Nitrification inhibitors and fertiliser nitrogen application timing strategies to reduce N2O. Urine site in Devon, 2012

Misselbrook, TomORCID logo, Cardenas, LauraORCID logo, Camp, V. and Donovan, Neil (2017) Nitrification inhibitors and fertiliser nitrogen application timing strategies to reduce N2O. Urine site in Devon, 2012. [Data Collection]
Copy

t a grassland site near Rothamsted Research, North Wyke in south-west England (sandy clay loam topsoil texture) small field plots (10 x 3 m) were arranged in a randomised block design with three replicates per treatment. Cattle urine (at 5 L m-2) was applied to grassland in mid-March and in early September 2012. A control treatment was included where no urine was applied. In separate treatments, two commercially available nitrification inhibitors were tested; dicyandiamide (DCD) and an additive containing two pyrazole derivatives (1H-1,2,4-triazole and 3-methylpyrazole) were pre-mixed with the urine prior to application to give application rates of 15 kg/ha and 5 L/ha for the DCD and the pyrazole derivatives, respectively. The urine was collected from lactating dairy cows at Reading University, kept refrigerated at <4°C and applied within two days of collection. Following urine application to five 0.36 m2 areas of the plot, measurements of direct nitrous oxide (N2O) emissions were made over c.12 months, using 5 static chambers each 0.4 x 0.4 m (1 per 0.36 m2 area, giving a total measured surface area of 0.8 m2) and analysed by gas chromatography. In a separate area of the plot, ammonia (NH3) emissions were measured for 7 days after each urine application, using a wind tunnel technique (one per plot). Nitrate (NO3) leaching losses were measured following the September urine application using porous ceramic cups (6 per plot) installed to a depth of 90 cm during the period of over-winter drainage (Webster et al., 1993) with samples collected every 50 mm of drainage or every 2 weeks whichever occurred sooner. Drainage volumes were estimated using IRRIGUIDE (Bailey and Spackman, 1986) and were combined with NO3 concentrations to quantify the amounts of NO3-N leached. Indirect N2O-N emissions were estimated from the measured NO3-N and NH3-N losses and using the Intergovernmental Panel on Climate Change default emission factors. Grass yields and N offtakes were also measured following grass cuts in May and July 2012 for the March urine application, and in May 2013 for the September urine application. The Devon 2012 urine experiment contains data sets of: annual nitrous oxide emission, annual nitrous oxide emission factor, total ammonia loss, overwinter nitrate leaching loss, soil moisture, top soil mineral nitrogen, temperature, rainfall and associated crop (grass yield and nitrogen offtakes) and soil measurements.

Full text not available from this repository.

Atom BibTeX OpenURL ContextObject in Span OpenURL ContextObject Dublin Core MPEG-21 DIDL Data Cite XML EndNote HTML Citation METS MODS RIOXX2 XML Reference Manager Refer ASCII Citation
Export

Downloads