A multiplex approach of MS, 1D-, and 2D-NMR metabolomicsin plant ontogeny A case study on Clusia minor L. organs (leaf, flower, fruit, and seed)

Noleto-Dias, ClariceORCID logo, Farag, M. A., Porzel, A., Tavares, J. F. and Wessjohann, L. A. (2023) A multiplex approach of MS, 1D-, and 2D-NMR metabolomicsin plant ontogeny A case study on Clusia minor L. organs (leaf, flower, fruit, and seed). Phytochemical Analysis. 10.1002/pca.3300
Copy

Introduction The genus Clusia L. is mostly recognised for the production of prenylated benzophenones and tocotrienol derivatives. Objectives The objective of this study was to map metabolome variation within Clusia minor organs at different developmental stages. Material and Methods In total 15 organs/stages (leaf, flower, fruit, and seed) were analysed by UPLC-MS and 1H- and heteronuclear multiple-bond correlation (HMBC)-NMR-based metabolomics. Results This work led to the assignment of 46 metabolites, belonging to organic acids(1), sugars(2) phenolic acids(1), flavonoids(3) prenylated xanthones(1) benzophenones(4) and tocotrienols(2). Multivariate data analyses explained the variability and classification of samples, highlighting chemical markers that discriminate each organ/stage. Leaves were found to be rich in 5-hydroxy-8-methyltocotrienol (8.5 μg/mg f.w.), while flowers were abundant in the polyprenylated benzophenone nemorosone with maximum level detected in the fully mature flower bud (43 μg/mg f.w.). Nemorosone and 5-hydroxy tocotrienoloic acid were isolated from FL6 for full structural characterisation. This is the first report of the NMR assignments of 5-hydroxy tocotrienoloic acid, and its maximum level was detected in the mature fruit at 50 μg/mg f.w. Seeds as typical storage organ were rich in sugars and omega-6 fatty acids. Conclusion To the best of our knowledge, this is the first report on a comparative 1D-/2D-NMR approach to assess compositional differences in ontogeny studies compared with LC-MS exemplified by Clusia organs. Results derived from this study provide better understanding of the stages at which maximal production of natural compounds occur and elucidate in which developmental stages the enzymes responsible for the production of such metabolites are preferentially expressed.


picture_as_pdf
pca3300-sup-0001-figures_suppl.pdf
subject
Supplemental Material
Available under Creative Commons: Attribution 4.0

View Download

Published Version


Atom BibTeX OpenURL ContextObject in Span OpenURL ContextObject Dublin Core MPEG-21 DIDL Data Cite XML EndNote HTML Citation METS MODS RIOXX2 XML Reference Manager Refer ASCII Citation
Export

Downloads