Mechanisms of nitrogen transfer in a model clover‑ryegrass pasture a 15N‑tracer approach

Reay, M. K., Pears, K. A., Kuhl, A., Evershed, R. P., Murray, P. J., Cardenas, LauraORCID logo, Dungait, Jennifer and Bull, I. D. (2022) Mechanisms of nitrogen transfer in a model clover‑ryegrass pasture a 15N‑tracer approach. Plant and Soil, 480. pp. 369-389. 10.1007/s11104-022-05585-0
Copy

Purpose Nitrogen (N) transfer from white clover (Trifolium repens cv.) to ryegrass (Lolium perenne cv.) has the potential to meet ryegrass N requirements. This study aimed to quantify N transfer in a mixed pasture and investigate the influence of the microbial community and land management on N transfer. Methods Split root 15N-labelling of clover quantified N transfer to ryegrass via exudation, microbial assimilation, decomposition, defoliation and soil biota. Incorporation into the microbial protein pool was determined using compound-specific 15N-stable isotope probing approaches. Results N transfer to ryegrass and soil microbial protein in the model system was relatively smallwith one-third arising from root exudation. N transfer to ryegrass increased with no microbial competition but soil microbes also increased N transfer via shoot decomposition. Addition of mycorrhizal fungi did not alter N transfer, due to the source-sink nature of this pathway, whilst weevil grazing on roots decreased microbial N transfer. N transfer was bidirectional, and comparable on a short-term scale. Conclusions N transfer was low in a model young pasture established from soil from a permanent grassland with long-term N fertilisation. Root exudation and decomposition were major N transfer pathways. N transfer was influenced by soil biota (weevils, mycorrhizae) and land management (e.g. grazing). Previous land management and the role of the microbial community in N transfer must be considered when determining the potential for N transfer to ryegrass


picture_as_pdf
Reay et al 2022.pdf
subject
Published Version
Available under Creative Commons: Attribution 4.0

View Download

Atom BibTeX OpenURL ContextObject in Span OpenURL ContextObject Dublin Core MPEG-21 DIDL Data Cite XML EndNote HTML Citation METS MODS RIOXX2 XML Reference Manager Refer ASCII Citation
Export

Downloads