Challenges in measuring fine sediment ingress in gravel-bed rivers using retrievable sediment trap samplers

Maltauro, R., Stone, M., Collins, AdrianORCID logo and Krishnappan, B. G. (2023) Challenges in measuring fine sediment ingress in gravel-bed rivers using retrievable sediment trap samplers. River Research and Applications, 40 (3). pp. 341-352. 10.1002/rra.4237
Copy

"Excess” interstitial fine sediment (<2 mm) is known to cause deleterious impacts on streambed ecosystems. Current methodologies available to assess ingress and its vertical and horizontal components still lack standardization, and the accuracy of commonly used assessments is still debatable. Here, we evaluate three fine sediment trap designs that measure only vertical (V), only horizontal (H), and both vertical and horizontal (HV) ingress mechanisms. Sediment traps were deployed in triplicates to: (i) evaluate measurement variability within traps of the same type; (ii) evaluate the effects of trap design on particle size distributions of infiltrated fine sediment and; (iii) assess methodologies used to calculate vertical and horizontal ingress mechanisms. Ingress rates were recorded for each sediment trap during seven deployment periods (lasting from 2 to 10 days) at a range of flow conditions at four sites. A total of 252 traps were deployed. Results from the triplicate assessment of traps with the same design showed that most measurements presented high variability and that particle size distributions were significantly affected by trap design. Here, different sediment traps were able to estimate directional ingress mechanisms. However, direct comparison between HV with either H or V traps led to an overestimation of horizontal or vertical ingress mechanisms, respectively. Better estimations were found when comparing HV observations to half the accumulation in either H or V, due to the proportional trap volume available for each accumulation mechanism according to trap design.


picture_as_pdf
Maltauro et al RRA 2024.pdf
subject
Published Version
Available under Creative Commons: Attribution 4.0

View Download

Atom BibTeX OpenURL ContextObject in Span OpenURL ContextObject Dublin Core MPEG-21 DIDL Data Cite XML EndNote HTML Citation METS MODS RIOXX2 XML Reference Manager Refer ASCII Citation
Export

Downloads