObject in Span OpenURL ContextObject Dublin Core MPEG-21 DIDL Data Cite XML EndNote HTML Citation METS MODS RIOXX2 XML Reference Manager Refer ASCII Citation
Export

Downloads